43142 Commits

Author SHA1 Message Date
Andrei Matei
3f0784b2f1 bpf: Protect against int overflow for stack access size
[ Upstream commit ecc6a2101840177e57c925c102d2d29f260d37c8 ]

This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.

This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.

Fixes: a833a17aeac7 ("bpf: Fix verification of indirect var-off stack access")
Reported-by: syzbot+33f4297b5f927648741a@syzkaller.appspotmail.com
Reported-by: syzbot+aafd0513053a1cbf52ef@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/CAADnVQLORV5PT0iTAhRER+iLBTkByCYNBYyvBSgjN1T31K+gOw@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Link: https://lore.kernel.org/r/20240327024245.318299-3-andreimatei1@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10 16:35:43 +02:00
Greg Kroah-Hartman
a99d7274a2 Revert "workqueue.c: Increase workqueue name length"
This reverts commit 43a181f8f41aca27e7454cf44a6dfbccc8b14e92 which is
commit 31c89007285d365aa36f71d8fb0701581c770a27 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
d8354f268d Revert "workqueue: Move pwq->max_active to wq->max_active"
This reverts commit 82e098f5bed1ff167332d26f8551662098747ec4 which is
commit a045a272d887575da17ad86d6573e82871b50c27 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
35bf38dd16 Revert "workqueue: Factor out pwq_is_empty()"
This reverts commit bad184d26a4f68aa00ad75502f9669950a790f71 which is
commit afa87ce85379e2d93863fce595afdb5771a84004 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
957578ec33 Revert "workqueue: Replace pwq_activate_inactive_work() with [__]pwq_activate_work()"
This reverts commit 6c592f0bb96815117538491e5ba12e0a8a8c4493 which is
commit 4c6380305d21e36581b451f7337a36c93b64e050 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
5debbff953 Revert "workqueue: Move nr_active handling into helpers"
This reverts commit 4023a2d95076918abe2757d60810642a8115b586 which is
commit 1c270b79ce0b8290f146255ea9057243f6dd3c17 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
e3ee73b57a Revert "workqueue: Make wq_adjust_max_active() round-robin pwqs while activating"
This reverts commit 5f99fee6f2dea1228980c3e785ab1a2c69b4da3c which is
commit qc5404d4e6df6faba1007544b5f4e62c7c14416dd upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:07 +02:00
Greg Kroah-Hartman
f3c11cb27a Revert "workqueue: RCU protect wq->dfl_pwq and implement accessors for it"
This reverts commit bd31fb926dfa02d2ccfb4b79389168b1d16f36b1 which is
commit 9f66cff212bb3c1cd25996aaa0dfd0c9e9d8baab upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:06 +02:00
Greg Kroah-Hartman
bfb429f370 Revert "workqueue: Introduce struct wq_node_nr_active"
This reverts commit b522229a56941adac1ea1da6593b2b5c734b5359 which is
commit 91ccc6e7233bb10a9c176aa4cc70d6f432a441a5 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:06 +02:00
Greg Kroah-Hartman
6741dd3fd3 Revert "workqueue: Implement system-wide nr_active enforcement for unbound workqueues"
This reverts commit 5a70baec2294e8a7d0fcc4558741c23e752dad5c which is
commit 5797b1c18919cd9c289ded7954383e499f729ce0 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:06 +02:00
Greg Kroah-Hartman
a75ac2693d Revert "workqueue: Don't call cpumask_test_cpu() with -1 CPU in wq_update_node_max_active()"
This reverts commit 7df62b8cca38aa452b508b477b16544cba615084 which is
commit 15930da42f8981dc42c19038042947b475b19f47 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:06 +02:00
Greg Kroah-Hartman
7bff1820bc Revert "workqueue: Shorten events_freezable_power_efficient name"
This reverts commit 8b934390272d50ae0e7e320617437a03e5712baa which is
commit 8318d6a6362f5903edb4c904a8dd447e59be4ad1 upstream.

The workqueue patches backported to 6.6.y caused some reported
regressions, so revert them for now.

Reported-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Tejun Heo <tj@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Audra Mitchell <audra@redhat.com>
Link: https://lore.kernel.org/all/ce4c2f67-c298-48a0-87a3-f933d646c73b@leemhuis.info/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-04 20:23:06 +02:00
Zev Weiss
a0071e3b0c prctl: generalize PR_SET_MDWE support check to be per-arch
commit d5aad4c2ca057e760a92a9a7d65bd38d72963f27 upstream.

Patch series "ARM: prctl: Reject PR_SET_MDWE where not supported".

I noticed after a recent kernel update that my ARM926 system started
segfaulting on any execve() after calling prctl(PR_SET_MDWE).  After some
investigation it appears that ARMv5 is incapable of providing the
appropriate protections for MDWE, since any readable memory is also
implicitly executable.

The prctl_set_mdwe() function already had some special-case logic added
disabling it on PARISC (commit 793838138c15, "prctl: Disable
prctl(PR_SET_MDWE) on parisc"); this patch series (1) generalizes that
check to use an arch_*() function, and (2) adds a corresponding override
for ARM to disable MDWE on pre-ARMv6 CPUs.

With the series applied, prctl(PR_SET_MDWE) is rejected on ARMv5 and
subsequent execve() calls (as well as mmap(PROT_READ|PROT_WRITE)) can
succeed instead of unconditionally failing; on ARMv6 the prctl works as it
did previously.

[0] https://lore.kernel.org/all/2023112456-linked-nape-bf19@gregkh/


This patch (of 2):

There exist systems other than PARISC where MDWE may not be feasible to
support; rather than cluttering up the generic code with additional
arch-specific logic let's add a generic function for checking MDWE support
and allow each arch to override it as needed.

Link: https://lkml.kernel.org/r/20240227013546.15769-4-zev@bewilderbeest.net
Link: https://lkml.kernel.org/r/20240227013546.15769-5-zev@bewilderbeest.net
Signed-off-by: Zev Weiss <zev@bewilderbeest.net>
Acked-by: Helge Deller <deller@gmx.de>	[parisc]
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Florent Revest <revest@chromium.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sam James <sam@gentoo.org>
Cc: Stefan Roesch <shr@devkernel.io>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: <stable@vger.kernel.org>	[6.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:54 +02:00
John Ogness
ea4c338cfe printk: Update @console_may_schedule in console_trylock_spinning()
[ Upstream commit 8076972468584d4a21dab9aa50e388b3ea9ad8c7 ]

console_trylock_spinning() may takeover the console lock from a
schedulable context. Update @console_may_schedule to make sure it
reflects a trylock acquire.

Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Closes: https://lore.kernel.org/lkml/20240222090538.23017-1-quic_mojha@quicinc.com
Fixes: dbdda842fe96 ("printk: Add console owner and waiter logic to load balance console writes")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/875xybmo2z.fsf@jogness.linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:51 +02:00
Will Deacon
c803069d48 swiotlb: Fix alignment checks when both allocation and DMA masks are present
[ Upstream commit 51b30ecb73b481d5fac6ccf2ecb4a309c9ee3310 ]

Nicolin reports that swiotlb buffer allocations fail for an NVME device
behind an IOMMU using 64KiB pages. This is because we end up with a
minimum allocation alignment of 64KiB (for the IOMMU to map the buffer
safely) but a minimum DMA alignment mask corresponding to a 4KiB NVME
page (i.e. preserving the 4KiB page offset from the original allocation).
If the original address is not 4KiB-aligned, the allocation will fail
because swiotlb_search_pool_area() erroneously compares these unmasked
bits with the 64KiB-aligned candidate allocation.

Tweak swiotlb_search_pool_area() so that the DMA alignment mask is
reduced based on the required alignment of the allocation.

Fixes: 82612d66d51d ("iommu: Allow the dma-iommu api to use bounce buffers")
Link: https://lore.kernel.org/r/cover.1707851466.git.nicolinc@nvidia.com
Reported-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:51 +02:00
Will Deacon
ae2f8dbe92 swiotlb: Honour dma_alloc_coherent() alignment in swiotlb_alloc()
[ Upstream commit cbf53074a528191df82b4dba1e3d21191102255e ]

core-api/dma-api-howto.rst states the following properties of
dma_alloc_coherent():

  | The CPU virtual address and the DMA address are both guaranteed to
  | be aligned to the smallest PAGE_SIZE order which is greater than or
  | equal to the requested size.

However, swiotlb_alloc() passes zero for the 'alloc_align_mask'
parameter of swiotlb_find_slots() and so this property is not upheld.
Instead, allocations larger than a page are aligned to PAGE_SIZE,

Calculate the mask corresponding to the page order suitable for holding
the allocation and pass that to swiotlb_find_slots().

Fixes: e81e99bacc9f ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:50 +02:00
Will Deacon
3e7acd6e25 swiotlb: Fix double-allocation of slots due to broken alignment handling
[ Upstream commit 04867a7a33324c9c562ee7949dbcaab7aaad1fb4 ]

Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.

When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:

 # Final address in brackets is the SWIOTLB address returned to the caller
 | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
 | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
 | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)

This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.

Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.

This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size().

Fixes: bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix")
Fixes: 0eee5ae10256 ("swiotlb: fix slot alignment checks")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:50 +02:00
André Rösti
4da4630810 entry: Respect changes to system call number by trace_sys_enter()
[ Upstream commit fb13b11d53875e28e7fbf0c26b288e4ea676aa9f ]

When a probe is registered at the trace_sys_enter() tracepoint, and that
probe changes the system call number, the old system call still gets
executed.  This worked correctly until commit b6ec41346103 ("core/entry:
Report syscall correctly for trace and audit"), which removed the
re-evaluation of the syscall number after the trace point.

Restore the original semantics by re-evaluating the system call number
after trace_sys_enter().

The performance impact of this re-evaluation is minimal because it only
takes place when a trace point is active, and compared to the actual trace
point overhead the read from a cache hot variable is negligible.

Fixes: b6ec41346103 ("core/entry: Report syscall correctly for trace and audit")
Signed-off-by: André Rösti <an.roesti@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240311211704.7262-1-an.roesti@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:50 +02:00
Steven Rostedt (Google)
274f0b1a6b tracing: Use .flush() call to wake up readers
commit e5d7c1916562f0e856eb3d6f569629fcd535fed2 upstream.

The .release() function does not get called until all readers of a file
descriptor are finished.

If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.

The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.

When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.

This is what the .flush() callback is for. Have the .flush() wake up the
readers.

Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:41 +02:00
Kamalesh Babulal
d9f400dc3e cgroup/cpuset: Fix retval in update_cpumask()
commit 25125a4762835d62ba1e540c1351d447fc1f6c7c upstream.

The update_cpumask(), checks for newly requested cpumask by calling
validate_change(), which returns an error on passing an invalid set
of cpu(s). Independent of the error returned, update_cpumask() always
returns zero, suppressing the error and returning success to the user
on writing an invalid cpu range for a cpuset. Fix it by returning
retval instead, which is returned by validate_change().

Fixes: 99fe36ba6fc1 ("cgroup/cpuset: Improve temporary cpumasks handling")
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:40 +02:00
Audra Mitchell
8b93439027 workqueue: Shorten events_freezable_power_efficient name
commit 8318d6a6362f5903edb4c904a8dd447e59be4ad1 upstream.

Since we have set the WQ_NAME_LEN to 32, decrease the name of
events_freezable_power_efficient so that it does not trip the name length
warning when the workqueue is created.

Signed-off-by: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03 15:28:39 +02:00
Steven Rostedt (Google)
b31301a1fa ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()
[ Upstream commit 7af9ded0c2caac0a95f33df5cb04706b0f502588 ]

Convert ring_buffer_wait() over to wait_event_interruptible(). The default
condition is to execute the wait loop inside __wait_event() just once.

This does not change the ring_buffer_wait() prototype yet, but
restructures the code so that it can take a "cond" and "data" parameter
and will call wait_event_interruptible() with a helper function as the
condition.

The helper function (rb_wait_cond) takes the cond function and data
parameters. It will first check if the buffer hit the watermark defined by
the "full" parameter and then call the passed in condition parameter. If
either are true, it returns true.

If rb_wait_cond() does not return true, it will set the appropriate
"waiters_pending" flag and returns false.

Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.399598519@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:32 +02:00
Steven Rostedt (Google)
7bcd58e809 ring-buffer: Fix full_waiters_pending in poll
[ Upstream commit 8145f1c35fa648da662078efab299c4467b85ad5 ]

If a reader of the ring buffer is doing a poll, and waiting for the ring
buffer to hit a specific watermark, there could be a case where it gets
into an infinite ping-pong loop.

The poll code has:

  rbwork->full_waiters_pending = true;
  if (!cpu_buffer->shortest_full ||
      cpu_buffer->shortest_full > full)
         cpu_buffer->shortest_full = full;

The writer will see full_waiters_pending and check if the ring buffer is
filled over the percentage of the shortest_full value. If it is, it calls
an irq_work to wake up all the waiters.

But the code could get into a circular loop:

	CPU 0					CPU 1
	-----					-----
 [ Poll ]
   [ shortest_full = 0 ]
   rbwork->full_waiters_pending = true;
					  if (rbwork->full_waiters_pending &&
					      [ buffer percent ] > shortest_full) {
					         rbwork->wakeup_full = true;
					         [ queue_irqwork ]

   cpu_buffer->shortest_full = full;

					  [ IRQ work ]
					  if (rbwork->wakeup_full) {
					        cpu_buffer->shortest_full = 0;
					        wakeup poll waiters;
  [woken]
   if ([ buffer percent ] > full)
      break;
   rbwork->full_waiters_pending = true;
					  if (rbwork->full_waiters_pending &&
					      [ buffer percent ] > shortest_full) {
					         rbwork->wakeup_full = true;
					         [ queue_irqwork ]

   cpu_buffer->shortest_full = full;

					  [ IRQ work ]
					  if (rbwork->wakeup_full) {
					        cpu_buffer->shortest_full = 0;
					        wakeup poll waiters;
  [woken]

 [ Wash, rinse, repeat! ]

In the poll, the shortest_full needs to be set before the
full_pending_waiters, as once that is set, the writer will compare the
current shortest_full (which is incorrect) to decide to call the irq_work,
which will reset the shortest_full (expecting the readers to update it).

Also move the setting of full_waiters_pending after the check if the ring
buffer has the required percentage filled. There's no reason to tell the
writer to wake up waiters if there are no waiters.

Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:32 +02:00
Steven Rostedt (Google)
b87a7e108e ring-buffer: Fix resetting of shortest_full
[ Upstream commit 68282dd930ea38b068ce2c109d12405f40df3f93 ]

The "shortest_full" variable is used to keep track of the waiter that is
waiting for the smallest amount on the ring buffer before being woken up.
When a tasks waits on the ring buffer, it passes in a "full" value that is
a percentage. 0 means wake up on any data. 1-100 means wake up from 1% to
100% full buffer.

As all waiters are on the same wait queue, the wake up happens for the
waiter with the smallest percentage.

The problem is that the smallest_full on the cpu_buffer that stores the
smallest amount doesn't get reset when all the waiters are woken up. It
does get reset when the ring buffer is reset (echo > /sys/kernel/tracing/trace).

This means that tasks may be woken up more often then when they want to
be. Instead, have the shortest_full field get reset just before waking up
all the tasks. If the tasks wait again, they will update the shortest_full
before sleeping.

Also add locking around setting of shortest_full in the poll logic, and
change "work" to "rbwork" to match the variable name for rb_irq_work
structures that are used in other places.

Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.948914369@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 8145f1c35fa6 ("ring-buffer: Fix full_waiters_pending in poll")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:32 +02:00
Steven Rostedt (Google)
73dae1a5d4 ring-buffer: Do not set shortest_full when full target is hit
[ Upstream commit 761d9473e27f0c8782895013a3e7b52a37c8bcfc ]

The rb_watermark_hit() checks if the amount of data in the ring buffer is
above the percentage level passed in by the "full" variable. If it is, it
returns true.

But it also sets the "shortest_full" field of the cpu_buffer that informs
writers that it needs to call the irq_work if the amount of data on the
ring buffer is above the requested amount.

The rb_watermark_hit() always sets the shortest_full even if the amount in
the ring buffer is what it wants. As it is not going to wait, because it
has what it wants, there's no reason to set shortest_full.

Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:31 +02:00
Steven Rostedt (Google)
b82dbe74ee ring-buffer: Fix waking up ring buffer readers
[ Upstream commit b3594573681b53316ec0365332681a30463edfd6 ]

A task can wait on a ring buffer for when it fills up to a specific
watermark. The writer will check the minimum watermark that waiters are
waiting for and if the ring buffer is past that, it will wake up all the
waiters.

The waiters are in a wait loop, and will first check if a signal is
pending and then check if the ring buffer is at the desired level where it
should break out of the loop.

If a file that uses a ring buffer closes, and there's threads waiting on
the ring buffer, it needs to wake up those threads. To do this, a
"wait_index" was used.

Before entering the wait loop, the waiter will read the wait_index. On
wakeup, it will check if the wait_index is different than when it entered
the loop, and will exit the loop if it is. The waker will only need to
update the wait_index before waking up the waiters.

This had a couple of bugs. One trivial one and one broken by design.

The trivial bug was that the waiter checked the wait_index after the
schedule() call. It had to be checked between the prepare_to_wait() and
the schedule() which it was not.

The main bug is that the first check to set the default wait_index will
always be outside the prepare_to_wait() and the schedule(). That's because
the ring_buffer_wait() doesn't have enough context to know if it should
break out of the loop.

The loop itself is not needed, because all the callers to the
ring_buffer_wait() also has their own loop, as the callers have a better
sense of what the context is to decide whether to break out of the loop
or not.

Just have the ring_buffer_wait() block once, and if it gets woken up, exit
the function and let the callers decide what to do next.

Link: https://lore.kernel.org/all/CAHk-=whs5MdtNjzFkTyaUy=vHi=qwWgPi0JgTe6OYUYMNSRZfg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.792933613@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad2202 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 761d9473e27f ("ring-buffer: Do not set shortest_full when full target is hit")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:31 +02:00
Peter Collingbourne
4cc3e2ed67 serial: Lock console when calling into driver before registration
[ Upstream commit 801410b26a0e8b8a16f7915b2b55c9528b69ca87 ]

During the handoff from earlycon to the real console driver, we have
two separate drivers operating on the same device concurrently. In the
case of the 8250 driver these concurrent accesses cause problems due
to the driver's use of banked registers, controlled by LCR.DLAB. It is
possible for the setup(), config_port(), pm() and set_mctrl() callbacks
to set DLAB, which can cause the earlycon code that intends to access
TX to instead access DLL, leading to missed output and corruption on
the serial line due to unintended modifications to the baud rate.

In particular, for setup() we have:

univ8250_console_setup()
-> serial8250_console_setup()
-> uart_set_options()
-> serial8250_set_termios()
-> serial8250_do_set_termios()
-> serial8250_do_set_divisor()

For config_port() we have:

serial8250_config_port()
-> autoconfig()

For pm() we have:

serial8250_pm()
-> serial8250_do_pm()
-> serial8250_set_sleep()

For set_mctrl() we have (for some devices):

serial8250_set_mctrl()
-> omap8250_set_mctrl()
-> __omap8250_set_mctrl()

To avoid such problems, let's make it so that the console is locked
during pre-registration calls to these callbacks, which will prevent
the earlycon driver from running concurrently.

Remove the partial solution to this problem in the 8250 driver
that locked the console only during autoconfig_irq(), as this would
result in a deadlock with the new approach. The console continues
to be locked during autoconfig_irq() because it can only be called
through uart_configure_port().

Although this patch introduces more locking than strictly necessary
(and in particular it also locks during the call to rs485_config()
which is not affected by this issue as far as I can tell), it follows
the principle that it is the responsibility of the generic console
code to manage the earlycon handoff by ensuring that earlycon and real
console driver code cannot run concurrently, and not the individual
drivers.

Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Link: https://linux-review.googlesource.com/id/I7cf8124dcebf8618e6b2ee543fa5b25532de55d8
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240304214350.501253-1-pcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:26 +02:00
Maulik Shah
35c1cdd504 PM: suspend: Set mem_sleep_current during kernel command line setup
[ Upstream commit 9bc4ffd32ef8943f5c5a42c9637cfd04771d021b ]

psci_init_system_suspend() invokes suspend_set_ops() very early during
bootup even before kernel command line for mem_sleep_default is setup.
This leads to kernel command line mem_sleep_default=s2idle not working
as mem_sleep_current gets changed to deep via suspend_set_ops() and never
changes back to s2idle.

Set mem_sleep_current along with mem_sleep_default during kernel command
line setup as default suspend mode.

Fixes: faf7ec4a92c0 ("drivers: firmware: psci: add system suspend support")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Maulik Shah <quic_mkshah@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:22 +02:00
Matthew Wilcox (Oracle)
b46c822f8b bounds: support non-power-of-two CONFIG_NR_CPUS
[ Upstream commit f2d5dcb48f7ba9e3ff249d58fc1fa963d374e66a ]

ilog2() rounds down, so for example when PowerPC 85xx sets CONFIG_NR_CPUS
to 24, we will only allocate 4 bits to store the number of CPUs instead of
5.  Use bits_per() instead, which rounds up.  Found by code inspection.
The effect of this would probably be a misaccounting when doing NUMA
balancing, so to a user, it would only be a performance penalty.  The
effects may be more wide-spread; it's hard to tell.

Link: https://lkml.kernel.org/r/20231010145549.1244748-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Fixes: 90572890d202 ("mm: numa: Change page last {nid,pid} into {cpu,pid}")
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:20 +02:00
Peter Zijlstra
c4c2f7e672 sched: Simplify tg_set_cfs_bandwidth()
[ Upstream commit 6fb45460615358157a6d3c990e74f9c1395247e2 ]

Use guards to reduce gotos and simplify control flow.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stable-dep-of: 1aa09b9379a7 ("powercap: intel_rapl: Fix locking in TPMI RAPL")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03 15:28:18 +02:00
Yan Zhai
5fcee137db bpf: report RCU QS in cpumap kthread
[ Upstream commit 00bf63122459e87193ee7f1bc6161c83a525569f ]

When there are heavy load, cpumap kernel threads can be busy polling
packets from redirect queues and block out RCU tasks from reaching
quiescent states. It is insufficient to just call cond_resched() in such
context. Periodically raise a consolidated RCU QS before cond_resched
fixes the problem.

Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reviewed-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/c17b9f1517e19d813da3ede5ed33ee18496bb5d8.1710877680.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:20:12 -04:00
Changbin Du
8c61e3beb0 modules: wait do_free_init correctly
[ Upstream commit 8f8cd6c0a43ed637e620bbe45a8d0e0c2f4d5130 ]

The synchronization here is to ensure the ordering of freeing of a module
init so that it happens before W+X checking.  It is worth noting it is not
that the freeing was not happening, it is just that our sanity checkers
raced against the permission checkers which assume init memory is already
gone.

Commit 1a7b7d922081 ("modules: Use vmalloc special flag") moved calling
do_free_init() into a global workqueue instead of relying on it being
called through call_rcu(..., do_free_init), which used to allowed us call
do_free_init() asynchronously after the end of a subsequent grace period.
The move to a global workqueue broke the gaurantees for code which needed
to be sure the do_free_init() would complete with rcu_barrier().  To fix
this callers which used to rely on rcu_barrier() must now instead use
flush_work(&init_free_wq).

Without this fix, we still could encounter false positive reports in W+X
checking since the rcu_barrier() here can not ensure the ordering now.

Even worse, the rcu_barrier() can introduce significant delay.  Eric
Chanudet reported that the rcu_barrier introduces ~0.1s delay on a
PREEMPT_RT kernel.

  [    0.291444] Freeing unused kernel memory: 5568K
  [    0.402442] Run /sbin/init as init process

With this fix, the above delay can be eliminated.

Link: https://lkml.kernel.org/r/20240227023546.2490667-1-changbin.du@huawei.com
Fixes: 1a7b7d922081 ("modules: Use vmalloc special flag")
Signed-off-by: Changbin Du <changbin.du@huawei.com>
Tested-by: Eric Chanudet <echanude@redhat.com>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Xiaoyi Su <suxiaoyi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:55 -04:00
Puranjay Mohan
535fb2160a bpf: hardcode BPF_PROG_PACK_SIZE to 2MB * num_possible_nodes()
[ Upstream commit d6170e4aaf86424c24ce06e355b4573daa891b17 ]

On some architectures like ARM64, PMD_SIZE can be really large in some
configurations. Like with CONFIG_ARM64_64K_PAGES=y the PMD_SIZE is
512MB.

Use 2MB * num_possible_nodes() as the size for allocations done through
the prog pack allocator. On most architectures, PMD_SIZE will be equal
to 2MB in case of 4KB pages and will be greater than 2MB for bigger page
sizes.

Fixes: ea2babac63d4 ("bpf: Simplify bpf_prog_pack_[size|mask]")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Closes: https://lore.kernel.org/all/7e216c88-77ee-47b8-becc-a0f780868d3c@sirena.org.uk/
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202403092219.dhgcuz2G-lkp@intel.com/
Suggested-by: Song Liu <song@kernel.org>
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Message-ID: <20240311122722.86232-1-puranjay12@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:41 -04:00
Toke Høiland-Jørgensen
7070b274c7 bpf: Fix stackmap overflow check on 32-bit arches
[ Upstream commit 7a4b21250bf79eef26543d35bd390448646c536b ]

The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.

The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.

Fixes: 6183f4d3a0a2 ("bpf: Check for integer overflow when using roundup_pow_of_two()")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-ID: <20240307120340.99577-4-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:39 -04:00
Toke Høiland-Jørgensen
8435f0961b bpf: Fix hashtab overflow check on 32-bit arches
[ Upstream commit 6787d916c2cf9850c97a0a3f73e08c43e7d973b1 ]

The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.

Fixes: daaf427c6ab3 ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:39 -04:00
Toke Høiland-Jørgensen
250051acc2 bpf: Fix DEVMAP_HASH overflow check on 32-bit arches
[ Upstream commit 281d464a34f540de166cee74b723e97ac2515ec3 ]

The devmap code allocates a number hash buckets equal to the next power
of two of the max_entries value provided when creating the map. When
rounding up to the next power of two, the 32-bit variable storing the
number of buckets can overflow, and the code checks for overflow by
checking if the truncated 32-bit value is equal to 0. However, on 32-bit
arches the rounding up itself can overflow mid-way through, because it
ends up doing a left-shift of 32 bits on an unsigned long value. If the
size of an unsigned long is four bytes, this is undefined behaviour, so
there is no guarantee that we'll end up with a nice and tidy 0-value at
the end.

Syzbot managed to turn this into a crash on arm32 by creating a
DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it.
Fix this by moving the overflow check to before the rounding up
operation.

Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Link: https://lore.kernel.org/r/000000000000ed666a0611af6818@google.com
Reported-and-tested-by: syzbot+8cd36f6b65f3cafd400a@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-2-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:39 -04:00
Yonghong Song
e36373dc5e bpf: Mark bpf_spin_{lock,unlock}() helpers with notrace correctly
[ Upstream commit 178c54666f9c4d2f49f2ea661d0c11b52f0ed190 ]

Currently tracing is supposed not to allow for bpf_spin_{lock,unlock}()
helper calls. This is to prevent deadlock for the following cases:
  - there is a prog (prog-A) calling bpf_spin_{lock,unlock}().
  - there is a tracing program (prog-B), e.g., fentry, attached
    to bpf_spin_lock() and/or bpf_spin_unlock().
  - prog-B calls bpf_spin_{lock,unlock}().
For such a case, when prog-A calls bpf_spin_{lock,unlock}(),
a deadlock will happen.

The related source codes are below in kernel/bpf/helpers.c:
  notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
  notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
notrace is supposed to prevent fentry prog from attaching to
bpf_spin_{lock,unlock}().

But actually this is not the case and fentry prog can successfully
attached to bpf_spin_lock(). Siddharth Chintamaneni reported
the issue in [1]. The following is the macro definition for
above BPF_CALL_1:
  #define BPF_CALL_x(x, name, ...)                                               \
        static __always_inline                                                 \
        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
        typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
        {                                                                      \
                return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
        }                                                                      \
        static __always_inline                                                 \
        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))

  #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)

The notrace attribute is actually applied to the static always_inline function
____bpf_spin_{lock,unlock}(). The actual callback function
bpf_spin_{lock,unlock}() is not marked with notrace, hence
allowing fentry prog to attach to two helpers, and this
may cause the above mentioned deadlock. Siddharth Chintamaneni
actually has a reproducer in [2].

To fix the issue, a new macro NOTRACE_BPF_CALL_1 is introduced which
will add notrace attribute to the original function instead of
the hidden always_inline function and this fixed the problem.

  [1] https://lore.kernel.org/bpf/CAE5sdEigPnoGrzN8WU7Tx-h-iFuMZgW06qp0KHWtpvoXxf1OAQ@mail.gmail.com/
  [2] https://lore.kernel.org/bpf/CAE5sdEg6yUc_Jz50AnUXEEUh6O73yQ1Z6NV2srJnef0ZrQkZew@mail.gmail.com/

Fixes: d83525ca62cf ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240207070102.335167-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:29 -04:00
Petr Mladek
a3b17859c8 printk: Disable passing console lock owner completely during panic()
[ Upstream commit d04d5882cd678b898a9d7c5aee6afbe9e6e77fcd ]

The commit d51507098ff91 ("printk: disable optimistic spin
during panic") added checks to avoid becoming a console waiter
if a panic is in progress.

However, the transition to panic can occur while there is
already a waiter. The current owner should not pass the lock to
the waiter because it might get stopped or blocked anytime.

Also the panic context might pass the console lock owner to an
already stopped waiter by mistake. It might happen when
console_flush_on_panic() ignores the current lock owner, for
example:

CPU0                                CPU1
----                                ----
console_lock_spinning_enable()
                                    console_trylock_spinning()
                                      [CPU1 now console waiter]
NMI: panic()
  panic_other_cpus_shutdown()
                                    [stopped as console waiter]
  console_flush_on_panic()
    console_lock_spinning_enable()
    [print 1 record]
    console_lock_spinning_disable_and_check()
      [handover to stopped CPU1]

This results in panic() not flushing the panic messages.

Fix these problems by disabling all spinning operations
completely during panic().

Another advantage is that it prevents possible deadlocks caused
by "console_owner_lock". The panic() context does not need to
take it any longer. The lockless checks are safe because the
functions become NOPs when they see the panic in progress. All
operations manipulating the state are still synchronized by the
lock even when non-panic CPUs would notice the panic
synchronously.

The current owner might stay spinning. But non-panic() CPUs
would get stopped anyway and the panic context will never start
spinning.

Fixes: dbdda842fe96 ("printk: Add console owner and waiter logic to load balance console writes")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20240207134103.1357162-12-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:27 -04:00
Keisuke Nishimura
76b512a49f sched/fair: Take the scheduling domain into account in select_idle_core()
[ Upstream commit 23d04d8c6b8ec339057264659b7834027f3e6a63 ]

When picking a CPU on task wakeup, select_idle_core() has to take
into account the scheduling domain where the function looks for the CPU.

This is because the "isolcpus" kernel command line option can remove CPUs
from the domain to isolate them from other SMT siblings.

This change replaces the set of CPUs allowed to run the task from
p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd)
which is stored in the 'cpus' argument provided by select_idle_cpu().

Fixes: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:19 -04:00
Keisuke Nishimura
495b7cb952 sched/fair: Take the scheduling domain into account in select_idle_smt()
[ Upstream commit 8aeaffef8c6eceab0e1498486fdd4f3dc3b7066c ]

When picking a CPU on task wakeup, select_idle_smt() has to take
into account the scheduling domain of @target. This is because the
"isolcpus" kernel command line option can remove CPUs from the domain to
isolate them from other SMT siblings.

This fix checks if the candidate CPU is in the target scheduling domain.

Commit:

  df3cb4ea1fb6 ("sched/fair: Fix wrong cpu selecting from isolated domain")

... originally introduced this fix by adding the check of the scheduling
domain in the loop.

However, commit:

  3e6efe87cd5cc ("sched/fair: Remove redundant check in select_idle_smt()")

... accidentally removed the check. Bring it back.

Fixes: 3e6efe87cd5c ("sched/fair: Remove redundant check in select_idle_smt()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:19 -04:00
Peter Hilber
e42c1df34e timekeeping: Fix cross-timestamp interpolation for non-x86
[ Upstream commit 14274d0bd31b4debf28284604589f596ad2e99f2 ]

So far, get_device_system_crosststamp() unconditionally passes
system_counterval.cycles to timekeeping_cycles_to_ns(). But when
interpolating system time (do_interp == true), system_counterval.cycles is
before tkr_mono.cycle_last, contrary to the timekeeping_cycles_to_ns()
expectations.

On x86, CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE will mitigate on
interpolating, setting delta to 0. With delta == 0, xtstamp->sys_monoraw
and xtstamp->sys_realtime are then set to the last update time, as
implicitly expected by adjust_historical_crosststamp(). On other
architectures, the resulting nonsense xtstamp->sys_monoraw and
xtstamp->sys_realtime corrupt the xtstamp (ts) adjustment in
adjust_historical_crosststamp().

Fix this by deriving xtstamp->sys_monoraw and xtstamp->sys_realtime from
the last update time when interpolating, by using the local variable
"cycles". The local variable already has the right value when
interpolating, unlike system_counterval.cycles.

Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-4-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:19 -04:00
Peter Hilber
9e4d5849b4 timekeeping: Fix cross-timestamp interpolation corner case decision
[ Upstream commit 87a41130881995f82f7adbafbfeddaebfb35f0ef ]

The cycle_between() helper checks if parameter test is in the open interval
(before, after). Colloquially speaking, this also applies to the counter
wrap-around special case before > after. get_device_system_crosststamp()
currently uses cycle_between() at the first call site to decide whether to
interpolate for older counter readings.

get_device_system_crosststamp() has the following problem with
cycle_between() testing against an open interval: Assume that, by chance,
cycles == tk->tkr_mono.cycle_last (in the following, "cycle_last" for
brevity). Then, cycle_between() at the first call site, with effective
argument values cycle_between(cycle_last, cycles, now), returns false,
enabling interpolation. During interpolation,
get_device_system_crosststamp() will then call cycle_between() at the
second call site (if a history_begin was supplied). The effective argument
values are cycle_between(history_begin->cycles, cycles, cycles), since
system_counterval.cycles == interval_start == cycles, per the assumption.
Due to the test against the open interval, cycle_between() returns false
again. This causes get_device_system_crosststamp() to return -EINVAL.

This failure should be avoided, since get_device_system_crosststamp() works
both when cycles follows cycle_last (no interpolation), and when cycles
precedes cycle_last (interpolation). For the case cycles == cycle_last,
interpolation is actually unneeded.

Fix this by changing cycle_between() into timestamp_in_interval(), which
now checks against the closed interval, rather than the open interval.

This changes the get_device_system_crosststamp() behavior for three corner
cases:

1. Bypass interpolation in the case cycles == tk->tkr_mono.cycle_last,
   fixing the problem described above.

2. At the first timestamp_in_interval() call site, cycles == now no longer
   causes failure.

3. At the second timestamp_in_interval() call site, history_begin->cycles
   == system_counterval.cycles no longer causes failure.
   adjust_historical_crosststamp() also works for this corner case,
   where partial_history_cycles == total_history_cycles.

These behavioral changes should not cause any problems.

Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231218073849.35294-3-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:19 -04:00
Peter Hilber
c56317c7ed timekeeping: Fix cross-timestamp interpolation on counter wrap
[ Upstream commit 84dccadd3e2a3f1a373826ad71e5ced5e76b0c00 ]

cycle_between() decides whether get_device_system_crosststamp() will
interpolate for older counter readings.

cycle_between() yields wrong results for a counter wrap-around where after
< before < test, and for the case after < test < before.

Fix the comparison logic.

Fixes: 2c756feb18d9 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-2-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:19 -04:00
David Gow
491ed9f9eb time: test: Fix incorrect format specifier
[ Upstream commit 133e267ef4a26d19c93996a874714e9f3f8c70aa ]

'days' is a s64 (from div_s64), and so should use a %lld specifier.

This was found by extending KUnit's assertion macros to use gcc's
__printf attribute.

Fixes: 276010551664 ("time: Improve performance of time64_to_tm()")
Signed-off-by: David Gow <davidgow@google.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:18 -04:00
Frederic Weisbecker
eba92d62cb rcu/exp: Handle RCU expedited grace period kworker allocation failure
[ Upstream commit e7539ffc9a770f36bacedcf0fbfb4bf2f244f4a5 ]

Just like is done for the kworker performing nodes initialization,
gracefully handle the possible allocation failure of the RCU expedited
grace period main kworker.

While at it perform a rename of the related checking functions to better
reflect the expedited specifics.

Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44df ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:17 -04:00
Frederic Weisbecker
6047cdf6fc rcu/exp: Fix RCU expedited parallel grace period kworker allocation failure recovery
[ Upstream commit a636c5e6f8fc34be520277e69c7c6ee1d4fc1d17 ]

Under CONFIG_RCU_EXP_KTHREAD=y, the nodes initialization for expedited
grace periods is queued to a kworker. However if the allocation of that
kworker failed, the nodes initialization is performed synchronously by
the caller instead.

Now the check for kworker initialization failure relies on the kworker
pointer to be NULL while its value might actually encapsulate an
allocation failure error.

Make sure to handle this case.

Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44df ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:17 -04:00
Tejun Heo
7df62b8cca workqueue: Don't call cpumask_test_cpu() with -1 CPU in wq_update_node_max_active()
[ Upstream commit 15930da42f8981dc42c19038042947b475b19f47 ]

For wq_update_node_max_active(), @off_cpu of -1 indicates that no CPU is
going down. The function was incorrectly calling cpumask_test_cpu() with -1
CPU leading to oopses like the following on some archs:

  Unable to handle kernel paging request at virtual address ffff0002100296e0
  ..
  pc : wq_update_node_max_active+0x50/0x1fc
  lr : wq_update_node_max_active+0x1f0/0x1fc
  ...
  Call trace:
    wq_update_node_max_active+0x50/0x1fc
    apply_wqattrs_commit+0xf0/0x114
    apply_workqueue_attrs_locked+0x58/0xa0
    alloc_workqueue+0x5ac/0x774
    workqueue_init_early+0x460/0x540
    start_kernel+0x258/0x684
    __primary_switched+0xb8/0xc0
  Code: 9100a273 35000d01 53067f00 d0016dc1 (f8607a60)
  ---[ end trace 0000000000000000 ]---
  Kernel panic - not syncing: Attempted to kill the idle task!
  ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]---

Fix it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: http://lkml.kernel.org/r/91eacde0-df99-4d5c-a980-91046f66e612@samsung.com
Fixes: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:16 -04:00
Tejun Heo
5a70baec22 workqueue: Implement system-wide nr_active enforcement for unbound workqueues
[ Upstream commit 5797b1c18919cd9c289ded7954383e499f729ce0 ]

A pool_workqueue (pwq) represents the connection between a workqueue and a
worker_pool. One of the roles that a pwq plays is enforcement of the
max_active concurrency limit. Before 636b927eba5b ("workqueue: Make unbound
workqueues to use per-cpu pool_workqueues"), there was one pwq per each CPU
for per-cpu workqueues and per each NUMA node for unbound workqueues, which
was a natural result of per-cpu workqueues being served by per-cpu pools and
unbound by per-NUMA pools.

In terms of max_active enforcement, this was, while not perfect, workable.
For per-cpu workqueues, it was fine. For unbound, it wasn't great in that
NUMA machines would get max_active that's multiplied by the number of nodes
but didn't cause huge problems because NUMA machines are relatively rare and
the node count is usually pretty low.

However, cache layouts are more complex now and sharing a worker pool across
a whole node didn't really work well for unbound workqueues. Thus, a series
of commits culminating on 8639ecebc9b1 ("workqueue: Make unbound workqueues
to use per-cpu pool_workqueues") implemented more flexible affinity
mechanism for unbound workqueues which enables using e.g. last-level-cache
aligned pools. In the process, 636b927eba5b ("workqueue: Make unbound
workqueues to use per-cpu pool_workqueues") made unbound workqueues use
per-cpu pwqs like per-cpu workqueues.

While the change was necessary to enable more flexible affinity scopes, this
came with the side effect of blowing up the effective max_active for unbound
workqueues. Before, the effective max_active for unbound workqueues was
multiplied by the number of nodes. After, by the number of CPUs.

636b927eba5b ("workqueue: Make unbound workqueues to use per-cpu
pool_workqueues") claims that this should generally be okay. It is okay for
users which self-regulates concurrency level which are the vast majority;
however, there are enough use cases which actually depend on max_active to
prevent the level of concurrency from going bonkers including several IO
handling workqueues that can issue a work item for each in-flight IO. With
targeted benchmarks, the misbehavior can easily be exposed as reported in
http://lkml.kernel.org/r/dbu6wiwu3sdhmhikb2w6lns7b27gbobfavhjj57kwi2quafgwl@htjcc5oikcr3.

Unfortunately, there is no way to express what these use cases need using
per-cpu max_active. A CPU may issue most of in-flight IOs, so we don't want
to set max_active too low but as soon as we increase max_active a bit, we
can end up with unreasonable number of in-flight work items when many CPUs
issue IOs at the same time. ie. The acceptable lowest max_active is higher
than the acceptable highest max_active.

Ideally, max_active for an unbound workqueue should be system-wide so that
the users can regulate the total level of concurrency regardless of node and
cache layout. The reasons workqueue hasn't implemented that yet are:

- One max_active enforcement decouples from pool boundaires, chaining
  execution after a work item finishes requires inter-pool operations which
  would require lock dancing, which is nasty.

- Sharing a single nr_active count across the whole system can be pretty
  expensive on NUMA machines.

- Per-pwq enforcement had been more or less okay while we were using
  per-node pools.

It looks like we no longer can avoid decoupling max_active enforcement from
pool boundaries. This patch implements system-wide nr_active mechanism with
the following design characteristics:

- To avoid sharing a single counter across multiple nodes, the configured
  max_active is split across nodes according to the proportion of each
  workqueue's online effective CPUs per node. e.g. A node with twice more
  online effective CPUs will get twice higher portion of max_active.

- Workqueue used to be able to process a chain of interdependent work items
  which is as long as max_active. We can't do this anymore as max_active is
  distributed across the nodes. Instead, a new parameter min_active is
  introduced which determines the minimum level of concurrency within a node
  regardless of how max_active distribution comes out to be.

  It is set to the smaller of max_active and WQ_DFL_MIN_ACTIVE which is 8.
  This can lead to higher effective max_weight than configured and also
  deadlocks if a workqueue was depending on being able to handle chains of
  interdependent work items that are longer than 8.

  I believe these should be fine given that the number of CPUs in each NUMA
  node is usually higher than 8 and work item chain longer than 8 is pretty
  unlikely. However, if these assumptions turn out to be wrong, we'll need
  to add an interface to adjust min_active.

- Each unbound wq has an array of struct wq_node_nr_active which tracks
  per-node nr_active. When its pwq wants to run a work item, it has to
  obtain the matching node's nr_active. If over the node's max_active, the
  pwq is queued on wq_node_nr_active->pending_pwqs. As work items finish,
  the completion path round-robins the pending pwqs activating the first
  inactive work item of each, which involves some pool lock dancing and
  kicking other pools. It's not the simplest code but doesn't look too bad.

v4: - wq_adjust_max_active() updated to invoke wq_update_node_max_active().

    - wq_adjust_max_active() is now protected by wq->mutex instead of
      wq_pool_mutex.

v3: - wq_node_max_active() used to calculate per-node max_active on the fly
      based on system-wide CPU online states. Lai pointed out that this can
      lead to skewed distributions for workqueues with restricted cpumasks.
      Update the max_active distribution to use per-workqueue effective
      online CPU counts instead of system-wide and cache the calculation
      results in node_nr_active->max.

v2: - wq->min/max_active now uses WRITE/READ_ONCE() as suggested by Lai.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Naohiro Aota <Naohiro.Aota@wdc.com>
Link: http://lkml.kernel.org/r/dbu6wiwu3sdhmhikb2w6lns7b27gbobfavhjj57kwi2quafgwl@htjcc5oikcr3
Fixes: 636b927eba5b ("workqueue: Make unbound workqueues to use per-cpu pool_workqueues")
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:16 -04:00
Tejun Heo
b522229a56 workqueue: Introduce struct wq_node_nr_active
[ Upstream commit 91ccc6e7233bb10a9c176aa4cc70d6f432a441a5 ]

Currently, for both percpu and unbound workqueues, max_active applies
per-cpu, which is a recent change for unbound workqueues. The change for
unbound workqueues was a significant departure from the previous behavior of
per-node application. It made some use cases create undesirable number of
concurrent work items and left no good way of fixing them. To address the
problem, workqueue is implementing a NUMA node segmented global nr_active
mechanism, which will be explained further in the next patch.

As a preparation, this patch introduces struct wq_node_nr_active. It's a
data structured allocated for each workqueue and NUMA node pair and
currently only tracks the workqueue's number of active work items on the
node. This is split out from the next patch to make it easier to understand
and review.

Note that there is an extra wq_node_nr_active allocated for the invalid node
nr_node_ids which is used to track nr_active for pools which don't have NUMA
node associated such as the default fallback system-wide pool.

This doesn't cause any behavior changes visible to userland yet. The next
patch will expand to implement the control mechanism on top.

v4: - Fixed out-of-bound access when freeing per-cpu workqueues.

v3: - Use flexible array for wq->node_nr_active as suggested by Lai.

v2: - wq->max_active now uses WRITE/READ_ONCE() as suggested by Lai.

    - Lai pointed out that pwq_tryinc_nr_active() incorrectly dropped
      pwq->max_active check. Restored. As the next patch replaces the
      max_active enforcement mechanism, this doesn't change the end result.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:16 -04:00
Tejun Heo
bd31fb926d workqueue: RCU protect wq->dfl_pwq and implement accessors for it
[ Upstream commit 9f66cff212bb3c1cd25996aaa0dfd0c9e9d8baab ]

wq->cpu_pwq is RCU protected but wq->dfl_pwq isn't. This is okay because
currently wq->dfl_pwq is used only accessed to install it into wq->cpu_pwq
which doesn't require RCU access. However, we want to be able to access
wq->dfl_pwq under RCU in the future to access its __pod_cpumask and the code
can be made easier to read by making the two pwq fields behave in the same
way.

- Make wq->dfl_pwq RCU protected.

- Add unbound_pwq_slot() and unbound_pwq() which can access both ->dfl_pwq
  and ->cpu_pwq. The former returns the double pointer that can be used
  access and update the pwqs. The latter performs locking check and
  dereferences the double pointer.

- pwq accesses and updates are converted to use unbound_pwq[_slot]().

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:19:16 -04:00