linux/fs/bcachefs/btree_update_leaf.c
Kent Overstreet 216c9facfd bcachefs: Pass around bset_tree less
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:09 -04:00

726 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "extents.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "trace.h"
#include <linux/sort.h>
/* Inserting into a given leaf node (last stage of insert): */
/* Handle overwrites and do insert, for non extents: */
bool bch2_btree_bset_insert_key(struct btree_iter *iter,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
const struct bkey_format *f = &b->format;
struct bkey_packed *k;
unsigned clobber_u64s;
EBUG_ON(btree_node_just_written(b));
EBUG_ON(bset_written(b, btree_bset_last(b)));
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
bkey_cmp(insert->k.p, b->data->max_key) > 0);
k = bch2_btree_node_iter_peek_all(node_iter, b);
if (k && !bkey_cmp_packed(b, k, &insert->k)) {
BUG_ON(bkey_whiteout(k));
if (!bkey_written(b, k) &&
bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) &&
!bkey_whiteout(&insert->k)) {
k->type = insert->k.type;
memcpy_u64s(bkeyp_val(f, k), &insert->v,
bkey_val_u64s(&insert->k));
return true;
}
insert->k.needs_whiteout = k->needs_whiteout;
btree_account_key_drop(b, k);
if (k >= btree_bset_last(b)->start) {
clobber_u64s = k->u64s;
/*
* If we're deleting, and the key we're deleting doesn't
* need a whiteout (it wasn't overwriting a key that had
* been written to disk) - just delete it:
*/
if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
bch2_bset_delete(b, k, clobber_u64s);
bch2_btree_node_iter_fix(iter, b, node_iter,
k, clobber_u64s, 0);
bch2_btree_iter_verify(iter, b);
return true;
}
goto overwrite;
}
k->type = KEY_TYPE_DELETED;
bch2_btree_node_iter_fix(iter, b, node_iter, k,
k->u64s, k->u64s);
bch2_btree_iter_verify(iter, b);
if (bkey_whiteout(&insert->k)) {
reserve_whiteout(b, k);
return true;
} else {
k->needs_whiteout = false;
}
} else {
/*
* Deleting, but the key to delete wasn't found - nothing to do:
*/
if (bkey_whiteout(&insert->k))
return false;
insert->k.needs_whiteout = false;
}
k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b));
clobber_u64s = 0;
overwrite:
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
bch2_btree_node_iter_fix(iter, b, node_iter, k,
clobber_u64s, k->u64s);
bch2_btree_iter_verify(iter, b);
return true;
}
static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
unsigned i, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct btree_write *w = container_of(pin, struct btree_write, journal);
struct btree *b = container_of(w, struct btree, writes[i]);
btree_node_lock_type(c, b, SIX_LOCK_read);
bch2_btree_node_write_cond(c, b,
(btree_current_write(b) == w && w->journal.seq == seq));
six_unlock_read(&b->lock);
}
static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 0, seq);
}
static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
{
return __btree_node_flush(j, pin, 1, seq);
}
void bch2_btree_journal_key(struct btree_insert *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
struct btree *b = iter->l[0].b;
struct btree_write *w = btree_current_write(b);
EBUG_ON(iter->level || b->level);
EBUG_ON(trans->journal_res.ref !=
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) {
u64 seq = trans->journal_res.seq;
bool needs_whiteout = insert->k.needs_whiteout;
/* ick */
insert->k.needs_whiteout = false;
bch2_journal_add_keys(j, &trans->journal_res,
iter->btree_id, insert);
insert->k.needs_whiteout = needs_whiteout;
bch2_journal_set_has_inode(j, &trans->journal_res,
insert->k.p.inode);
if (trans->journal_seq)
*trans->journal_seq = seq;
btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
}
if (unlikely(!journal_pin_active(&w->journal))) {
u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
? trans->journal_res.seq
: j->replay_journal_seq;
bch2_journal_pin_add(j, seq, &w->journal,
btree_node_write_idx(b) == 0
? btree_node_flush0
: btree_node_flush1);
}
if (unlikely(!btree_node_dirty(b)))
set_btree_node_dirty(b);
}
static enum btree_insert_ret
bch2_insert_fixup_key(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct btree_iter *iter = insert->iter;
struct btree_iter_level *l = &iter->l[0];
EBUG_ON(iter->level);
EBUG_ON(insert->k->k.u64s >
bch_btree_keys_u64s_remaining(trans->c, l->b));
if (bch2_btree_bset_insert_key(iter, l->b, &l->iter,
insert->k))
bch2_btree_journal_key(trans, iter, insert->k);
trans->did_work = true;
return BTREE_INSERT_OK;
}
/**
* btree_insert_key - insert a key one key into a leaf node
*/
static enum btree_insert_ret
btree_insert_key_leaf(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->l[0].b;
enum btree_insert_ret ret;
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
ret = !btree_node_is_extents(b)
? bch2_insert_fixup_key(trans, insert)
: bch2_insert_fixup_extent(trans, insert);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_btree_iter_reinit_node(iter, b);
trace_btree_insert_key(c, b, insert->k);
return ret;
}
#define trans_for_each_entry(trans, i) \
for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
/*
* We sort transaction entries so that if multiple iterators point to the same
* leaf node they'll be adjacent:
*/
static bool same_leaf_as_prev(struct btree_insert *trans,
struct btree_insert_entry *i)
{
return i != trans->entries &&
i[0].iter->l[0].b == i[-1].iter->l[0].b;
}
static inline struct btree_insert_entry *trans_next_leaf(struct btree_insert *trans,
struct btree_insert_entry *i)
{
struct btree *b = i->iter->l[0].b;
do {
i++;
} while (i < trans->entries + trans->nr && b == i->iter->l[0].b);
return i;
}
#define trans_for_each_leaf(trans, i) \
for ((i) = (trans)->entries; \
(i) < (trans)->entries + (trans)->nr; \
(i) = trans_next_leaf(trans, i))
inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
bch2_btree_node_lock_write(b, iter);
if (btree_node_just_written(b) &&
bch2_btree_post_write_cleanup(c, b))
bch2_btree_iter_reinit_node(iter, b);
/*
* If the last bset has been written, or if it's gotten too big - start
* a new bset to insert into:
*/
if (want_new_bset(c, b))
bch2_btree_init_next(c, b, iter);
}
static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_leaf(trans, i)
bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter);
}
static void multi_unlock_write(struct btree_insert *trans)
{
struct btree_insert_entry *i;
trans_for_each_leaf(trans, i)
bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter);
}
static inline int btree_trans_cmp(struct btree_insert_entry l,
struct btree_insert_entry r)
{
return btree_iter_cmp(l.iter, r.iter);
}
/* Normal update interface: */
static enum btree_insert_ret
btree_key_can_insert(struct btree_insert *trans,
struct btree_insert_entry *insert,
unsigned *u64s)
{
struct bch_fs *c = trans->c;
struct btree *b = insert->iter->l[0].b;
static enum btree_insert_ret ret;
if (unlikely(btree_node_fake(b)))
return BTREE_INSERT_BTREE_NODE_FULL;
ret = !btree_node_is_extents(b)
? BTREE_INSERT_OK
: bch2_extent_can_insert(trans, insert, u64s);
if (ret)
return ret;
if (*u64s > bch_btree_keys_u64s_remaining(c, b))
return BTREE_INSERT_BTREE_NODE_FULL;
return BTREE_INSERT_OK;
}
/*
* Get journal reservation, take write locks, and attempt to do btree update(s):
*/
static inline int do_btree_insert_at(struct btree_insert *trans,
struct btree_iter **split,
bool *cycle_gc_lock)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
unsigned u64s;
int ret;
trans_for_each_entry(trans, i)
BUG_ON(i->iter->uptodate >= BTREE_ITER_NEED_RELOCK);
u64s = 0;
trans_for_each_entry(trans, i)
u64s += jset_u64s(i->k->k.u64s);
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
? bch2_journal_res_get(&c->journal,
&trans->journal_res,
u64s, u64s)
: 0;
if (ret)
return ret;
multi_lock_write(c, trans);
if (race_fault()) {
ret = -EINTR;
trans_restart(" (race)");
goto out;
}
/*
* Check if the insert will fit in the leaf node with the write lock
* held, otherwise another thread could write the node changing the
* amount of space available:
*/
u64s = 0;
trans_for_each_entry(trans, i) {
/* Multiple inserts might go to same leaf: */
if (!same_leaf_as_prev(trans, i))
u64s = 0;
u64s += i->k->k.u64s;
switch (btree_key_can_insert(trans, i, &u64s)) {
case BTREE_INSERT_OK:
break;
case BTREE_INSERT_BTREE_NODE_FULL:
ret = -EINTR;
*split = i->iter;
goto out;
case BTREE_INSERT_ENOSPC:
ret = -ENOSPC;
goto out;
case BTREE_INSERT_NEED_GC_LOCK:
ret = -EINTR;
*cycle_gc_lock = true;
goto out;
default:
BUG();
}
}
if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) {
if (journal_seq_verify(c))
trans_for_each_entry(trans, i)
i->k->k.version.lo = trans->journal_res.seq;
else if (inject_invalid_keys(c))
trans_for_each_entry(trans, i)
i->k->k.version = MAX_VERSION;
}
trans_for_each_entry(trans, i) {
switch (btree_insert_key_leaf(trans, i)) {
case BTREE_INSERT_OK:
break;
case BTREE_INSERT_NEED_TRAVERSE:
BUG_ON((trans->flags & BTREE_INSERT_ATOMIC));
ret = -EINTR;
goto out;
default:
BUG();
}
}
out:
multi_unlock_write(trans);
bch2_journal_res_put(&c->journal, &trans->journal_res);
return ret;
}
static inline void btree_insert_entry_checks(struct bch_fs *c,
struct btree_insert_entry *i)
{
BUG_ON(i->iter->level);
BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
BUG_ON(debug_check_bkeys(c) &&
!bkey_deleted(&i->k->k) &&
bch2_bkey_invalid(c, (enum bkey_type) i->iter->btree_id,
bkey_i_to_s_c(i->k)));
}
/**
* __bch_btree_insert_at - insert keys at given iterator positions
*
* This is main entry point for btree updates.
*
* Return values:
* -EINTR: locking changed, this function should be called again. Only returned
* if passed BTREE_INSERT_ATOMIC.
* -EROFS: filesystem read only
* -EIO: journal or btree node IO error
*/
int __bch2_btree_insert_at(struct btree_insert *trans)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
struct btree_iter *linked, *split = NULL;
bool cycle_gc_lock = false;
unsigned flags;
int ret;
BUG_ON(!trans->nr);
for_each_btree_iter(trans->entries[0].iter, linked)
bch2_btree_iter_verify_locks(linked);
/* for the sake of sanity: */
BUG_ON(trans->nr > 1 && !(trans->flags & BTREE_INSERT_ATOMIC));
trans_for_each_entry(trans, i)
btree_insert_entry_checks(c, i);
bubble_sort(trans->entries, trans->nr, btree_trans_cmp);
if (unlikely(!percpu_ref_tryget(&c->writes)))
return -EROFS;
retry:
split = NULL;
cycle_gc_lock = false;
trans_for_each_entry(trans, i) {
unsigned old_locks_want = i->iter->locks_want;
unsigned old_uptodate = i->iter->uptodate;
if (!bch2_btree_iter_upgrade(i->iter, 1, true)) {
trans_restart(" (failed upgrade, locks_want %u uptodate %u)",
old_locks_want, old_uptodate);
ret = -EINTR;
goto err;
}
if (i->iter->flags & BTREE_ITER_ERROR) {
ret = -EIO;
goto err;
}
}
ret = do_btree_insert_at(trans, &split, &cycle_gc_lock);
if (unlikely(ret))
goto err;
trans_for_each_leaf(trans, i)
bch2_foreground_maybe_merge(c, i->iter, 0, trans->flags);
trans_for_each_entry(trans, i)
bch2_btree_iter_downgrade(i->iter);
out:
percpu_ref_put(&c->writes);
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
/* make sure we didn't drop or screw up locks: */
for_each_btree_iter(trans->entries[0].iter, linked) {
bch2_btree_iter_verify_locks(linked);
BUG_ON((trans->flags & BTREE_INSERT_NOUNLOCK) &&
trans->did_work &&
!btree_node_locked(linked, 0));
}
}
BUG_ON(!(trans->flags & BTREE_INSERT_ATOMIC) && ret == -EINTR);
return ret;
err:
flags = trans->flags;
/*
* BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree
* update; if we haven't done anything yet it doesn't apply
*/
if (!trans->did_work)
flags &= ~BTREE_INSERT_NOUNLOCK;
if (split) {
ret = bch2_btree_split_leaf(c, split, flags);
/*
* if the split succeeded without dropping locks the insert will
* still be atomic (in the BTREE_INSERT_ATOMIC sense, what the
* caller peeked() and is overwriting won't have changed)
*/
#if 0
/*
* XXX:
* split -> btree node merging (of parent node) might still drop
* locks when we're not passing it BTREE_INSERT_NOUNLOCK
*/
if (!ret && !trans->did_work)
goto retry;
#endif
/*
* don't care if we got ENOSPC because we told split it
* couldn't block:
*/
if (!ret || (flags & BTREE_INSERT_NOUNLOCK)) {
trans_restart(" (split)");
ret = -EINTR;
}
}
if (cycle_gc_lock) {
if (!down_read_trylock(&c->gc_lock)) {
if (flags & BTREE_INSERT_NOUNLOCK)
goto out;
bch2_btree_iter_unlock(trans->entries[0].iter);
down_read(&c->gc_lock);
}
up_read(&c->gc_lock);
}
if (ret == -EINTR) {
if (flags & BTREE_INSERT_NOUNLOCK) {
trans_restart(" (can't unlock)");
goto out;
}
trans_for_each_entry(trans, i) {
int ret2 = bch2_btree_iter_traverse(i->iter);
if (ret2) {
ret = ret2;
trans_restart(" (traverse)");
goto out;
}
BUG_ON(i->iter->uptodate > BTREE_ITER_NEED_PEEK);
}
/*
* BTREE_ITER_ATOMIC means we have to return -EINTR if we
* dropped locks:
*/
if (!(flags & BTREE_INSERT_ATOMIC))
goto retry;
trans_restart(" (atomic)");
}
goto out;
}
int bch2_trans_commit(struct btree_trans *trans,
struct disk_reservation *disk_res,
u64 *journal_seq,
unsigned flags)
{
struct btree_insert insert = {
.c = trans->c,
.disk_res = disk_res,
.journal_seq = journal_seq,
.flags = flags,
.nr = trans->nr_updates,
.entries = trans->updates,
};
if (!trans->nr_updates)
return 0;
trans->nr_updates = 0;
return __bch2_btree_insert_at(&insert);
}
int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags)
{
struct bkey_i k;
bkey_init(&k.k);
k.k.p = iter->pos;
return bch2_btree_insert_at(iter->c, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|flags,
BTREE_INSERT_ENTRY(iter, &k));
}
int bch2_btree_insert_list_at(struct btree_iter *iter,
struct keylist *keys,
struct disk_reservation *disk_res,
u64 *journal_seq, unsigned flags)
{
BUG_ON(flags & BTREE_INSERT_ATOMIC);
BUG_ON(bch2_keylist_empty(keys));
bch2_verify_keylist_sorted(keys);
while (!bch2_keylist_empty(keys)) {
int ret = bch2_btree_insert_at(iter->c, disk_res,
journal_seq, flags,
BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
if (ret)
return ret;
bch2_keylist_pop_front(keys);
}
return 0;
}
/**
* bch_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @insert_keys: list of keys to insert
* @hook: insert callback
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq, int flags)
{
struct btree_iter iter;
int ret;
bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
ret = bch2_btree_insert_at(c, disk_res, journal_seq, flags,
BTREE_INSERT_ENTRY(&iter, k));
bch2_btree_iter_unlock(&iter);
return ret;
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
u64 *journal_seq)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_btree_iter_init(&iter, c, id, start,
BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek(&iter)).k &&
!(ret = btree_iter_err(k)) &&
bkey_cmp(iter.pos, end) < 0) {
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
/* really shouldn't be using a bare, unpadded bkey_i */
struct bkey_i delete;
bkey_init(&delete.k);
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_IS_EXTENTS) {
/* create the biggest key we can */
bch2_key_resize(&delete.k, max_sectors);
bch2_cut_back(end, &delete.k);
}
ret = bch2_btree_insert_at(c, NULL, journal_seq,
BTREE_INSERT_NOFAIL,
BTREE_INSERT_ENTRY(&iter, &delete));
if (ret)
break;
bch2_btree_iter_cond_resched(&iter);
}
bch2_btree_iter_unlock(&iter);
return ret;
}