216c9facfd
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
726 lines
18 KiB
C
726 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "journal_reclaim.h"
|
|
#include "keylist.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/sort.h>
|
|
|
|
/* Inserting into a given leaf node (last stage of insert): */
|
|
|
|
/* Handle overwrites and do insert, for non extents: */
|
|
bool bch2_btree_bset_insert_key(struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter *node_iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
const struct bkey_format *f = &b->format;
|
|
struct bkey_packed *k;
|
|
unsigned clobber_u64s;
|
|
|
|
EBUG_ON(btree_node_just_written(b));
|
|
EBUG_ON(bset_written(b, btree_bset_last(b)));
|
|
EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
|
|
bkey_cmp(insert->k.p, b->data->max_key) > 0);
|
|
|
|
k = bch2_btree_node_iter_peek_all(node_iter, b);
|
|
if (k && !bkey_cmp_packed(b, k, &insert->k)) {
|
|
BUG_ON(bkey_whiteout(k));
|
|
|
|
if (!bkey_written(b, k) &&
|
|
bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) &&
|
|
!bkey_whiteout(&insert->k)) {
|
|
k->type = insert->k.type;
|
|
memcpy_u64s(bkeyp_val(f, k), &insert->v,
|
|
bkey_val_u64s(&insert->k));
|
|
return true;
|
|
}
|
|
|
|
insert->k.needs_whiteout = k->needs_whiteout;
|
|
|
|
btree_account_key_drop(b, k);
|
|
|
|
if (k >= btree_bset_last(b)->start) {
|
|
clobber_u64s = k->u64s;
|
|
|
|
/*
|
|
* If we're deleting, and the key we're deleting doesn't
|
|
* need a whiteout (it wasn't overwriting a key that had
|
|
* been written to disk) - just delete it:
|
|
*/
|
|
if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
|
|
bch2_bset_delete(b, k, clobber_u64s);
|
|
bch2_btree_node_iter_fix(iter, b, node_iter,
|
|
k, clobber_u64s, 0);
|
|
bch2_btree_iter_verify(iter, b);
|
|
return true;
|
|
}
|
|
|
|
goto overwrite;
|
|
}
|
|
|
|
k->type = KEY_TYPE_DELETED;
|
|
bch2_btree_node_iter_fix(iter, b, node_iter, k,
|
|
k->u64s, k->u64s);
|
|
bch2_btree_iter_verify(iter, b);
|
|
|
|
if (bkey_whiteout(&insert->k)) {
|
|
reserve_whiteout(b, k);
|
|
return true;
|
|
} else {
|
|
k->needs_whiteout = false;
|
|
}
|
|
} else {
|
|
/*
|
|
* Deleting, but the key to delete wasn't found - nothing to do:
|
|
*/
|
|
if (bkey_whiteout(&insert->k))
|
|
return false;
|
|
|
|
insert->k.needs_whiteout = false;
|
|
}
|
|
|
|
k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b));
|
|
clobber_u64s = 0;
|
|
overwrite:
|
|
bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
|
|
if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
|
|
bch2_btree_node_iter_fix(iter, b, node_iter, k,
|
|
clobber_u64s, k->u64s);
|
|
bch2_btree_iter_verify(iter, b);
|
|
return true;
|
|
}
|
|
|
|
static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
|
|
unsigned i, u64 seq)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct btree_write *w = container_of(pin, struct btree_write, journal);
|
|
struct btree *b = container_of(w, struct btree, writes[i]);
|
|
|
|
btree_node_lock_type(c, b, SIX_LOCK_read);
|
|
bch2_btree_node_write_cond(c, b,
|
|
(btree_current_write(b) == w && w->journal.seq == seq));
|
|
six_unlock_read(&b->lock);
|
|
}
|
|
|
|
static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
|
|
{
|
|
return __btree_node_flush(j, pin, 0, seq);
|
|
}
|
|
|
|
static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
|
|
{
|
|
return __btree_node_flush(j, pin, 1, seq);
|
|
}
|
|
|
|
void bch2_btree_journal_key(struct btree_insert *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct journal *j = &c->journal;
|
|
struct btree *b = iter->l[0].b;
|
|
struct btree_write *w = btree_current_write(b);
|
|
|
|
EBUG_ON(iter->level || b->level);
|
|
EBUG_ON(trans->journal_res.ref !=
|
|
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
|
|
|
|
if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) {
|
|
u64 seq = trans->journal_res.seq;
|
|
bool needs_whiteout = insert->k.needs_whiteout;
|
|
|
|
/* ick */
|
|
insert->k.needs_whiteout = false;
|
|
bch2_journal_add_keys(j, &trans->journal_res,
|
|
iter->btree_id, insert);
|
|
insert->k.needs_whiteout = needs_whiteout;
|
|
|
|
bch2_journal_set_has_inode(j, &trans->journal_res,
|
|
insert->k.p.inode);
|
|
|
|
if (trans->journal_seq)
|
|
*trans->journal_seq = seq;
|
|
btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
|
|
}
|
|
|
|
if (unlikely(!journal_pin_active(&w->journal))) {
|
|
u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
|
|
? trans->journal_res.seq
|
|
: j->replay_journal_seq;
|
|
|
|
bch2_journal_pin_add(j, seq, &w->journal,
|
|
btree_node_write_idx(b) == 0
|
|
? btree_node_flush0
|
|
: btree_node_flush1);
|
|
}
|
|
|
|
if (unlikely(!btree_node_dirty(b)))
|
|
set_btree_node_dirty(b);
|
|
}
|
|
|
|
static enum btree_insert_ret
|
|
bch2_insert_fixup_key(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert)
|
|
{
|
|
struct btree_iter *iter = insert->iter;
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
|
|
EBUG_ON(iter->level);
|
|
EBUG_ON(insert->k->k.u64s >
|
|
bch_btree_keys_u64s_remaining(trans->c, l->b));
|
|
|
|
if (bch2_btree_bset_insert_key(iter, l->b, &l->iter,
|
|
insert->k))
|
|
bch2_btree_journal_key(trans, iter, insert->k);
|
|
|
|
trans->did_work = true;
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
/**
|
|
* btree_insert_key - insert a key one key into a leaf node
|
|
*/
|
|
static enum btree_insert_ret
|
|
btree_insert_key_leaf(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter *iter = insert->iter;
|
|
struct btree *b = iter->l[0].b;
|
|
enum btree_insert_ret ret;
|
|
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
|
|
int old_live_u64s = b->nr.live_u64s;
|
|
int live_u64s_added, u64s_added;
|
|
|
|
ret = !btree_node_is_extents(b)
|
|
? bch2_insert_fixup_key(trans, insert)
|
|
: bch2_insert_fixup_extent(trans, insert);
|
|
|
|
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
|
|
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
|
|
|
|
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
|
|
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
|
|
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
|
|
|
|
if (u64s_added > live_u64s_added &&
|
|
bch2_maybe_compact_whiteouts(c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
trace_btree_insert_key(c, b, insert->k);
|
|
return ret;
|
|
}
|
|
|
|
#define trans_for_each_entry(trans, i) \
|
|
for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
|
|
|
|
/*
|
|
* We sort transaction entries so that if multiple iterators point to the same
|
|
* leaf node they'll be adjacent:
|
|
*/
|
|
static bool same_leaf_as_prev(struct btree_insert *trans,
|
|
struct btree_insert_entry *i)
|
|
{
|
|
return i != trans->entries &&
|
|
i[0].iter->l[0].b == i[-1].iter->l[0].b;
|
|
}
|
|
|
|
static inline struct btree_insert_entry *trans_next_leaf(struct btree_insert *trans,
|
|
struct btree_insert_entry *i)
|
|
{
|
|
struct btree *b = i->iter->l[0].b;
|
|
|
|
do {
|
|
i++;
|
|
} while (i < trans->entries + trans->nr && b == i->iter->l[0].b);
|
|
|
|
return i;
|
|
}
|
|
|
|
#define trans_for_each_leaf(trans, i) \
|
|
for ((i) = (trans)->entries; \
|
|
(i) < (trans)->entries + (trans)->nr; \
|
|
(i) = trans_next_leaf(trans, i))
|
|
|
|
inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
bch2_btree_node_lock_write(b, iter);
|
|
|
|
if (btree_node_just_written(b) &&
|
|
bch2_btree_post_write_cleanup(c, b))
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
|
|
/*
|
|
* If the last bset has been written, or if it's gotten too big - start
|
|
* a new bset to insert into:
|
|
*/
|
|
if (want_new_bset(c, b))
|
|
bch2_btree_init_next(c, b, iter);
|
|
}
|
|
|
|
static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans)
|
|
{
|
|
struct btree_insert_entry *i;
|
|
|
|
trans_for_each_leaf(trans, i)
|
|
bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter);
|
|
}
|
|
|
|
static void multi_unlock_write(struct btree_insert *trans)
|
|
{
|
|
struct btree_insert_entry *i;
|
|
|
|
trans_for_each_leaf(trans, i)
|
|
bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter);
|
|
}
|
|
|
|
static inline int btree_trans_cmp(struct btree_insert_entry l,
|
|
struct btree_insert_entry r)
|
|
{
|
|
return btree_iter_cmp(l.iter, r.iter);
|
|
}
|
|
|
|
/* Normal update interface: */
|
|
|
|
static enum btree_insert_ret
|
|
btree_key_can_insert(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert,
|
|
unsigned *u64s)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b = insert->iter->l[0].b;
|
|
static enum btree_insert_ret ret;
|
|
|
|
if (unlikely(btree_node_fake(b)))
|
|
return BTREE_INSERT_BTREE_NODE_FULL;
|
|
|
|
ret = !btree_node_is_extents(b)
|
|
? BTREE_INSERT_OK
|
|
: bch2_extent_can_insert(trans, insert, u64s);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (*u64s > bch_btree_keys_u64s_remaining(c, b))
|
|
return BTREE_INSERT_BTREE_NODE_FULL;
|
|
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
/*
|
|
* Get journal reservation, take write locks, and attempt to do btree update(s):
|
|
*/
|
|
static inline int do_btree_insert_at(struct btree_insert *trans,
|
|
struct btree_iter **split,
|
|
bool *cycle_gc_lock)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_insert_entry *i;
|
|
unsigned u64s;
|
|
int ret;
|
|
|
|
trans_for_each_entry(trans, i)
|
|
BUG_ON(i->iter->uptodate >= BTREE_ITER_NEED_RELOCK);
|
|
|
|
u64s = 0;
|
|
trans_for_each_entry(trans, i)
|
|
u64s += jset_u64s(i->k->k.u64s);
|
|
|
|
memset(&trans->journal_res, 0, sizeof(trans->journal_res));
|
|
|
|
ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
|
|
? bch2_journal_res_get(&c->journal,
|
|
&trans->journal_res,
|
|
u64s, u64s)
|
|
: 0;
|
|
if (ret)
|
|
return ret;
|
|
|
|
multi_lock_write(c, trans);
|
|
|
|
if (race_fault()) {
|
|
ret = -EINTR;
|
|
trans_restart(" (race)");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check if the insert will fit in the leaf node with the write lock
|
|
* held, otherwise another thread could write the node changing the
|
|
* amount of space available:
|
|
*/
|
|
u64s = 0;
|
|
trans_for_each_entry(trans, i) {
|
|
/* Multiple inserts might go to same leaf: */
|
|
if (!same_leaf_as_prev(trans, i))
|
|
u64s = 0;
|
|
|
|
u64s += i->k->k.u64s;
|
|
switch (btree_key_can_insert(trans, i, &u64s)) {
|
|
case BTREE_INSERT_OK:
|
|
break;
|
|
case BTREE_INSERT_BTREE_NODE_FULL:
|
|
ret = -EINTR;
|
|
*split = i->iter;
|
|
goto out;
|
|
case BTREE_INSERT_ENOSPC:
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
case BTREE_INSERT_NEED_GC_LOCK:
|
|
ret = -EINTR;
|
|
*cycle_gc_lock = true;
|
|
goto out;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) {
|
|
if (journal_seq_verify(c))
|
|
trans_for_each_entry(trans, i)
|
|
i->k->k.version.lo = trans->journal_res.seq;
|
|
else if (inject_invalid_keys(c))
|
|
trans_for_each_entry(trans, i)
|
|
i->k->k.version = MAX_VERSION;
|
|
}
|
|
|
|
trans_for_each_entry(trans, i) {
|
|
switch (btree_insert_key_leaf(trans, i)) {
|
|
case BTREE_INSERT_OK:
|
|
break;
|
|
case BTREE_INSERT_NEED_TRAVERSE:
|
|
BUG_ON((trans->flags & BTREE_INSERT_ATOMIC));
|
|
ret = -EINTR;
|
|
goto out;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
out:
|
|
multi_unlock_write(trans);
|
|
bch2_journal_res_put(&c->journal, &trans->journal_res);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void btree_insert_entry_checks(struct bch_fs *c,
|
|
struct btree_insert_entry *i)
|
|
{
|
|
BUG_ON(i->iter->level);
|
|
BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
|
|
BUG_ON(debug_check_bkeys(c) &&
|
|
!bkey_deleted(&i->k->k) &&
|
|
bch2_bkey_invalid(c, (enum bkey_type) i->iter->btree_id,
|
|
bkey_i_to_s_c(i->k)));
|
|
}
|
|
|
|
/**
|
|
* __bch_btree_insert_at - insert keys at given iterator positions
|
|
*
|
|
* This is main entry point for btree updates.
|
|
*
|
|
* Return values:
|
|
* -EINTR: locking changed, this function should be called again. Only returned
|
|
* if passed BTREE_INSERT_ATOMIC.
|
|
* -EROFS: filesystem read only
|
|
* -EIO: journal or btree node IO error
|
|
*/
|
|
int __bch2_btree_insert_at(struct btree_insert *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_insert_entry *i;
|
|
struct btree_iter *linked, *split = NULL;
|
|
bool cycle_gc_lock = false;
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
BUG_ON(!trans->nr);
|
|
|
|
for_each_btree_iter(trans->entries[0].iter, linked)
|
|
bch2_btree_iter_verify_locks(linked);
|
|
|
|
/* for the sake of sanity: */
|
|
BUG_ON(trans->nr > 1 && !(trans->flags & BTREE_INSERT_ATOMIC));
|
|
|
|
trans_for_each_entry(trans, i)
|
|
btree_insert_entry_checks(c, i);
|
|
|
|
bubble_sort(trans->entries, trans->nr, btree_trans_cmp);
|
|
|
|
if (unlikely(!percpu_ref_tryget(&c->writes)))
|
|
return -EROFS;
|
|
retry:
|
|
split = NULL;
|
|
cycle_gc_lock = false;
|
|
|
|
trans_for_each_entry(trans, i) {
|
|
unsigned old_locks_want = i->iter->locks_want;
|
|
unsigned old_uptodate = i->iter->uptodate;
|
|
|
|
if (!bch2_btree_iter_upgrade(i->iter, 1, true)) {
|
|
trans_restart(" (failed upgrade, locks_want %u uptodate %u)",
|
|
old_locks_want, old_uptodate);
|
|
ret = -EINTR;
|
|
goto err;
|
|
}
|
|
|
|
if (i->iter->flags & BTREE_ITER_ERROR) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = do_btree_insert_at(trans, &split, &cycle_gc_lock);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
trans_for_each_leaf(trans, i)
|
|
bch2_foreground_maybe_merge(c, i->iter, 0, trans->flags);
|
|
|
|
trans_for_each_entry(trans, i)
|
|
bch2_btree_iter_downgrade(i->iter);
|
|
out:
|
|
percpu_ref_put(&c->writes);
|
|
|
|
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
|
|
/* make sure we didn't drop or screw up locks: */
|
|
for_each_btree_iter(trans->entries[0].iter, linked) {
|
|
bch2_btree_iter_verify_locks(linked);
|
|
BUG_ON((trans->flags & BTREE_INSERT_NOUNLOCK) &&
|
|
trans->did_work &&
|
|
!btree_node_locked(linked, 0));
|
|
}
|
|
}
|
|
|
|
BUG_ON(!(trans->flags & BTREE_INSERT_ATOMIC) && ret == -EINTR);
|
|
|
|
return ret;
|
|
err:
|
|
flags = trans->flags;
|
|
|
|
/*
|
|
* BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree
|
|
* update; if we haven't done anything yet it doesn't apply
|
|
*/
|
|
if (!trans->did_work)
|
|
flags &= ~BTREE_INSERT_NOUNLOCK;
|
|
|
|
if (split) {
|
|
ret = bch2_btree_split_leaf(c, split, flags);
|
|
|
|
/*
|
|
* if the split succeeded without dropping locks the insert will
|
|
* still be atomic (in the BTREE_INSERT_ATOMIC sense, what the
|
|
* caller peeked() and is overwriting won't have changed)
|
|
*/
|
|
#if 0
|
|
/*
|
|
* XXX:
|
|
* split -> btree node merging (of parent node) might still drop
|
|
* locks when we're not passing it BTREE_INSERT_NOUNLOCK
|
|
*/
|
|
if (!ret && !trans->did_work)
|
|
goto retry;
|
|
#endif
|
|
|
|
/*
|
|
* don't care if we got ENOSPC because we told split it
|
|
* couldn't block:
|
|
*/
|
|
if (!ret || (flags & BTREE_INSERT_NOUNLOCK)) {
|
|
trans_restart(" (split)");
|
|
ret = -EINTR;
|
|
}
|
|
}
|
|
|
|
if (cycle_gc_lock) {
|
|
if (!down_read_trylock(&c->gc_lock)) {
|
|
if (flags & BTREE_INSERT_NOUNLOCK)
|
|
goto out;
|
|
|
|
bch2_btree_iter_unlock(trans->entries[0].iter);
|
|
down_read(&c->gc_lock);
|
|
}
|
|
up_read(&c->gc_lock);
|
|
}
|
|
|
|
if (ret == -EINTR) {
|
|
if (flags & BTREE_INSERT_NOUNLOCK) {
|
|
trans_restart(" (can't unlock)");
|
|
goto out;
|
|
}
|
|
|
|
trans_for_each_entry(trans, i) {
|
|
int ret2 = bch2_btree_iter_traverse(i->iter);
|
|
if (ret2) {
|
|
ret = ret2;
|
|
trans_restart(" (traverse)");
|
|
goto out;
|
|
}
|
|
|
|
BUG_ON(i->iter->uptodate > BTREE_ITER_NEED_PEEK);
|
|
}
|
|
|
|
/*
|
|
* BTREE_ITER_ATOMIC means we have to return -EINTR if we
|
|
* dropped locks:
|
|
*/
|
|
if (!(flags & BTREE_INSERT_ATOMIC))
|
|
goto retry;
|
|
|
|
trans_restart(" (atomic)");
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
int bch2_trans_commit(struct btree_trans *trans,
|
|
struct disk_reservation *disk_res,
|
|
u64 *journal_seq,
|
|
unsigned flags)
|
|
{
|
|
struct btree_insert insert = {
|
|
.c = trans->c,
|
|
.disk_res = disk_res,
|
|
.journal_seq = journal_seq,
|
|
.flags = flags,
|
|
.nr = trans->nr_updates,
|
|
.entries = trans->updates,
|
|
};
|
|
|
|
if (!trans->nr_updates)
|
|
return 0;
|
|
|
|
trans->nr_updates = 0;
|
|
|
|
return __bch2_btree_insert_at(&insert);
|
|
}
|
|
|
|
int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags)
|
|
{
|
|
struct bkey_i k;
|
|
|
|
bkey_init(&k.k);
|
|
k.k.p = iter->pos;
|
|
|
|
return bch2_btree_insert_at(iter->c, NULL, NULL,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE|flags,
|
|
BTREE_INSERT_ENTRY(iter, &k));
|
|
}
|
|
|
|
int bch2_btree_insert_list_at(struct btree_iter *iter,
|
|
struct keylist *keys,
|
|
struct disk_reservation *disk_res,
|
|
u64 *journal_seq, unsigned flags)
|
|
{
|
|
BUG_ON(flags & BTREE_INSERT_ATOMIC);
|
|
BUG_ON(bch2_keylist_empty(keys));
|
|
bch2_verify_keylist_sorted(keys);
|
|
|
|
while (!bch2_keylist_empty(keys)) {
|
|
int ret = bch2_btree_insert_at(iter->c, disk_res,
|
|
journal_seq, flags,
|
|
BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_keylist_pop_front(keys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_insert - insert keys into the extent btree
|
|
* @c: pointer to struct bch_fs
|
|
* @id: btree to insert into
|
|
* @insert_keys: list of keys to insert
|
|
* @hook: insert callback
|
|
*/
|
|
int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
|
|
struct bkey_i *k,
|
|
struct disk_reservation *disk_res,
|
|
u64 *journal_seq, int flags)
|
|
{
|
|
struct btree_iter iter;
|
|
int ret;
|
|
|
|
bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k),
|
|
BTREE_ITER_INTENT);
|
|
ret = bch2_btree_insert_at(c, disk_res, journal_seq, flags,
|
|
BTREE_INSERT_ENTRY(&iter, k));
|
|
bch2_btree_iter_unlock(&iter);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* bch_btree_delete_range - delete everything within a given range
|
|
*
|
|
* Range is a half open interval - [start, end)
|
|
*/
|
|
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
|
|
struct bpos start, struct bpos end,
|
|
u64 *journal_seq)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
bch2_btree_iter_init(&iter, c, id, start,
|
|
BTREE_ITER_INTENT);
|
|
|
|
while ((k = bch2_btree_iter_peek(&iter)).k &&
|
|
!(ret = btree_iter_err(k)) &&
|
|
bkey_cmp(iter.pos, end) < 0) {
|
|
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
|
|
/* really shouldn't be using a bare, unpadded bkey_i */
|
|
struct bkey_i delete;
|
|
|
|
bkey_init(&delete.k);
|
|
|
|
/*
|
|
* For extents, iter.pos won't necessarily be the same as
|
|
* bkey_start_pos(k.k) (for non extents they always will be the
|
|
* same). It's important that we delete starting from iter.pos
|
|
* because the range we want to delete could start in the middle
|
|
* of k.
|
|
*
|
|
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
|
|
* bkey_start_pos(k.k)).
|
|
*/
|
|
delete.k.p = iter.pos;
|
|
|
|
if (iter.flags & BTREE_ITER_IS_EXTENTS) {
|
|
/* create the biggest key we can */
|
|
bch2_key_resize(&delete.k, max_sectors);
|
|
bch2_cut_back(end, &delete.k);
|
|
}
|
|
|
|
ret = bch2_btree_insert_at(c, NULL, journal_seq,
|
|
BTREE_INSERT_NOFAIL,
|
|
BTREE_INSERT_ENTRY(&iter, &delete));
|
|
if (ret)
|
|
break;
|
|
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
}
|
|
|
|
bch2_btree_iter_unlock(&iter);
|
|
return ret;
|
|
}
|