linux/arch/x86/events/perf_event.h
Kan Liang 5471eea5d3 perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.

    perf stat -e 'branches,cycles' -- taskset -c 0 ./workload

In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)

    $./rdpmc_read_all_counters
    index 0x0 value 0x8001e5970f99
    index 0x1 value 0x8005d750edb6
    index 0x2 value 0x0
    index 0x3 value 0x0

    index 0x0 value 0x8002358e48a5
    index 0x1 value 0x8006bd1e3bc9
    index 0x2 value 0x0
    index 0x3 value 0x0

It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.

The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.

Three methods were considered to address the issue.

 - Unconditionally reset the counter in x86_pmu_del(). It can bring extra
   overhead even when there is no RDPMC task running.

 - Only reset the un-assigned dirty counters when the RDPMC task is
   scheduled in via sched_task(). It fails for the below case.

	Thread A			Thread B

	clone(CLONE_THREAD) --->
	set_affine(0)
					set_affine(1)
					while (!event-enabled)
						;
	event = perf_event_open()
	mmap(event)
	ioctl(event, IOC_ENABLE); --->
					RDPMC

   Counters are still leaked to the thread B.

 - Only reset the un-assigned dirty counters before updating the CR4.PCE
   bit. The method is implemented here.

The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.

The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.

After applying the patch,

        $ ./rdpmc_read_all_counters
        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

Performance

The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.

The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.

Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).

    lat_ctx -s 128K -N 1000 processes 2

Without the patch:
  The context switch time is 4.97 us

With the patch:
  The context switch time is 5.16 us

There is ~4% performance drop for the context switching time in the
worst-case.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
2021-06-17 14:11:47 +02:00

1425 lines
38 KiB
C

/*
* Performance events x86 architecture header
*
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
* Copyright (C) 2009 Jaswinder Singh Rajput
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
* Copyright (C) 2009 Google, Inc., Stephane Eranian
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_event.h>
#include <asm/intel_ds.h>
#include <asm/cpu.h>
/* To enable MSR tracing please use the generic trace points. */
/*
* | NHM/WSM | SNB |
* register -------------------------------
* | HT | no HT | HT | no HT |
*-----------------------------------------
* offcore | core | core | cpu | core |
* lbr_sel | core | core | cpu | core |
* ld_lat | cpu | core | cpu | core |
*-----------------------------------------
*
* Given that there is a small number of shared regs,
* we can pre-allocate their slot in the per-cpu
* per-core reg tables.
*/
enum extra_reg_type {
EXTRA_REG_NONE = -1, /* not used */
EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */
EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */
EXTRA_REG_LBR = 2, /* lbr_select */
EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */
EXTRA_REG_FE = 4, /* fe_* */
EXTRA_REG_MAX /* number of entries needed */
};
struct event_constraint {
union {
unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
u64 idxmsk64;
};
u64 code;
u64 cmask;
int weight;
int overlap;
int flags;
unsigned int size;
};
static inline bool constraint_match(struct event_constraint *c, u64 ecode)
{
return ((ecode & c->cmask) - c->code) <= (u64)c->size;
}
/*
* struct hw_perf_event.flags flags
*/
#define PERF_X86_EVENT_PEBS_LDLAT 0x0001 /* ld+ldlat data address sampling */
#define PERF_X86_EVENT_PEBS_ST 0x0002 /* st data address sampling */
#define PERF_X86_EVENT_PEBS_ST_HSW 0x0004 /* haswell style datala, store */
#define PERF_X86_EVENT_PEBS_LD_HSW 0x0008 /* haswell style datala, load */
#define PERF_X86_EVENT_PEBS_NA_HSW 0x0010 /* haswell style datala, unknown */
#define PERF_X86_EVENT_EXCL 0x0020 /* HT exclusivity on counter */
#define PERF_X86_EVENT_DYNAMIC 0x0040 /* dynamic alloc'd constraint */
#define PERF_X86_EVENT_RDPMC_ALLOWED 0x0080 /* grant rdpmc permission */
#define PERF_X86_EVENT_EXCL_ACCT 0x0100 /* accounted EXCL event */
#define PERF_X86_EVENT_AUTO_RELOAD 0x0200 /* use PEBS auto-reload */
#define PERF_X86_EVENT_LARGE_PEBS 0x0400 /* use large PEBS */
#define PERF_X86_EVENT_PEBS_VIA_PT 0x0800 /* use PT buffer for PEBS */
#define PERF_X86_EVENT_PAIR 0x1000 /* Large Increment per Cycle */
#define PERF_X86_EVENT_LBR_SELECT 0x2000 /* Save/Restore MSR_LBR_SELECT */
#define PERF_X86_EVENT_TOPDOWN 0x4000 /* Count Topdown slots/metrics events */
#define PERF_X86_EVENT_PEBS_STLAT 0x8000 /* st+stlat data address sampling */
static inline bool is_topdown_count(struct perf_event *event)
{
return event->hw.flags & PERF_X86_EVENT_TOPDOWN;
}
static inline bool is_metric_event(struct perf_event *event)
{
u64 config = event->attr.config;
return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) &&
((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING) &&
((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX);
}
static inline bool is_slots_event(struct perf_event *event)
{
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS;
}
static inline bool is_topdown_event(struct perf_event *event)
{
return is_metric_event(event) || is_slots_event(event);
}
struct amd_nb {
int nb_id; /* NorthBridge id */
int refcnt; /* reference count */
struct perf_event *owners[X86_PMC_IDX_MAX];
struct event_constraint event_constraints[X86_PMC_IDX_MAX];
};
#define PEBS_COUNTER_MASK ((1ULL << MAX_PEBS_EVENTS) - 1)
#define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60)
#define PEBS_OUTPUT_OFFSET 61
#define PEBS_OUTPUT_MASK (3ull << PEBS_OUTPUT_OFFSET)
#define PEBS_OUTPUT_PT (1ull << PEBS_OUTPUT_OFFSET)
#define PEBS_VIA_PT_MASK (PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD)
/*
* Flags PEBS can handle without an PMI.
*
* TID can only be handled by flushing at context switch.
* REGS_USER can be handled for events limited to ring 3.
*
*/
#define LARGE_PEBS_FLAGS \
(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \
PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \
PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \
PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \
PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \
PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE)
#define PEBS_GP_REGS \
((1ULL << PERF_REG_X86_AX) | \
(1ULL << PERF_REG_X86_BX) | \
(1ULL << PERF_REG_X86_CX) | \
(1ULL << PERF_REG_X86_DX) | \
(1ULL << PERF_REG_X86_DI) | \
(1ULL << PERF_REG_X86_SI) | \
(1ULL << PERF_REG_X86_SP) | \
(1ULL << PERF_REG_X86_BP) | \
(1ULL << PERF_REG_X86_IP) | \
(1ULL << PERF_REG_X86_FLAGS) | \
(1ULL << PERF_REG_X86_R8) | \
(1ULL << PERF_REG_X86_R9) | \
(1ULL << PERF_REG_X86_R10) | \
(1ULL << PERF_REG_X86_R11) | \
(1ULL << PERF_REG_X86_R12) | \
(1ULL << PERF_REG_X86_R13) | \
(1ULL << PERF_REG_X86_R14) | \
(1ULL << PERF_REG_X86_R15))
/*
* Per register state.
*/
struct er_account {
raw_spinlock_t lock; /* per-core: protect structure */
u64 config; /* extra MSR config */
u64 reg; /* extra MSR number */
atomic_t ref; /* reference count */
};
/*
* Per core/cpu state
*
* Used to coordinate shared registers between HT threads or
* among events on a single PMU.
*/
struct intel_shared_regs {
struct er_account regs[EXTRA_REG_MAX];
int refcnt; /* per-core: #HT threads */
unsigned core_id; /* per-core: core id */
};
enum intel_excl_state_type {
INTEL_EXCL_UNUSED = 0, /* counter is unused */
INTEL_EXCL_SHARED = 1, /* counter can be used by both threads */
INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */
};
struct intel_excl_states {
enum intel_excl_state_type state[X86_PMC_IDX_MAX];
bool sched_started; /* true if scheduling has started */
};
struct intel_excl_cntrs {
raw_spinlock_t lock;
struct intel_excl_states states[2];
union {
u16 has_exclusive[2];
u32 exclusive_present;
};
int refcnt; /* per-core: #HT threads */
unsigned core_id; /* per-core: core id */
};
struct x86_perf_task_context;
#define MAX_LBR_ENTRIES 32
enum {
LBR_FORMAT_32 = 0x00,
LBR_FORMAT_LIP = 0x01,
LBR_FORMAT_EIP = 0x02,
LBR_FORMAT_EIP_FLAGS = 0x03,
LBR_FORMAT_EIP_FLAGS2 = 0x04,
LBR_FORMAT_INFO = 0x05,
LBR_FORMAT_TIME = 0x06,
LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
};
enum {
X86_PERF_KFREE_SHARED = 0,
X86_PERF_KFREE_EXCL = 1,
X86_PERF_KFREE_MAX
};
struct cpu_hw_events {
/*
* Generic x86 PMC bits
*/
struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
int enabled;
int n_events; /* the # of events in the below arrays */
int n_added; /* the # last events in the below arrays;
they've never been enabled yet */
int n_txn; /* the # last events in the below arrays;
added in the current transaction */
int n_txn_pair;
int n_txn_metric;
int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
u64 tags[X86_PMC_IDX_MAX];
struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
struct event_constraint *event_constraint[X86_PMC_IDX_MAX];
int n_excl; /* the number of exclusive events */
unsigned int txn_flags;
int is_fake;
/*
* Intel DebugStore bits
*/
struct debug_store *ds;
void *ds_pebs_vaddr;
void *ds_bts_vaddr;
u64 pebs_enabled;
int n_pebs;
int n_large_pebs;
int n_pebs_via_pt;
int pebs_output;
/* Current super set of events hardware configuration */
u64 pebs_data_cfg;
u64 active_pebs_data_cfg;
int pebs_record_size;
/*
* Intel LBR bits
*/
int lbr_users;
int lbr_pebs_users;
struct perf_branch_stack lbr_stack;
struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
union {
struct er_account *lbr_sel;
struct er_account *lbr_ctl;
};
u64 br_sel;
void *last_task_ctx;
int last_log_id;
int lbr_select;
void *lbr_xsave;
/*
* Intel host/guest exclude bits
*/
u64 intel_ctrl_guest_mask;
u64 intel_ctrl_host_mask;
struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX];
/*
* Intel checkpoint mask
*/
u64 intel_cp_status;
/*
* manage shared (per-core, per-cpu) registers
* used on Intel NHM/WSM/SNB
*/
struct intel_shared_regs *shared_regs;
/*
* manage exclusive counter access between hyperthread
*/
struct event_constraint *constraint_list; /* in enable order */
struct intel_excl_cntrs *excl_cntrs;
int excl_thread_id; /* 0 or 1 */
/*
* SKL TSX_FORCE_ABORT shadow
*/
u64 tfa_shadow;
/*
* Perf Metrics
*/
/* number of accepted metrics events */
int n_metric;
/*
* AMD specific bits
*/
struct amd_nb *amd_nb;
/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
u64 perf_ctr_virt_mask;
int n_pair; /* Large increment events */
void *kfree_on_online[X86_PERF_KFREE_MAX];
struct pmu *pmu;
};
#define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) { \
{ .idxmsk64 = (n) }, \
.code = (c), \
.size = (e) - (c), \
.cmask = (m), \
.weight = (w), \
.overlap = (o), \
.flags = f, \
}
#define __EVENT_CONSTRAINT(c, n, m, w, o, f) \
__EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f)
#define EVENT_CONSTRAINT(c, n, m) \
__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
/*
* The constraint_match() function only works for 'simple' event codes
* and not for extended (AMD64_EVENTSEL_EVENT) events codes.
*/
#define EVENT_CONSTRAINT_RANGE(c, e, n, m) \
__EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0)
#define INTEL_EXCLEVT_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\
0, PERF_X86_EVENT_EXCL)
/*
* The overlap flag marks event constraints with overlapping counter
* masks. This is the case if the counter mask of such an event is not
* a subset of any other counter mask of a constraint with an equal or
* higher weight, e.g.:
*
* c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
* c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
* c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
*
* The event scheduler may not select the correct counter in the first
* cycle because it needs to know which subsequent events will be
* scheduled. It may fail to schedule the events then. So we set the
* overlap flag for such constraints to give the scheduler a hint which
* events to select for counter rescheduling.
*
* Care must be taken as the rescheduling algorithm is O(n!) which
* will increase scheduling cycles for an over-committed system
* dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros
* and its counter masks must be kept at a minimum.
*/
#define EVENT_CONSTRAINT_OVERLAP(c, n, m) \
__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
/*
* Constraint on the Event code.
*/
#define INTEL_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
/*
* Constraint on a range of Event codes
*/
#define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n) \
EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT)
/*
* Constraint on the Event code + UMask + fixed-mask
*
* filter mask to validate fixed counter events.
* the following filters disqualify for fixed counters:
* - inv
* - edge
* - cnt-mask
* - in_tx
* - in_tx_checkpointed
* The other filters are supported by fixed counters.
* The any-thread option is supported starting with v3.
*/
#define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
#define FIXED_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
/*
* The special metric counters do not actually exist. They are calculated from
* the combination of the FxCtr3 + MSR_PERF_METRICS.
*
* The special metric counters are mapped to a dummy offset for the scheduler.
* The sharing between multiple users of the same metric without multiplexing
* is not allowed, even though the hardware supports that in principle.
*/
#define METRIC_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)), \
INTEL_ARCH_EVENT_MASK)
/*
* Constraint on the Event code + UMask
*/
#define INTEL_UEVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
/* Constraint on specific umask bit only + event */
#define INTEL_UBIT_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c))
/* Like UEVENT_CONSTRAINT, but match flags too */
#define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
#define INTEL_EXCLUEVT_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \
HWEIGHT(n), 0, PERF_X86_EVENT_EXCL)
#define INTEL_PLD_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
#define INTEL_PSD_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT)
#define INTEL_PST_CONSTRAINT(c, n) \
__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
/* Event constraint, but match on all event flags too. */
#define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
#define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n) \
EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
/* Check only flags, but allow all event/umask */
#define INTEL_ALL_EVENT_CONSTRAINT(code, n) \
EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
/* Check flags and event code, and set the HSW store flag */
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
__EVENT_CONSTRAINT(code, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
/* Check flags and event code, and set the HSW load flag */
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
__EVENT_CONSTRAINT(code, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \
__EVENT_CONSTRAINT_RANGE(code, end, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
#define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \
__EVENT_CONSTRAINT(code, n, \
ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, \
PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
/* Check flags and event code/umask, and set the HSW store flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, \
PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL)
/* Check flags and event code/umask, and set the HSW load flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, \
PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
/* Check flags and event code/umask, and set the HSW N/A flag */
#define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
__EVENT_CONSTRAINT(code, n, \
INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
/*
* We define the end marker as having a weight of -1
* to enable blacklisting of events using a counter bitmask
* of zero and thus a weight of zero.
* The end marker has a weight that cannot possibly be
* obtained from counting the bits in the bitmask.
*/
#define EVENT_CONSTRAINT_END { .weight = -1 }
/*
* Check for end marker with weight == -1
*/
#define for_each_event_constraint(e, c) \
for ((e) = (c); (e)->weight != -1; (e)++)
/*
* Extra registers for specific events.
*
* Some events need large masks and require external MSRs.
* Those extra MSRs end up being shared for all events on
* a PMU and sometimes between PMU of sibling HT threads.
* In either case, the kernel needs to handle conflicting
* accesses to those extra, shared, regs. The data structure
* to manage those registers is stored in cpu_hw_event.
*/
struct extra_reg {
unsigned int event;
unsigned int msr;
u64 config_mask;
u64 valid_mask;
int idx; /* per_xxx->regs[] reg index */
bool extra_msr_access;
};
#define EVENT_EXTRA_REG(e, ms, m, vm, i) { \
.event = (e), \
.msr = (ms), \
.config_mask = (m), \
.valid_mask = (vm), \
.idx = EXTRA_REG_##i, \
.extra_msr_access = true, \
}
#define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \
EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
#define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
#define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
INTEL_UEVENT_EXTRA_REG(c, \
MSR_PEBS_LD_LAT_THRESHOLD, \
0xffff, \
LDLAT)
#define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
union perf_capabilities {
struct {
u64 lbr_format:6;
u64 pebs_trap:1;
u64 pebs_arch_reg:1;
u64 pebs_format:4;
u64 smm_freeze:1;
/*
* PMU supports separate counter range for writing
* values > 32bit.
*/
u64 full_width_write:1;
u64 pebs_baseline:1;
u64 perf_metrics:1;
u64 pebs_output_pt_available:1;
u64 anythread_deprecated:1;
};
u64 capabilities;
};
struct x86_pmu_quirk {
struct x86_pmu_quirk *next;
void (*func)(void);
};
union x86_pmu_config {
struct {
u64 event:8,
umask:8,
usr:1,
os:1,
edge:1,
pc:1,
interrupt:1,
__reserved1:1,
en:1,
inv:1,
cmask:8,
event2:4,
__reserved2:4,
go:1,
ho:1;
} bits;
u64 value;
};
#define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
enum {
x86_lbr_exclusive_lbr,
x86_lbr_exclusive_bts,
x86_lbr_exclusive_pt,
x86_lbr_exclusive_max,
};
struct x86_hybrid_pmu {
struct pmu pmu;
const char *name;
u8 cpu_type;
cpumask_t supported_cpus;
union perf_capabilities intel_cap;
u64 intel_ctrl;
int max_pebs_events;
int num_counters;
int num_counters_fixed;
struct event_constraint unconstrained;
u64 hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
u64 hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
struct event_constraint *event_constraints;
struct event_constraint *pebs_constraints;
struct extra_reg *extra_regs;
};
static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu)
{
return container_of(pmu, struct x86_hybrid_pmu, pmu);
}
extern struct static_key_false perf_is_hybrid;
#define is_hybrid() static_branch_unlikely(&perf_is_hybrid)
#define hybrid(_pmu, _field) \
(*({ \
typeof(&x86_pmu._field) __Fp = &x86_pmu._field; \
\
if (is_hybrid() && (_pmu)) \
__Fp = &hybrid_pmu(_pmu)->_field; \
\
__Fp; \
}))
#define hybrid_var(_pmu, _var) \
(*({ \
typeof(&_var) __Fp = &_var; \
\
if (is_hybrid() && (_pmu)) \
__Fp = &hybrid_pmu(_pmu)->_var; \
\
__Fp; \
}))
enum hybrid_pmu_type {
hybrid_big = 0x40,
hybrid_small = 0x20,
hybrid_big_small = hybrid_big | hybrid_small,
};
#define X86_HYBRID_PMU_ATOM_IDX 0
#define X86_HYBRID_PMU_CORE_IDX 1
#define X86_HYBRID_NUM_PMUS 2
/*
* struct x86_pmu - generic x86 pmu
*/
struct x86_pmu {
/*
* Generic x86 PMC bits
*/
const char *name;
int version;
int (*handle_irq)(struct pt_regs *);
void (*disable_all)(void);
void (*enable_all)(int added);
void (*enable)(struct perf_event *);
void (*disable)(struct perf_event *);
void (*add)(struct perf_event *);
void (*del)(struct perf_event *);
void (*read)(struct perf_event *event);
int (*hw_config)(struct perf_event *event);
int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
unsigned eventsel;
unsigned perfctr;
int (*addr_offset)(int index, bool eventsel);
int (*rdpmc_index)(int index);
u64 (*event_map)(int);
int max_events;
int num_counters;
int num_counters_fixed;
int cntval_bits;
u64 cntval_mask;
union {
unsigned long events_maskl;
unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
};
int events_mask_len;
int apic;
u64 max_period;
struct event_constraint *
(*get_event_constraints)(struct cpu_hw_events *cpuc,
int idx,
struct perf_event *event);
void (*put_event_constraints)(struct cpu_hw_events *cpuc,
struct perf_event *event);
void (*start_scheduling)(struct cpu_hw_events *cpuc);
void (*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr);
void (*stop_scheduling)(struct cpu_hw_events *cpuc);
struct event_constraint *event_constraints;
struct x86_pmu_quirk *quirks;
int perfctr_second_write;
u64 (*limit_period)(struct perf_event *event, u64 l);
/* PMI handler bits */
unsigned int late_ack :1,
enabled_ack :1;
/*
* sysfs attrs
*/
int attr_rdpmc_broken;
int attr_rdpmc;
struct attribute **format_attrs;
ssize_t (*events_sysfs_show)(char *page, u64 config);
const struct attribute_group **attr_update;
unsigned long attr_freeze_on_smi;
/*
* CPU Hotplug hooks
*/
int (*cpu_prepare)(int cpu);
void (*cpu_starting)(int cpu);
void (*cpu_dying)(int cpu);
void (*cpu_dead)(int cpu);
void (*check_microcode)(void);
void (*sched_task)(struct perf_event_context *ctx,
bool sched_in);
/*
* Intel Arch Perfmon v2+
*/
u64 intel_ctrl;
union perf_capabilities intel_cap;
/*
* Intel DebugStore bits
*/
unsigned int bts :1,
bts_active :1,
pebs :1,
pebs_active :1,
pebs_broken :1,
pebs_prec_dist :1,
pebs_no_tlb :1,
pebs_no_isolation :1,
pebs_block :1;
int pebs_record_size;
int pebs_buffer_size;
int max_pebs_events;
void (*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data);
struct event_constraint *pebs_constraints;
void (*pebs_aliases)(struct perf_event *event);
unsigned long large_pebs_flags;
u64 rtm_abort_event;
/*
* Intel LBR
*/
unsigned int lbr_tos, lbr_from, lbr_to,
lbr_info, lbr_nr; /* LBR base regs and size */
union {
u64 lbr_sel_mask; /* LBR_SELECT valid bits */
u64 lbr_ctl_mask; /* LBR_CTL valid bits */
};
union {
const int *lbr_sel_map; /* lbr_select mappings */
int *lbr_ctl_map; /* LBR_CTL mappings */
};
bool lbr_double_abort; /* duplicated lbr aborts */
bool lbr_pt_coexist; /* (LBR|BTS) may coexist with PT */
/*
* Intel Architectural LBR CPUID Enumeration
*/
unsigned int lbr_depth_mask:8;
unsigned int lbr_deep_c_reset:1;
unsigned int lbr_lip:1;
unsigned int lbr_cpl:1;
unsigned int lbr_filter:1;
unsigned int lbr_call_stack:1;
unsigned int lbr_mispred:1;
unsigned int lbr_timed_lbr:1;
unsigned int lbr_br_type:1;
void (*lbr_reset)(void);
void (*lbr_read)(struct cpu_hw_events *cpuc);
void (*lbr_save)(void *ctx);
void (*lbr_restore)(void *ctx);
/*
* Intel PT/LBR/BTS are exclusive
*/
atomic_t lbr_exclusive[x86_lbr_exclusive_max];
/*
* Intel perf metrics
*/
int num_topdown_events;
u64 (*update_topdown_event)(struct perf_event *event);
int (*set_topdown_event_period)(struct perf_event *event);
/*
* perf task context (i.e. struct perf_event_context::task_ctx_data)
* switch helper to bridge calls from perf/core to perf/x86.
* See struct pmu::swap_task_ctx() usage for examples;
*/
void (*swap_task_ctx)(struct perf_event_context *prev,
struct perf_event_context *next);
/*
* AMD bits
*/
unsigned int amd_nb_constraints : 1;
u64 perf_ctr_pair_en;
/*
* Extra registers for events
*/
struct extra_reg *extra_regs;
unsigned int flags;
/*
* Intel host/guest support (KVM)
*/
struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr);
/*
* Check period value for PERF_EVENT_IOC_PERIOD ioctl.
*/
int (*check_period) (struct perf_event *event, u64 period);
int (*aux_output_match) (struct perf_event *event);
int (*filter_match)(struct perf_event *event);
/*
* Hybrid support
*
* Most PMU capabilities are the same among different hybrid PMUs.
* The global x86_pmu saves the architecture capabilities, which
* are available for all PMUs. The hybrid_pmu only includes the
* unique capabilities.
*/
int num_hybrid_pmus;
struct x86_hybrid_pmu *hybrid_pmu;
u8 (*get_hybrid_cpu_type) (void);
};
struct x86_perf_task_context_opt {
int lbr_callstack_users;
int lbr_stack_state;
int log_id;
};
struct x86_perf_task_context {
u64 lbr_sel;
int tos;
int valid_lbrs;
struct x86_perf_task_context_opt opt;
struct lbr_entry lbr[MAX_LBR_ENTRIES];
};
struct x86_perf_task_context_arch_lbr {
struct x86_perf_task_context_opt opt;
struct lbr_entry entries[];
};
/*
* Add padding to guarantee the 64-byte alignment of the state buffer.
*
* The structure is dynamically allocated. The size of the LBR state may vary
* based on the number of LBR registers.
*
* Do not put anything after the LBR state.
*/
struct x86_perf_task_context_arch_lbr_xsave {
struct x86_perf_task_context_opt opt;
union {
struct xregs_state xsave;
struct {
struct fxregs_state i387;
struct xstate_header header;
struct arch_lbr_state lbr;
} __attribute__ ((packed, aligned (XSAVE_ALIGNMENT)));
};
};
#define x86_add_quirk(func_) \
do { \
static struct x86_pmu_quirk __quirk __initdata = { \
.func = func_, \
}; \
__quirk.next = x86_pmu.quirks; \
x86_pmu.quirks = &__quirk; \
} while (0)
/*
* x86_pmu flags
*/
#define PMU_FL_NO_HT_SHARING 0x1 /* no hyper-threading resource sharing */
#define PMU_FL_HAS_RSP_1 0x2 /* has 2 equivalent offcore_rsp regs */
#define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */
#define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */
#define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */
#define PMU_FL_TFA 0x20 /* deal with TSX force abort */
#define PMU_FL_PAIR 0x40 /* merge counters for large incr. events */
#define PMU_FL_INSTR_LATENCY 0x80 /* Support Instruction Latency in PEBS Memory Info Record */
#define PMU_FL_MEM_LOADS_AUX 0x100 /* Require an auxiliary event for the complete memory info */
#define EVENT_VAR(_id) event_attr_##_id
#define EVENT_PTR(_id) &event_attr_##_id.attr.attr
#define EVENT_ATTR(_name, _id) \
static struct perf_pmu_events_attr EVENT_VAR(_id) = { \
.attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
.id = PERF_COUNT_HW_##_id, \
.event_str = NULL, \
};
#define EVENT_ATTR_STR(_name, v, str) \
static struct perf_pmu_events_attr event_attr_##v = { \
.attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
.id = 0, \
.event_str = str, \
};
#define EVENT_ATTR_STR_HT(_name, v, noht, ht) \
static struct perf_pmu_events_ht_attr event_attr_##v = { \
.attr = __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\
.id = 0, \
.event_str_noht = noht, \
.event_str_ht = ht, \
}
#define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu) \
static struct perf_pmu_events_hybrid_attr event_attr_##v = { \
.attr = __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\
.id = 0, \
.event_str = str, \
.pmu_type = _pmu, \
}
#define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr)
#define FORMAT_ATTR_HYBRID(_name, _pmu) \
static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\
.attr = __ATTR_RO(_name), \
.pmu_type = _pmu, \
}
struct pmu *x86_get_pmu(unsigned int cpu);
extern struct x86_pmu x86_pmu __read_mostly;
static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx)
{
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt;
return &((struct x86_perf_task_context *)ctx)->opt;
}
static inline bool x86_pmu_has_lbr_callstack(void)
{
return x86_pmu.lbr_sel_map &&
x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0;
}
DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
int x86_perf_event_set_period(struct perf_event *event);
/*
* Generalized hw caching related hw_event table, filled
* in on a per model basis. A value of 0 means
* 'not supported', -1 means 'hw_event makes no sense on
* this CPU', any other value means the raw hw_event
* ID.
*/
#define C(x) PERF_COUNT_HW_CACHE_##x
extern u64 __read_mostly hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
extern u64 __read_mostly hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
u64 x86_perf_event_update(struct perf_event *event);
static inline unsigned int x86_pmu_config_addr(int index)
{
return x86_pmu.eventsel + (x86_pmu.addr_offset ?
x86_pmu.addr_offset(index, true) : index);
}
static inline unsigned int x86_pmu_event_addr(int index)
{
return x86_pmu.perfctr + (x86_pmu.addr_offset ?
x86_pmu.addr_offset(index, false) : index);
}
static inline int x86_pmu_rdpmc_index(int index)
{
return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
}
bool check_hw_exists(struct pmu *pmu, int num_counters,
int num_counters_fixed);
int x86_add_exclusive(unsigned int what);
void x86_del_exclusive(unsigned int what);
int x86_reserve_hardware(void);
void x86_release_hardware(void);
int x86_pmu_max_precise(void);
void hw_perf_lbr_event_destroy(struct perf_event *event);
int x86_setup_perfctr(struct perf_event *event);
int x86_pmu_hw_config(struct perf_event *event);
void x86_pmu_disable_all(void);
static inline bool is_counter_pair(struct hw_perf_event *hwc)
{
return hwc->flags & PERF_X86_EVENT_PAIR;
}
static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
u64 enable_mask)
{
u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
if (hwc->extra_reg.reg)
wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
/*
* Add enabled Merge event on next counter
* if large increment event being enabled on this counter
*/
if (is_counter_pair(hwc))
wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en);
wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
}
void x86_pmu_enable_all(int added);
int perf_assign_events(struct event_constraint **constraints, int n,
int wmin, int wmax, int gpmax, int *assign);
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
void x86_pmu_stop(struct perf_event *event, int flags);
static inline void x86_pmu_disable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
wrmsrl(hwc->config_base, hwc->config);
if (is_counter_pair(hwc))
wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0);
}
void x86_pmu_enable_event(struct perf_event *event);
int x86_pmu_handle_irq(struct pt_regs *regs);
void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
u64 intel_ctrl);
void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu);
extern struct event_constraint emptyconstraint;
extern struct event_constraint unconstrained;
static inline bool kernel_ip(unsigned long ip)
{
#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;
#else
return (long)ip < 0;
#endif
}
/*
* Not all PMUs provide the right context information to place the reported IP
* into full context. Specifically segment registers are typically not
* supplied.
*
* Assuming the address is a linear address (it is for IBS), we fake the CS and
* vm86 mode using the known zero-based code segment and 'fix up' the registers
* to reflect this.
*
* Intel PEBS/LBR appear to typically provide the effective address, nothing
* much we can do about that but pray and treat it like a linear address.
*/
static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
{
regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
if (regs->flags & X86_VM_MASK)
regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
regs->ip = ip;
}
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
ssize_t intel_event_sysfs_show(char *page, u64 config);
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
char *page);
ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
char *page);
ssize_t events_hybrid_sysfs_show(struct device *dev,
struct device_attribute *attr,
char *page);
static inline bool fixed_counter_disabled(int i, struct pmu *pmu)
{
u64 intel_ctrl = hybrid(pmu, intel_ctrl);
return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED));
}
#ifdef CONFIG_CPU_SUP_AMD
int amd_pmu_init(void);
#else /* CONFIG_CPU_SUP_AMD */
static inline int amd_pmu_init(void)
{
return 0;
}
#endif /* CONFIG_CPU_SUP_AMD */
static inline int is_pebs_pt(struct perf_event *event)
{
return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT);
}
#ifdef CONFIG_CPU_SUP_INTEL
static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period)
{
struct hw_perf_event *hwc = &event->hw;
unsigned int hw_event, bts_event;
if (event->attr.freq)
return false;
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
return hw_event == bts_event && period == 1;
}
static inline bool intel_pmu_has_bts(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
return intel_pmu_has_bts_period(event, hwc->sample_period);
}
int intel_pmu_save_and_restart(struct perf_event *event);
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event);
extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
int intel_pmu_init(void);
void init_debug_store_on_cpu(int cpu);
void fini_debug_store_on_cpu(int cpu);
void release_ds_buffers(void);
void reserve_ds_buffers(void);
void release_lbr_buffers(void);
extern struct event_constraint bts_constraint;
extern struct event_constraint vlbr_constraint;
void intel_pmu_enable_bts(u64 config);
void intel_pmu_disable_bts(void);
int intel_pmu_drain_bts_buffer(void);
extern struct event_constraint intel_core2_pebs_event_constraints[];
extern struct event_constraint intel_atom_pebs_event_constraints[];
extern struct event_constraint intel_slm_pebs_event_constraints[];
extern struct event_constraint intel_glm_pebs_event_constraints[];
extern struct event_constraint intel_glp_pebs_event_constraints[];
extern struct event_constraint intel_grt_pebs_event_constraints[];
extern struct event_constraint intel_nehalem_pebs_event_constraints[];
extern struct event_constraint intel_westmere_pebs_event_constraints[];
extern struct event_constraint intel_snb_pebs_event_constraints[];
extern struct event_constraint intel_ivb_pebs_event_constraints[];
extern struct event_constraint intel_hsw_pebs_event_constraints[];
extern struct event_constraint intel_bdw_pebs_event_constraints[];
extern struct event_constraint intel_skl_pebs_event_constraints[];
extern struct event_constraint intel_icl_pebs_event_constraints[];
extern struct event_constraint intel_spr_pebs_event_constraints[];
struct event_constraint *intel_pebs_constraints(struct perf_event *event);
void intel_pmu_pebs_add(struct perf_event *event);
void intel_pmu_pebs_del(struct perf_event *event);
void intel_pmu_pebs_enable(struct perf_event *event);
void intel_pmu_pebs_disable(struct perf_event *event);
void intel_pmu_pebs_enable_all(void);
void intel_pmu_pebs_disable_all(void);
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in);
void intel_pmu_auto_reload_read(struct perf_event *event);
void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr);
void intel_ds_init(void);
void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
struct perf_event_context *next);
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in);
u64 lbr_from_signext_quirk_wr(u64 val);
void intel_pmu_lbr_reset(void);
void intel_pmu_lbr_reset_32(void);
void intel_pmu_lbr_reset_64(void);
void intel_pmu_lbr_add(struct perf_event *event);
void intel_pmu_lbr_del(struct perf_event *event);
void intel_pmu_lbr_enable_all(bool pmi);
void intel_pmu_lbr_disable_all(void);
void intel_pmu_lbr_read(void);
void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc);
void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc);
void intel_pmu_lbr_save(void *ctx);
void intel_pmu_lbr_restore(void *ctx);
void intel_pmu_lbr_init_core(void);
void intel_pmu_lbr_init_nhm(void);
void intel_pmu_lbr_init_atom(void);
void intel_pmu_lbr_init_slm(void);
void intel_pmu_lbr_init_snb(void);
void intel_pmu_lbr_init_hsw(void);
void intel_pmu_lbr_init_skl(void);
void intel_pmu_lbr_init_knl(void);
void intel_pmu_arch_lbr_init(void);
void intel_pmu_pebs_data_source_nhm(void);
void intel_pmu_pebs_data_source_skl(bool pmem);
int intel_pmu_setup_lbr_filter(struct perf_event *event);
void intel_pt_interrupt(void);
int intel_bts_interrupt(void);
void intel_bts_enable_local(void);
void intel_bts_disable_local(void);
int p4_pmu_init(void);
int p6_pmu_init(void);
int knc_pmu_init(void);
static inline int is_ht_workaround_enabled(void)
{
return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED);
}
#else /* CONFIG_CPU_SUP_INTEL */
static inline void reserve_ds_buffers(void)
{
}
static inline void release_ds_buffers(void)
{
}
static inline void release_lbr_buffers(void)
{
}
static inline int intel_pmu_init(void)
{
return 0;
}
static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
return 0;
}
static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
{
}
static inline int is_ht_workaround_enabled(void)
{
return 0;
}
#endif /* CONFIG_CPU_SUP_INTEL */
#if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN))
int zhaoxin_pmu_init(void);
#else
static inline int zhaoxin_pmu_init(void)
{
return 0;
}
#endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/