90a9b102ed
As per PAPR we have to look for both EPOW sensor value and event modifier to identify the type of event and take appropriate action. In LoPAPR v1.1 section 10.2.2 includes table 136 "EPOW Action Codes": SYSTEM_SHUTDOWN 3 The system must be shut down. An EPOW-aware OS logs the EPOW error log information, then schedules the system to be shut down to begin after an OS defined delay internal (default is 10 minutes.) Then in section 10.3.2.2.8 there is table 146 "Platform Event Log Format, Version 6, EPOW Section", which includes the "EPOW Event Modifier": For EPOW sensor value = 3 0x01 = Normal system shutdown with no additional delay 0x02 = Loss of utility power, system is running on UPS/Battery 0x03 = Loss of system critical functions, system should be shutdown 0x04 = Ambient temperature too high All other values = reserved We have a user space tool (rtas_errd) on LPAR to monitor for EPOW_SHUTDOWN_ON_UPS. Once it gets an event it initiates shutdown after predefined time. It also starts monitoring for any new EPOW events. If it receives "Power restored" event before predefined time it will cancel the shutdown. Otherwise after predefined time it will shutdown the system. Commit 79872e35469b ("powerpc/pseries: All events of EPOW_SYSTEM_SHUTDOWN must initiate shutdown") changed our handling of the "on UPS/Battery" case, to immediately shutdown the system. This breaks existing setups that rely on the userspace tool to delay shutdown and let the system run on the UPS. Fixes: 79872e35469b ("powerpc/pseries: All events of EPOW_SYSTEM_SHUTDOWN must initiate shutdown") Cc: stable@vger.kernel.org # v4.0+ Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com> [mpe: Massage change log and add PAPR references] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200820061844.306460-1-hegdevasant@linux.vnet.ibm.com
856 lines
23 KiB
C
856 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2001 Dave Engebretsen IBM Corporation
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/of.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/irq_work.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "pseries.h"
|
|
|
|
static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
|
|
static DEFINE_SPINLOCK(ras_log_buf_lock);
|
|
|
|
static int ras_check_exception_token;
|
|
|
|
static void mce_process_errlog_event(struct irq_work *work);
|
|
static struct irq_work mce_errlog_process_work = {
|
|
.func = mce_process_errlog_event,
|
|
};
|
|
|
|
#define EPOW_SENSOR_TOKEN 9
|
|
#define EPOW_SENSOR_INDEX 0
|
|
|
|
/* EPOW events counter variable */
|
|
static int num_epow_events;
|
|
|
|
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
|
|
|
|
/* RTAS pseries MCE errorlog section. */
|
|
struct pseries_mc_errorlog {
|
|
__be32 fru_id;
|
|
__be32 proc_id;
|
|
u8 error_type;
|
|
/*
|
|
* sub_err_type (1 byte). Bit fields depends on error_type
|
|
*
|
|
* MSB0
|
|
* |
|
|
* V
|
|
* 01234567
|
|
* XXXXXXXX
|
|
*
|
|
* For error_type == MC_ERROR_TYPE_UE
|
|
* XXXXXXXX
|
|
* X 1: Permanent or Transient UE.
|
|
* X 1: Effective address provided.
|
|
* X 1: Logical address provided.
|
|
* XX 2: Reserved.
|
|
* XXX 3: Type of UE error.
|
|
*
|
|
* For error_type != MC_ERROR_TYPE_UE
|
|
* XXXXXXXX
|
|
* X 1: Effective address provided.
|
|
* XXXXX 5: Reserved.
|
|
* XX 2: Type of SLB/ERAT/TLB error.
|
|
*/
|
|
u8 sub_err_type;
|
|
u8 reserved_1[6];
|
|
__be64 effective_address;
|
|
__be64 logical_address;
|
|
} __packed;
|
|
|
|
/* RTAS pseries MCE error types */
|
|
#define MC_ERROR_TYPE_UE 0x00
|
|
#define MC_ERROR_TYPE_SLB 0x01
|
|
#define MC_ERROR_TYPE_ERAT 0x02
|
|
#define MC_ERROR_TYPE_UNKNOWN 0x03
|
|
#define MC_ERROR_TYPE_TLB 0x04
|
|
#define MC_ERROR_TYPE_D_CACHE 0x05
|
|
#define MC_ERROR_TYPE_I_CACHE 0x07
|
|
|
|
/* RTAS pseries MCE error sub types */
|
|
#define MC_ERROR_UE_INDETERMINATE 0
|
|
#define MC_ERROR_UE_IFETCH 1
|
|
#define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
|
|
#define MC_ERROR_UE_LOAD_STORE 3
|
|
#define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
|
|
|
|
#define UE_EFFECTIVE_ADDR_PROVIDED 0x40
|
|
#define UE_LOGICAL_ADDR_PROVIDED 0x20
|
|
|
|
#define MC_ERROR_SLB_PARITY 0
|
|
#define MC_ERROR_SLB_MULTIHIT 1
|
|
#define MC_ERROR_SLB_INDETERMINATE 2
|
|
|
|
#define MC_ERROR_ERAT_PARITY 1
|
|
#define MC_ERROR_ERAT_MULTIHIT 2
|
|
#define MC_ERROR_ERAT_INDETERMINATE 3
|
|
|
|
#define MC_ERROR_TLB_PARITY 1
|
|
#define MC_ERROR_TLB_MULTIHIT 2
|
|
#define MC_ERROR_TLB_INDETERMINATE 3
|
|
|
|
static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
|
|
{
|
|
switch (mlog->error_type) {
|
|
case MC_ERROR_TYPE_UE:
|
|
return (mlog->sub_err_type & 0x07);
|
|
case MC_ERROR_TYPE_SLB:
|
|
case MC_ERROR_TYPE_ERAT:
|
|
case MC_ERROR_TYPE_TLB:
|
|
return (mlog->sub_err_type & 0x03);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable the hotplug interrupt late because processing them may touch other
|
|
* devices or systems (e.g. hugepages) that have not been initialized at the
|
|
* subsys stage.
|
|
*/
|
|
int __init init_ras_hotplug_IRQ(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
/* Hotplug Events */
|
|
np = of_find_node_by_path("/event-sources/hot-plug-events");
|
|
if (np != NULL) {
|
|
if (dlpar_workqueue_init() == 0)
|
|
request_event_sources_irqs(np, ras_hotplug_interrupt,
|
|
"RAS_HOTPLUG");
|
|
of_node_put(np);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
machine_late_initcall(pseries, init_ras_hotplug_IRQ);
|
|
|
|
/*
|
|
* Initialize handlers for the set of interrupts caused by hardware errors
|
|
* and power system events.
|
|
*/
|
|
static int __init init_ras_IRQ(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
ras_check_exception_token = rtas_token("check-exception");
|
|
|
|
/* Internal Errors */
|
|
np = of_find_node_by_path("/event-sources/internal-errors");
|
|
if (np != NULL) {
|
|
request_event_sources_irqs(np, ras_error_interrupt,
|
|
"RAS_ERROR");
|
|
of_node_put(np);
|
|
}
|
|
|
|
/* EPOW Events */
|
|
np = of_find_node_by_path("/event-sources/epow-events");
|
|
if (np != NULL) {
|
|
request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
|
|
of_node_put(np);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
machine_subsys_initcall(pseries, init_ras_IRQ);
|
|
|
|
#define EPOW_SHUTDOWN_NORMAL 1
|
|
#define EPOW_SHUTDOWN_ON_UPS 2
|
|
#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
|
|
#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
|
|
|
|
static void handle_system_shutdown(char event_modifier)
|
|
{
|
|
switch (event_modifier) {
|
|
case EPOW_SHUTDOWN_NORMAL:
|
|
pr_emerg("Power off requested\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_ON_UPS:
|
|
pr_emerg("Loss of system power detected. System is running on"
|
|
" UPS/battery. Check RTAS error log for details\n");
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
|
|
pr_emerg("Loss of system critical functions detected. Check"
|
|
" RTAS error log for details\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
|
|
pr_emerg("High ambient temperature detected. Check RTAS"
|
|
" error log for details\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
default:
|
|
pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
|
|
event_modifier);
|
|
}
|
|
}
|
|
|
|
struct epow_errorlog {
|
|
unsigned char sensor_value;
|
|
unsigned char event_modifier;
|
|
unsigned char extended_modifier;
|
|
unsigned char reserved;
|
|
unsigned char platform_reason;
|
|
};
|
|
|
|
#define EPOW_RESET 0
|
|
#define EPOW_WARN_COOLING 1
|
|
#define EPOW_WARN_POWER 2
|
|
#define EPOW_SYSTEM_SHUTDOWN 3
|
|
#define EPOW_SYSTEM_HALT 4
|
|
#define EPOW_MAIN_ENCLOSURE 5
|
|
#define EPOW_POWER_OFF 7
|
|
|
|
static void rtas_parse_epow_errlog(struct rtas_error_log *log)
|
|
{
|
|
struct pseries_errorlog *pseries_log;
|
|
struct epow_errorlog *epow_log;
|
|
char action_code;
|
|
char modifier;
|
|
|
|
pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
|
|
if (pseries_log == NULL)
|
|
return;
|
|
|
|
epow_log = (struct epow_errorlog *)pseries_log->data;
|
|
action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
|
|
modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
|
|
|
|
switch (action_code) {
|
|
case EPOW_RESET:
|
|
if (num_epow_events) {
|
|
pr_info("Non critical power/cooling issue cleared\n");
|
|
num_epow_events--;
|
|
}
|
|
break;
|
|
|
|
case EPOW_WARN_COOLING:
|
|
pr_info("Non-critical cooling issue detected. Check RTAS error"
|
|
" log for details\n");
|
|
break;
|
|
|
|
case EPOW_WARN_POWER:
|
|
pr_info("Non-critical power issue detected. Check RTAS error"
|
|
" log for details\n");
|
|
break;
|
|
|
|
case EPOW_SYSTEM_SHUTDOWN:
|
|
handle_system_shutdown(modifier);
|
|
break;
|
|
|
|
case EPOW_SYSTEM_HALT:
|
|
pr_emerg("Critical power/cooling issue detected. Check RTAS"
|
|
" error log for details. Powering off.\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_MAIN_ENCLOSURE:
|
|
case EPOW_POWER_OFF:
|
|
pr_emerg("System about to lose power. Check RTAS error log "
|
|
" for details. Powering off immediately.\n");
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
break;
|
|
|
|
default:
|
|
pr_err("Unknown power/cooling event (action code = %d)\n",
|
|
action_code);
|
|
}
|
|
|
|
/* Increment epow events counter variable */
|
|
if (action_code != EPOW_RESET)
|
|
num_epow_events++;
|
|
}
|
|
|
|
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct pseries_errorlog *pseries_log;
|
|
struct pseries_hp_errorlog *hp_elog;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
rtas_call(ras_check_exception_token, 6, 1, NULL,
|
|
RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
|
|
RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
|
|
PSERIES_ELOG_SECT_ID_HOTPLUG);
|
|
hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
|
|
|
|
/*
|
|
* Since PCI hotplug is not currently supported on pseries, put PCI
|
|
* hotplug events on the ras_log_buf to be handled by rtas_errd.
|
|
*/
|
|
if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
|
|
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
|
|
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
|
|
queue_hotplug_event(hp_elog);
|
|
else
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle environmental and power warning (EPOW) interrupts. */
|
|
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
|
|
{
|
|
int status;
|
|
int state;
|
|
int critical;
|
|
|
|
status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
|
|
&state);
|
|
|
|
if (state > 3)
|
|
critical = 1; /* Time Critical */
|
|
else
|
|
critical = 0;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
|
|
RTAS_VECTOR_EXTERNAL_INTERRUPT,
|
|
virq_to_hw(irq),
|
|
RTAS_EPOW_WARNING,
|
|
critical, __pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
|
|
|
|
rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Handle hardware error interrupts.
|
|
*
|
|
* RTAS check-exception is called to collect data on the exception. If
|
|
* the error is deemed recoverable, we log a warning and return.
|
|
* For nonrecoverable errors, an error is logged and we stop all processing
|
|
* as quickly as possible in order to prevent propagation of the failure.
|
|
*/
|
|
static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct rtas_error_log *rtas_elog;
|
|
int status;
|
|
int fatal;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
|
|
RTAS_VECTOR_EXTERNAL_INTERRUPT,
|
|
virq_to_hw(irq),
|
|
RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
|
|
__pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
rtas_elog = (struct rtas_error_log *)ras_log_buf;
|
|
|
|
if (status == 0 &&
|
|
rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
|
|
fatal = 1;
|
|
else
|
|
fatal = 0;
|
|
|
|
/* format and print the extended information */
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
|
|
|
|
if (fatal) {
|
|
pr_emerg("Fatal hardware error detected. Check RTAS error"
|
|
" log for details. Powering off immediately\n");
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
} else {
|
|
pr_err("Recoverable hardware error detected\n");
|
|
}
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Some versions of FWNMI place the buffer inside the 4kB page starting at
|
|
* 0x7000. Other versions place it inside the rtas buffer. We check both.
|
|
* Minimum size of the buffer is 16 bytes.
|
|
*/
|
|
#define VALID_FWNMI_BUFFER(A) \
|
|
((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
|
|
(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
|
|
|
|
static inline struct rtas_error_log *fwnmi_get_errlog(void)
|
|
{
|
|
return (struct rtas_error_log *)local_paca->mce_data_buf;
|
|
}
|
|
|
|
static __be64 *fwnmi_get_savep(struct pt_regs *regs)
|
|
{
|
|
unsigned long savep_ra;
|
|
|
|
/* Mask top two bits */
|
|
savep_ra = regs->gpr[3] & ~(0x3UL << 62);
|
|
if (!VALID_FWNMI_BUFFER(savep_ra)) {
|
|
printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
|
|
return NULL;
|
|
}
|
|
|
|
return __va(savep_ra);
|
|
}
|
|
|
|
/*
|
|
* Get the error information for errors coming through the
|
|
* FWNMI vectors. The pt_regs' r3 will be updated to reflect
|
|
* the actual r3 if possible, and a ptr to the error log entry
|
|
* will be returned if found.
|
|
*
|
|
* Use one buffer mce_data_buf per cpu to store RTAS error.
|
|
*
|
|
* The mce_data_buf does not have any locks or protection around it,
|
|
* if a second machine check comes in, or a system reset is done
|
|
* before we have logged the error, then we will get corruption in the
|
|
* error log. This is preferable over holding off on calling
|
|
* ibm,nmi-interlock which would result in us checkstopping if a
|
|
* second machine check did come in.
|
|
*/
|
|
static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
|
|
{
|
|
struct rtas_error_log *h;
|
|
__be64 *savep;
|
|
|
|
savep = fwnmi_get_savep(regs);
|
|
if (!savep)
|
|
return NULL;
|
|
|
|
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
|
|
|
|
h = (struct rtas_error_log *)&savep[1];
|
|
/* Use the per cpu buffer from paca to store rtas error log */
|
|
memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
|
|
if (!rtas_error_extended(h)) {
|
|
memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
|
|
} else {
|
|
int len, error_log_length;
|
|
|
|
error_log_length = 8 + rtas_error_extended_log_length(h);
|
|
len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
|
|
memcpy(local_paca->mce_data_buf, h, len);
|
|
}
|
|
|
|
return (struct rtas_error_log *)local_paca->mce_data_buf;
|
|
}
|
|
|
|
/* Call this when done with the data returned by FWNMI_get_errinfo.
|
|
* It will release the saved data area for other CPUs in the
|
|
* partition to receive FWNMI errors.
|
|
*/
|
|
static void fwnmi_release_errinfo(void)
|
|
{
|
|
struct rtas_args rtas_args;
|
|
int ret;
|
|
|
|
/*
|
|
* On pseries, the machine check stack is limited to under 4GB, so
|
|
* args can be on-stack.
|
|
*/
|
|
rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
|
|
ret = be32_to_cpu(rtas_args.rets[0]);
|
|
if (ret != 0)
|
|
printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
|
|
}
|
|
|
|
int pSeries_system_reset_exception(struct pt_regs *regs)
|
|
{
|
|
#ifdef __LITTLE_ENDIAN__
|
|
/*
|
|
* Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
|
|
* to detect the bad SRR1 pattern here. Flip the NIP back to correct
|
|
* endian for reporting purposes. Unfortunately the MSR can't be fixed,
|
|
* so clear it. It will be missing MSR_RI so we won't try to recover.
|
|
*/
|
|
if ((be64_to_cpu(regs->msr) &
|
|
(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
|
|
MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
|
|
regs->nip = be64_to_cpu((__be64)regs->nip);
|
|
regs->msr = 0;
|
|
}
|
|
#endif
|
|
|
|
if (fwnmi_active) {
|
|
__be64 *savep;
|
|
|
|
/*
|
|
* Firmware (PowerVM and KVM) saves r3 to a save area like
|
|
* machine check, which is not exactly what PAPR (2.9)
|
|
* suggests but there is no way to detect otherwise, so this
|
|
* is the interface now.
|
|
*
|
|
* System resets do not save any error log or require an
|
|
* "ibm,nmi-interlock" rtas call to release.
|
|
*/
|
|
|
|
savep = fwnmi_get_savep(regs);
|
|
if (savep)
|
|
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
|
|
}
|
|
|
|
if (smp_handle_nmi_ipi(regs))
|
|
return 1;
|
|
|
|
return 0; /* need to perform reset */
|
|
}
|
|
|
|
|
|
static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
|
|
{
|
|
struct mce_error_info mce_err = { 0 };
|
|
unsigned long eaddr = 0, paddr = 0;
|
|
struct pseries_errorlog *pseries_log;
|
|
struct pseries_mc_errorlog *mce_log;
|
|
int disposition = rtas_error_disposition(errp);
|
|
int initiator = rtas_error_initiator(errp);
|
|
int severity = rtas_error_severity(errp);
|
|
u8 error_type, err_sub_type;
|
|
|
|
if (initiator == RTAS_INITIATOR_UNKNOWN)
|
|
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
|
|
else if (initiator == RTAS_INITIATOR_CPU)
|
|
mce_err.initiator = MCE_INITIATOR_CPU;
|
|
else if (initiator == RTAS_INITIATOR_PCI)
|
|
mce_err.initiator = MCE_INITIATOR_PCI;
|
|
else if (initiator == RTAS_INITIATOR_ISA)
|
|
mce_err.initiator = MCE_INITIATOR_ISA;
|
|
else if (initiator == RTAS_INITIATOR_MEMORY)
|
|
mce_err.initiator = MCE_INITIATOR_MEMORY;
|
|
else if (initiator == RTAS_INITIATOR_POWERMGM)
|
|
mce_err.initiator = MCE_INITIATOR_POWERMGM;
|
|
else
|
|
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
|
|
|
|
if (severity == RTAS_SEVERITY_NO_ERROR)
|
|
mce_err.severity = MCE_SEV_NO_ERROR;
|
|
else if (severity == RTAS_SEVERITY_EVENT)
|
|
mce_err.severity = MCE_SEV_WARNING;
|
|
else if (severity == RTAS_SEVERITY_WARNING)
|
|
mce_err.severity = MCE_SEV_WARNING;
|
|
else if (severity == RTAS_SEVERITY_ERROR_SYNC)
|
|
mce_err.severity = MCE_SEV_SEVERE;
|
|
else if (severity == RTAS_SEVERITY_ERROR)
|
|
mce_err.severity = MCE_SEV_SEVERE;
|
|
else if (severity == RTAS_SEVERITY_FATAL)
|
|
mce_err.severity = MCE_SEV_FATAL;
|
|
else
|
|
mce_err.severity = MCE_SEV_FATAL;
|
|
|
|
if (severity <= RTAS_SEVERITY_ERROR_SYNC)
|
|
mce_err.sync_error = true;
|
|
else
|
|
mce_err.sync_error = false;
|
|
|
|
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
|
|
mce_err.error_class = MCE_ECLASS_UNKNOWN;
|
|
|
|
if (!rtas_error_extended(errp))
|
|
goto out;
|
|
|
|
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
|
|
if (pseries_log == NULL)
|
|
goto out;
|
|
|
|
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
|
|
error_type = mce_log->error_type;
|
|
err_sub_type = rtas_mc_error_sub_type(mce_log);
|
|
|
|
switch (mce_log->error_type) {
|
|
case MC_ERROR_TYPE_UE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_UE;
|
|
mce_common_process_ue(regs, &mce_err);
|
|
if (mce_err.ignore_event)
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_UE_IFETCH:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
|
|
break;
|
|
case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
|
|
break;
|
|
case MC_ERROR_UE_LOAD_STORE:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
|
|
break;
|
|
case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
|
|
break;
|
|
case MC_ERROR_UE_INDETERMINATE:
|
|
default:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
|
|
if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
|
|
paddr = be64_to_cpu(mce_log->logical_address);
|
|
} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
|
|
unsigned long pfn;
|
|
|
|
pfn = addr_to_pfn(regs, eaddr);
|
|
if (pfn != ULONG_MAX)
|
|
paddr = pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
break;
|
|
case MC_ERROR_TYPE_SLB:
|
|
mce_err.error_type = MCE_ERROR_TYPE_SLB;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_SLB_PARITY:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_SLB_MULTIHIT:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_SLB_INDETERMINATE:
|
|
default:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & 0x80)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_ERAT:
|
|
mce_err.error_type = MCE_ERROR_TYPE_ERAT;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_ERAT_PARITY:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_ERAT_MULTIHIT:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_ERAT_INDETERMINATE:
|
|
default:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & 0x80)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_TLB:
|
|
mce_err.error_type = MCE_ERROR_TYPE_TLB;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_TLB_PARITY:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_TLB_MULTIHIT:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_TLB_INDETERMINATE:
|
|
default:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & 0x80)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_D_CACHE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
|
|
break;
|
|
case MC_ERROR_TYPE_I_CACHE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
|
|
break;
|
|
case MC_ERROR_TYPE_UNKNOWN:
|
|
default:
|
|
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (disposition == RTAS_DISP_NOT_RECOVERED) {
|
|
switch (error_type) {
|
|
case MC_ERROR_TYPE_SLB:
|
|
case MC_ERROR_TYPE_ERAT:
|
|
/*
|
|
* Store the old slb content in paca before flushing.
|
|
* Print this when we go to virtual mode.
|
|
* There are chances that we may hit MCE again if there
|
|
* is a parity error on the SLB entry we trying to read
|
|
* for saving. Hence limit the slb saving to single
|
|
* level of recursion.
|
|
*/
|
|
if (local_paca->in_mce == 1)
|
|
slb_save_contents(local_paca->mce_faulty_slbs);
|
|
flush_and_reload_slb();
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
|
|
/* Platform corrected itself but could be degraded */
|
|
printk(KERN_ERR "MCE: limited recovery, system may "
|
|
"be degraded\n");
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
}
|
|
#endif
|
|
|
|
out:
|
|
/*
|
|
* Enable translation as we will be accessing per-cpu variables
|
|
* in save_mce_event() which may fall outside RMO region, also
|
|
* leave it enabled because subsequently we will be queuing work
|
|
* to workqueues where again per-cpu variables accessed, besides
|
|
* fwnmi_release_errinfo() crashes when called in realmode on
|
|
* pseries.
|
|
* Note: All the realmode handling like flushing SLB entries for
|
|
* SLB multihit is done by now.
|
|
*/
|
|
mtmsr(mfmsr() | MSR_IR | MSR_DR);
|
|
save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
|
|
&mce_err, regs->nip, eaddr, paddr);
|
|
|
|
return disposition;
|
|
}
|
|
|
|
/*
|
|
* Process MCE rtas errlog event.
|
|
*/
|
|
static void mce_process_errlog_event(struct irq_work *work)
|
|
{
|
|
struct rtas_error_log *err;
|
|
|
|
err = fwnmi_get_errlog();
|
|
log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
|
|
}
|
|
|
|
/*
|
|
* See if we can recover from a machine check exception.
|
|
* This is only called on power4 (or above) and only via
|
|
* the Firmware Non-Maskable Interrupts (fwnmi) handler
|
|
* which provides the error analysis for us.
|
|
*
|
|
* Return 1 if corrected (or delivered a signal).
|
|
* Return 0 if there is nothing we can do.
|
|
*/
|
|
static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
|
|
{
|
|
int recovered = 0;
|
|
|
|
if (!(regs->msr & MSR_RI)) {
|
|
/* If MSR_RI isn't set, we cannot recover */
|
|
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
|
|
recovered = 0;
|
|
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
|
|
/* Platform corrected itself */
|
|
recovered = 1;
|
|
} else if (evt->severity == MCE_SEV_FATAL) {
|
|
/* Fatal machine check */
|
|
pr_err("Machine check interrupt is fatal\n");
|
|
recovered = 0;
|
|
}
|
|
|
|
if (!recovered && evt->sync_error) {
|
|
/*
|
|
* Try to kill processes if we get a synchronous machine check
|
|
* (e.g., one caused by execution of this instruction). This
|
|
* will devolve into a panic if we try to kill init or are in
|
|
* an interrupt etc.
|
|
*
|
|
* TODO: Queue up this address for hwpoisioning later.
|
|
* TODO: This is not quite right for d-side machine
|
|
* checks ->nip is not necessarily the important
|
|
* address.
|
|
*/
|
|
if ((user_mode(regs))) {
|
|
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
|
|
recovered = 1;
|
|
} else if (die_will_crash()) {
|
|
/*
|
|
* die() would kill the kernel, so better to go via
|
|
* the platform reboot code that will log the
|
|
* machine check.
|
|
*/
|
|
recovered = 0;
|
|
} else {
|
|
die("Machine check", regs, SIGBUS);
|
|
recovered = 1;
|
|
}
|
|
}
|
|
|
|
return recovered;
|
|
}
|
|
|
|
/*
|
|
* Handle a machine check.
|
|
*
|
|
* Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
|
|
* should be present. If so the handler which called us tells us if the
|
|
* error was recovered (never true if RI=0).
|
|
*
|
|
* On hardware prior to Power 4 these exceptions were asynchronous which
|
|
* means we can't tell exactly where it occurred and so we can't recover.
|
|
*/
|
|
int pSeries_machine_check_exception(struct pt_regs *regs)
|
|
{
|
|
struct machine_check_event evt;
|
|
|
|
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
|
|
return 0;
|
|
|
|
/* Print things out */
|
|
if (evt.version != MCE_V1) {
|
|
pr_err("Machine Check Exception, Unknown event version %d !\n",
|
|
evt.version);
|
|
return 0;
|
|
}
|
|
machine_check_print_event_info(&evt, user_mode(regs), false);
|
|
|
|
if (recover_mce(regs, &evt))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
long pseries_machine_check_realmode(struct pt_regs *regs)
|
|
{
|
|
struct rtas_error_log *errp;
|
|
int disposition;
|
|
|
|
if (fwnmi_active) {
|
|
errp = fwnmi_get_errinfo(regs);
|
|
/*
|
|
* Call to fwnmi_release_errinfo() in real mode causes kernel
|
|
* to panic. Hence we will call it as soon as we go into
|
|
* virtual mode.
|
|
*/
|
|
disposition = mce_handle_error(regs, errp);
|
|
fwnmi_release_errinfo();
|
|
|
|
/* Queue irq work to log this rtas event later. */
|
|
irq_work_queue(&mce_errlog_process_work);
|
|
|
|
if (disposition == RTAS_DISP_FULLY_RECOVERED)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|