linux/lib/zstd/common/bitstream.h
Nick Terrell e0c1b49f5b lib: zstd: Upgrade to latest upstream zstd version 1.4.10
Upgrade to the latest upstream zstd version 1.4.10.

This patch is 100% generated from upstream zstd commit 20821a46f412 [0].

This patch is very large because it is transitioning from the custom
kernel zstd to using upstream directly. The new zstd follows upstreams
file structure which is different. Future update patches will be much
smaller because they will only contain the changes from one upstream
zstd release.

As an aid for review I've created a commit [1] that shows the diff
between upstream zstd as-is (which doesn't compile), and the zstd
code imported in this patch. The verion of zstd in this patch is
generated from upstream with changes applied by automation to replace
upstreams libc dependencies, remove unnecessary portability macros,
replace `/**` comments with `/*` comments, and use the kernel's xxhash
instead of bundling it.

The benefits of this patch are as follows:
1. Using upstream directly with automated script to generate kernel
   code. This allows us to update the kernel every upstream release, so
   the kernel gets the latest bug fixes and performance improvements,
   and doesn't get 3 years out of date again. The automation and the
   translated code are tested every upstream commit to ensure it
   continues to work.
2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years
   of performance improvements and bug fixes. On x86_64 I've measured
   15% faster BtrFS and SquashFS decompression+read speeds, 35% faster
   kernel decompression, and 30% faster ZRAM decompression+read speeds.
3. Zstd-1.4.10 supports negative compression levels, which allow zstd to
   match or subsume lzo's performance.
4. Maintains the same kernel-specific wrapper API, so no callers have to
   be modified with zstd version updates.

One concern that was brought up was stack usage. Upstream zstd had
already removed most of its heavy stack usage functions, but I just
removed the last functions that allocate arrays on the stack. I've
measured the high water mark for both compression and decompression
before and after this patch. Decompression is approximately neutral,
using about 1.2KB of stack space. Compression levels up to 3 regressed
from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB
-> 2KB. We've added unit tests upstream to prevent further regression.
I believe that this is a reasonable increase, and if it does end up
causing problems, this commit can be cleanly reverted, because it only
touches zstd.

I chose the bulk update instead of replaying upstream commits because
there have been ~3500 upstream commits since the 1.3.1 release, zstd
wasn't ready to be used in the kernel as-is before a month ago, and not
all upstream zstd commits build. The bulk update preserves bisectablity
because bugs can be bisected to the zstd version update. At that point
the update can be reverted, and we can work with upstream to find and
fix the bug.

Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a
staging branch at 20821a46f412 [0] and will apply any changes requested
to the staging branch. Once we're ready to merge this update I will cut
a zstd release at the commit we merge, so we have a known zstd release
in the kernel.

The implementation of the kernel API is contained in
zstd_compress_module.c and zstd_decompress_module.c.

[0] 20821a46f4
[1] e0fa481d0e

Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-11-08 16:55:32 -08:00

438 lines
17 KiB
C

/* ******************************************************************
* bitstream
* Part of FSE library
* Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "compiler.h" /* UNLIKELY() */
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h" /* error codes and messages */
/*=========================================
* Target specific
=========================================*/
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct {
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
assert(val != 0);
{
# if (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
# endif
}
}
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = {
0, 1, 3, 7, 0xF, 0x1F,
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
/*! BIT_addBits() :
* can add up to 31 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
assert(nbBits < BIT_MASK_SIZE);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_,
* meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
ZSTD_FALLTHROUGH;
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
ZSTD_FALLTHROUGH;
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
ZSTD_FALLTHROUGH;
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
ZSTD_FALLTHROUGH;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
ZSTD_FALLTHROUGH;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
ZSTD_FALLTHROUGH;
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
{
return bitContainer >> start;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
{
U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */
assert(nbBits < BIT_MASK_SIZE);
return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
assert(nbBits < BIT_MASK_SIZE);
return bitContainer & BIT_mask[nbBits];
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
/* arbitrate between double-shift and shift+mask */
#if 1
/* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
* bitstream is likely corrupted, and result is undefined */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
/* this code path is slower on my os-x laptop */
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStreamFast() :
* Similar to BIT_reloadDStream(), but with two differences:
* 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
* 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
* point you must use BIT_reloadDStream() to reload.
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
if (UNLIKELY(bitD->ptr < bitD->limitPtr))
return BIT_DStream_overflow;
assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->limitPtr) {
return BIT_reloadDStreamFast(bitD);
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#endif /* BITSTREAM_H_MODULE */