Paolo Bonzini 86014c1e20 KVM generic changes for 6.11
- Enable halt poll shrinking by default, as Intel found it to be a clear win.
 
  - Setup empty IRQ routing when creating a VM to avoid having to synchronize
    SRCU when creating a split IRQCHIP on x86.
 
  - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
    that arch code can use for hooking both sched_in() and sched_out().
 
  - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
    truncating a bogus value from userspace, e.g. to help userspace detect bugs.
 
  - Mark a vCPU as preempted if and only if it's scheduled out while in the
    KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
    memory when retrieving guest state during live migration blackout.
 
  - A few minor cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRuOYACgkQOlYIJqCj
 N/1UnQ/8CI5Qfr+/0gzYgtWmtEMczGG+rMNpzD3XVqPjJjXcMcBiQnplnzUVLhha
 vlPdYVK7vgmEt003XGzV55mik46LHL+DX/v4hI3HEdblfyCeNLW3fKEWVRB44qJe
 o+YUQwSK42SORUp9oXuQINxhA//U9EnI7CQxlJ8w8wenv5IJKfIGr01DefmfGPAV
 PKm9t6WLcNqvhZMEyy/zmzM3KVPCJL0NcwI97x6sHxFpQYIDtL0E/VexA4AFqMoT
 QK7cSDC/2US41Zvem/r/GzM/ucdF6vb9suzZYBohwhxtVhwJe2CDeYQZvtNKJ1U7
 GOHPaKL6nBWdZCm/yyWbbX2nstY1lHqxhN3JD0X8wqU5rNcwm2b8Vfyav0Ehc7H+
 jVbDTshOx4YJmIgajoKjgM050rdBK59TdfVL+l+AAV5q/TlHocalYtvkEBdGmIDg
 2td9UHSime6sp20vQfczUEz4bgrQsh4l2Fa/qU2jFwLievnBw0AvEaMximkSGMJe
 b8XfjmdTjlOesWAejANKtQolfrq14+1wYw0zZZ8PA+uNVpKdoovmcqSOcaDC9bT8
 GO/NFUvoG+lkcvJcIlo1SSl81SmGLosijwxWfGvFAqsgpR3/3l3dYp0QtztoCNJO
 d3+HnjgYn5o5FwufuTD3eUOXH4AFjG108DH0o25XrIkb2Kymy0o=
 =BalU
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-generic-6.11' of https://github.com/kvm-x86/linux into HEAD

KVM generic changes for 6.11

 - Enable halt poll shrinking by default, as Intel found it to be a clear win.

 - Setup empty IRQ routing when creating a VM to avoid having to synchronize
   SRCU when creating a split IRQCHIP on x86.

 - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
   that arch code can use for hooking both sched_in() and sched_out().

 - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
   truncating a bogus value from userspace, e.g. to help userspace detect bugs.

 - Mark a vCPU as preempted if and only if it's scheduled out while in the
   KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
   memory when retrieving guest state during live migration blackout.

 - A few minor cleanups
2024-07-16 09:51:36 -04:00

1448 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020-2023 Loongson Technology Corporation Limited
*/
#include <linux/kvm_host.h>
#include <linux/entry-kvm.h>
#include <asm/fpu.h>
#include <asm/loongarch.h>
#include <asm/setup.h>
#include <asm/time.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
KVM_GENERIC_VCPU_STATS(),
STATS_DESC_COUNTER(VCPU, int_exits),
STATS_DESC_COUNTER(VCPU, idle_exits),
STATS_DESC_COUNTER(VCPU, cpucfg_exits),
STATS_DESC_COUNTER(VCPU, signal_exits),
STATS_DESC_COUNTER(VCPU, hypercall_exits)
};
const struct kvm_stats_header kvm_vcpu_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vcpu_stats_desc),
};
static void kvm_update_stolen_time(struct kvm_vcpu *vcpu)
{
u32 version;
u64 steal;
gpa_t gpa;
struct kvm_memslots *slots;
struct kvm_steal_time __user *st;
struct gfn_to_hva_cache *ghc;
ghc = &vcpu->arch.st.cache;
gpa = vcpu->arch.st.guest_addr;
if (!(gpa & KVM_STEAL_PHYS_VALID))
return;
gpa &= KVM_STEAL_PHYS_MASK;
slots = kvm_memslots(vcpu->kvm);
if (slots->generation != ghc->generation || gpa != ghc->gpa) {
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st))) {
ghc->gpa = INVALID_GPA;
return;
}
}
st = (struct kvm_steal_time __user *)ghc->hva;
unsafe_get_user(version, &st->version, out);
if (version & 1)
version += 1; /* first time write, random junk */
version += 1;
unsafe_put_user(version, &st->version, out);
smp_wmb();
unsafe_get_user(steal, &st->steal, out);
steal += current->sched_info.run_delay - vcpu->arch.st.last_steal;
vcpu->arch.st.last_steal = current->sched_info.run_delay;
unsafe_put_user(steal, &st->steal, out);
smp_wmb();
version += 1;
unsafe_put_user(version, &st->version, out);
out:
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
}
/*
* kvm_check_requests - check and handle pending vCPU requests
*
* Return: RESUME_GUEST if we should enter the guest
* RESUME_HOST if we should exit to userspace
*/
static int kvm_check_requests(struct kvm_vcpu *vcpu)
{
if (!kvm_request_pending(vcpu))
return RESUME_GUEST;
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
vcpu->arch.vpid = 0; /* Drop vpid for this vCPU */
if (kvm_dirty_ring_check_request(vcpu))
return RESUME_HOST;
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
kvm_update_stolen_time(vcpu);
return RESUME_GUEST;
}
static void kvm_late_check_requests(struct kvm_vcpu *vcpu)
{
lockdep_assert_irqs_disabled();
if (kvm_check_request(KVM_REQ_TLB_FLUSH_GPA, vcpu))
if (vcpu->arch.flush_gpa != INVALID_GPA) {
kvm_flush_tlb_gpa(vcpu, vcpu->arch.flush_gpa);
vcpu->arch.flush_gpa = INVALID_GPA;
}
}
/*
* Check and handle pending signal and vCPU requests etc
* Run with irq enabled and preempt enabled
*
* Return: RESUME_GUEST if we should enter the guest
* RESUME_HOST if we should exit to userspace
* < 0 if we should exit to userspace, where the return value
* indicates an error
*/
static int kvm_enter_guest_check(struct kvm_vcpu *vcpu)
{
int ret;
/*
* Check conditions before entering the guest
*/
ret = xfer_to_guest_mode_handle_work(vcpu);
if (ret < 0)
return ret;
ret = kvm_check_requests(vcpu);
return ret;
}
/*
* Called with irq enabled
*
* Return: RESUME_GUEST if we should enter the guest, and irq disabled
* Others if we should exit to userspace
*/
static int kvm_pre_enter_guest(struct kvm_vcpu *vcpu)
{
int ret;
do {
ret = kvm_enter_guest_check(vcpu);
if (ret != RESUME_GUEST)
break;
/*
* Handle vcpu timer, interrupts, check requests and
* check vmid before vcpu enter guest
*/
local_irq_disable();
kvm_deliver_intr(vcpu);
kvm_deliver_exception(vcpu);
/* Make sure the vcpu mode has been written */
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
kvm_check_vpid(vcpu);
/*
* Called after function kvm_check_vpid()
* Since it updates CSR.GSTAT used by kvm_flush_tlb_gpa(),
* and it may also clear KVM_REQ_TLB_FLUSH_GPA pending bit
*/
kvm_late_check_requests(vcpu);
vcpu->arch.host_eentry = csr_read64(LOONGARCH_CSR_EENTRY);
/* Clear KVM_LARCH_SWCSR_LATEST as CSR will change when enter guest */
vcpu->arch.aux_inuse &= ~KVM_LARCH_SWCSR_LATEST;
if (kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending()) {
/* make sure the vcpu mode has been written */
smp_store_mb(vcpu->mode, OUTSIDE_GUEST_MODE);
local_irq_enable();
ret = -EAGAIN;
}
} while (ret != RESUME_GUEST);
return ret;
}
/*
* Return 1 for resume guest and "<= 0" for resume host.
*/
static int kvm_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int ret = RESUME_GUEST;
unsigned long estat = vcpu->arch.host_estat;
u32 intr = estat & 0x1fff; /* Ignore NMI */
u32 ecode = (estat & CSR_ESTAT_EXC) >> CSR_ESTAT_EXC_SHIFT;
vcpu->mode = OUTSIDE_GUEST_MODE;
/* Set a default exit reason */
run->exit_reason = KVM_EXIT_UNKNOWN;
guest_timing_exit_irqoff();
guest_state_exit_irqoff();
local_irq_enable();
trace_kvm_exit(vcpu, ecode);
if (ecode) {
ret = kvm_handle_fault(vcpu, ecode);
} else {
WARN(!intr, "vm exiting with suspicious irq\n");
++vcpu->stat.int_exits;
}
if (ret == RESUME_GUEST)
ret = kvm_pre_enter_guest(vcpu);
if (ret != RESUME_GUEST) {
local_irq_disable();
return ret;
}
guest_timing_enter_irqoff();
guest_state_enter_irqoff();
trace_kvm_reenter(vcpu);
return RESUME_GUEST;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return !!(vcpu->arch.irq_pending) &&
vcpu->arch.mp_state.mp_state == KVM_MP_STATE_RUNNABLE;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return false;
}
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return -EINVAL;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
int ret;
/* Protect from TOD sync and vcpu_load/put() */
preempt_disable();
ret = kvm_pending_timer(vcpu) ||
kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT) & (1 << INT_TI);
preempt_enable();
return ret;
}
int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
int i;
kvm_debug("vCPU Register Dump:\n");
kvm_debug("\tPC = 0x%08lx\n", vcpu->arch.pc);
kvm_debug("\tExceptions: %08lx\n", vcpu->arch.irq_pending);
for (i = 0; i < 32; i += 4) {
kvm_debug("\tGPR%02d: %08lx %08lx %08lx %08lx\n", i,
vcpu->arch.gprs[i], vcpu->arch.gprs[i + 1],
vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
}
kvm_debug("\tCRMD: 0x%08lx, ESTAT: 0x%08lx\n",
kvm_read_hw_gcsr(LOONGARCH_CSR_CRMD),
kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT));
kvm_debug("\tERA: 0x%08lx\n", kvm_read_hw_gcsr(LOONGARCH_CSR_ERA));
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
*mp_state = vcpu->arch.mp_state;
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
int ret = 0;
switch (mp_state->mp_state) {
case KVM_MP_STATE_RUNNABLE:
vcpu->arch.mp_state = *mp_state;
break;
default:
ret = -EINVAL;
}
return ret;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
return -EINVAL;
if (dbg->control & KVM_GUESTDBG_ENABLE)
vcpu->guest_debug = dbg->control;
else
vcpu->guest_debug = 0;
return 0;
}
static inline int kvm_set_cpuid(struct kvm_vcpu *vcpu, u64 val)
{
int cpuid;
struct kvm_phyid_map *map;
struct loongarch_csrs *csr = vcpu->arch.csr;
if (val >= KVM_MAX_PHYID)
return -EINVAL;
map = vcpu->kvm->arch.phyid_map;
cpuid = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_CPUID);
spin_lock(&vcpu->kvm->arch.phyid_map_lock);
if ((cpuid < KVM_MAX_PHYID) && map->phys_map[cpuid].enabled) {
/* Discard duplicated CPUID set operation */
if (cpuid == val) {
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
return 0;
}
/*
* CPUID is already set before
* Forbid changing to a different CPUID at runtime
*/
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
return -EINVAL;
}
if (map->phys_map[val].enabled) {
/* Discard duplicated CPUID set operation */
if (vcpu == map->phys_map[val].vcpu) {
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
return 0;
}
/*
* New CPUID is already set with other vcpu
* Forbid sharing the same CPUID between different vcpus
*/
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
return -EINVAL;
}
kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, val);
map->phys_map[val].enabled = true;
map->phys_map[val].vcpu = vcpu;
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
return 0;
}
static inline void kvm_drop_cpuid(struct kvm_vcpu *vcpu)
{
int cpuid;
struct kvm_phyid_map *map;
struct loongarch_csrs *csr = vcpu->arch.csr;
map = vcpu->kvm->arch.phyid_map;
cpuid = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_CPUID);
if (cpuid >= KVM_MAX_PHYID)
return;
spin_lock(&vcpu->kvm->arch.phyid_map_lock);
if (map->phys_map[cpuid].enabled) {
map->phys_map[cpuid].vcpu = NULL;
map->phys_map[cpuid].enabled = false;
kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, KVM_MAX_PHYID);
}
spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
}
struct kvm_vcpu *kvm_get_vcpu_by_cpuid(struct kvm *kvm, int cpuid)
{
struct kvm_phyid_map *map;
if (cpuid >= KVM_MAX_PHYID)
return NULL;
map = kvm->arch.phyid_map;
if (!map->phys_map[cpuid].enabled)
return NULL;
return map->phys_map[cpuid].vcpu;
}
static int _kvm_getcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 *val)
{
unsigned long gintc;
struct loongarch_csrs *csr = vcpu->arch.csr;
if (get_gcsr_flag(id) & INVALID_GCSR)
return -EINVAL;
if (id == LOONGARCH_CSR_ESTAT) {
preempt_disable();
vcpu_load(vcpu);
/*
* Sync pending interrupts into ESTAT so that interrupt
* remains during VM migration stage
*/
kvm_deliver_intr(vcpu);
vcpu->arch.aux_inuse &= ~KVM_LARCH_SWCSR_LATEST;
vcpu_put(vcpu);
preempt_enable();
/* ESTAT IP0~IP7 get from GINTC */
gintc = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_GINTC) & 0xff;
*val = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_ESTAT) | (gintc << 2);
return 0;
}
/*
* Get software CSR state since software state is consistent
* with hardware for synchronous ioctl
*/
*val = kvm_read_sw_gcsr(csr, id);
return 0;
}
static int _kvm_setcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 val)
{
int ret = 0, gintc;
struct loongarch_csrs *csr = vcpu->arch.csr;
if (get_gcsr_flag(id) & INVALID_GCSR)
return -EINVAL;
if (id == LOONGARCH_CSR_CPUID)
return kvm_set_cpuid(vcpu, val);
if (id == LOONGARCH_CSR_ESTAT) {
/* ESTAT IP0~IP7 inject through GINTC */
gintc = (val >> 2) & 0xff;
kvm_set_sw_gcsr(csr, LOONGARCH_CSR_GINTC, gintc);
gintc = val & ~(0xffUL << 2);
kvm_set_sw_gcsr(csr, LOONGARCH_CSR_ESTAT, gintc);
return ret;
}
kvm_write_sw_gcsr(csr, id, val);
return ret;
}
static int _kvm_get_cpucfg_mask(int id, u64 *v)
{
if (id < 0 || id >= KVM_MAX_CPUCFG_REGS)
return -EINVAL;
switch (id) {
case LOONGARCH_CPUCFG0:
*v = GENMASK(31, 0);
return 0;
case LOONGARCH_CPUCFG1:
/* CPUCFG1_MSGINT is not supported by KVM */
*v = GENMASK(25, 0);
return 0;
case LOONGARCH_CPUCFG2:
/* CPUCFG2 features unconditionally supported by KVM */
*v = CPUCFG2_FP | CPUCFG2_FPSP | CPUCFG2_FPDP |
CPUCFG2_FPVERS | CPUCFG2_LLFTP | CPUCFG2_LLFTPREV |
CPUCFG2_LSPW | CPUCFG2_LAM;
/*
* For the ISA extensions listed below, if one is supported
* by the host, then it is also supported by KVM.
*/
if (cpu_has_lsx)
*v |= CPUCFG2_LSX;
if (cpu_has_lasx)
*v |= CPUCFG2_LASX;
return 0;
case LOONGARCH_CPUCFG3:
*v = GENMASK(16, 0);
return 0;
case LOONGARCH_CPUCFG4:
case LOONGARCH_CPUCFG5:
*v = GENMASK(31, 0);
return 0;
case LOONGARCH_CPUCFG16:
*v = GENMASK(16, 0);
return 0;
case LOONGARCH_CPUCFG17 ... LOONGARCH_CPUCFG20:
*v = GENMASK(30, 0);
return 0;
default:
/*
* CPUCFG bits should be zero if reserved by HW or not
* supported by KVM.
*/
*v = 0;
return 0;
}
}
static int kvm_check_cpucfg(int id, u64 val)
{
int ret;
u64 mask = 0;
ret = _kvm_get_cpucfg_mask(id, &mask);
if (ret)
return ret;
if (val & ~mask)
/* Unsupported features and/or the higher 32 bits should not be set */
return -EINVAL;
switch (id) {
case LOONGARCH_CPUCFG2:
if (!(val & CPUCFG2_LLFTP))
/* Guests must have a constant timer */
return -EINVAL;
if ((val & CPUCFG2_FP) && (!(val & CPUCFG2_FPSP) || !(val & CPUCFG2_FPDP)))
/* Single and double float point must both be set when FP is enabled */
return -EINVAL;
if ((val & CPUCFG2_LSX) && !(val & CPUCFG2_FP))
/* LSX architecturally implies FP but val does not satisfy that */
return -EINVAL;
if ((val & CPUCFG2_LASX) && !(val & CPUCFG2_LSX))
/* LASX architecturally implies LSX and FP but val does not satisfy that */
return -EINVAL;
return 0;
default:
/*
* Values for the other CPUCFG IDs are not being further validated
* besides the mask check above.
*/
return 0;
}
}
static int kvm_get_one_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg, u64 *v)
{
int id, ret = 0;
u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
switch (type) {
case KVM_REG_LOONGARCH_CSR:
id = KVM_GET_IOC_CSR_IDX(reg->id);
ret = _kvm_getcsr(vcpu, id, v);
break;
case KVM_REG_LOONGARCH_CPUCFG:
id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
if (id >= 0 && id < KVM_MAX_CPUCFG_REGS)
*v = vcpu->arch.cpucfg[id];
else
ret = -EINVAL;
break;
case KVM_REG_LOONGARCH_KVM:
switch (reg->id) {
case KVM_REG_LOONGARCH_COUNTER:
*v = drdtime() + vcpu->kvm->arch.time_offset;
break;
case KVM_REG_LOONGARCH_DEBUG_INST:
*v = INSN_HVCL | KVM_HCALL_SWDBG;
break;
default:
ret = -EINVAL;
break;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int kvm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
int ret = 0;
u64 v, size = reg->id & KVM_REG_SIZE_MASK;
switch (size) {
case KVM_REG_SIZE_U64:
ret = kvm_get_one_reg(vcpu, reg, &v);
if (ret)
return ret;
ret = put_user(v, (u64 __user *)(long)reg->addr);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int kvm_set_one_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg, u64 v)
{
int id, ret = 0;
u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
switch (type) {
case KVM_REG_LOONGARCH_CSR:
id = KVM_GET_IOC_CSR_IDX(reg->id);
ret = _kvm_setcsr(vcpu, id, v);
break;
case KVM_REG_LOONGARCH_CPUCFG:
id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
ret = kvm_check_cpucfg(id, v);
if (ret)
break;
vcpu->arch.cpucfg[id] = (u32)v;
break;
case KVM_REG_LOONGARCH_KVM:
switch (reg->id) {
case KVM_REG_LOONGARCH_COUNTER:
/*
* gftoffset is relative with board, not vcpu
* only set for the first time for smp system
*/
if (vcpu->vcpu_id == 0)
vcpu->kvm->arch.time_offset = (signed long)(v - drdtime());
break;
case KVM_REG_LOONGARCH_VCPU_RESET:
kvm_reset_timer(vcpu);
memset(&vcpu->arch.irq_pending, 0, sizeof(vcpu->arch.irq_pending));
memset(&vcpu->arch.irq_clear, 0, sizeof(vcpu->arch.irq_clear));
break;
default:
ret = -EINVAL;
break;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int kvm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
int ret = 0;
u64 v, size = reg->id & KVM_REG_SIZE_MASK;
switch (size) {
case KVM_REG_SIZE_U64:
ret = get_user(v, (u64 __user *)(long)reg->addr);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
return kvm_set_one_reg(vcpu, reg, v);
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
regs->gpr[i] = vcpu->arch.gprs[i];
regs->pc = vcpu->arch.pc;
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
vcpu->arch.gprs[i] = regs->gpr[i];
vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
vcpu->arch.pc = regs->pc;
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
/* FPU is enabled by default, will support LSX/LASX later. */
return -EINVAL;
}
static int kvm_loongarch_cpucfg_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
switch (attr->attr) {
case 2:
return 0;
default:
return -ENXIO;
}
return -ENXIO;
}
static int kvm_loongarch_pvtime_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
if (!kvm_pvtime_supported() ||
attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
return -ENXIO;
return 0;
}
static int kvm_loongarch_vcpu_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
case KVM_LOONGARCH_VCPU_CPUCFG:
ret = kvm_loongarch_cpucfg_has_attr(vcpu, attr);
break;
case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
ret = kvm_loongarch_pvtime_has_attr(vcpu, attr);
break;
default:
break;
}
return ret;
}
static int kvm_loongarch_cpucfg_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = 0;
uint64_t val;
uint64_t __user *uaddr = (uint64_t __user *)attr->addr;
ret = _kvm_get_cpucfg_mask(attr->attr, &val);
if (ret)
return ret;
put_user(val, uaddr);
return ret;
}
static int kvm_loongarch_pvtime_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
u64 gpa;
u64 __user *user = (u64 __user *)attr->addr;
if (!kvm_pvtime_supported() ||
attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
return -ENXIO;
gpa = vcpu->arch.st.guest_addr;
if (put_user(gpa, user))
return -EFAULT;
return 0;
}
static int kvm_loongarch_vcpu_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
case KVM_LOONGARCH_VCPU_CPUCFG:
ret = kvm_loongarch_cpucfg_get_attr(vcpu, attr);
break;
case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
ret = kvm_loongarch_pvtime_get_attr(vcpu, attr);
break;
default:
break;
}
return ret;
}
static int kvm_loongarch_cpucfg_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
return -ENXIO;
}
static int kvm_loongarch_pvtime_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int idx, ret = 0;
u64 gpa, __user *user = (u64 __user *)attr->addr;
struct kvm *kvm = vcpu->kvm;
if (!kvm_pvtime_supported() ||
attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
return -ENXIO;
if (get_user(gpa, user))
return -EFAULT;
if (gpa & ~(KVM_STEAL_PHYS_MASK | KVM_STEAL_PHYS_VALID))
return -EINVAL;
if (!(gpa & KVM_STEAL_PHYS_VALID)) {
vcpu->arch.st.guest_addr = gpa;
return 0;
}
/* Check the address is in a valid memslot */
idx = srcu_read_lock(&kvm->srcu);
if (kvm_is_error_hva(gfn_to_hva(kvm, gpa >> PAGE_SHIFT)))
ret = -EINVAL;
srcu_read_unlock(&kvm->srcu, idx);
if (!ret) {
vcpu->arch.st.guest_addr = gpa;
vcpu->arch.st.last_steal = current->sched_info.run_delay;
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
}
return ret;
}
static int kvm_loongarch_vcpu_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->group) {
case KVM_LOONGARCH_VCPU_CPUCFG:
ret = kvm_loongarch_cpucfg_set_attr(vcpu, attr);
break;
case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
ret = kvm_loongarch_pvtime_set_attr(vcpu, attr);
break;
default:
break;
}
return ret;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
long r;
struct kvm_device_attr attr;
void __user *argp = (void __user *)arg;
struct kvm_vcpu *vcpu = filp->private_data;
/*
* Only software CSR should be modified
*
* If any hardware CSR register is modified, vcpu_load/vcpu_put pair
* should be used. Since CSR registers owns by this vcpu, if switch
* to other vcpus, other vcpus need reload CSR registers.
*
* If software CSR is modified, bit KVM_LARCH_HWCSR_USABLE should
* be clear in vcpu->arch.aux_inuse, and vcpu_load will check
* aux_inuse flag and reload CSR registers form software.
*/
switch (ioctl) {
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
r = -EFAULT;
if (copy_from_user(&reg, argp, sizeof(reg)))
break;
if (ioctl == KVM_SET_ONE_REG) {
r = kvm_set_reg(vcpu, &reg);
vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
} else
r = kvm_get_reg(vcpu, &reg);
break;
}
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
break;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
case KVM_HAS_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, argp, sizeof(attr)))
break;
r = kvm_loongarch_vcpu_has_attr(vcpu, &attr);
break;
}
case KVM_GET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, argp, sizeof(attr)))
break;
r = kvm_loongarch_vcpu_get_attr(vcpu, &attr);
break;
}
case KVM_SET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, argp, sizeof(attr)))
break;
r = kvm_loongarch_vcpu_set_attr(vcpu, &attr);
break;
}
default:
r = -ENOIOCTLCMD;
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
int i = 0;
fpu->fcc = vcpu->arch.fpu.fcc;
fpu->fcsr = vcpu->arch.fpu.fcsr;
for (i = 0; i < NUM_FPU_REGS; i++)
memcpy(&fpu->fpr[i], &vcpu->arch.fpu.fpr[i], FPU_REG_WIDTH / 64);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
int i = 0;
vcpu->arch.fpu.fcc = fpu->fcc;
vcpu->arch.fpu.fcsr = fpu->fcsr;
for (i = 0; i < NUM_FPU_REGS; i++)
memcpy(&vcpu->arch.fpu.fpr[i], &fpu->fpr[i], FPU_REG_WIDTH / 64);
return 0;
}
/* Enable FPU and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
/* Enable FPU */
set_csr_euen(CSR_EUEN_FPEN);
kvm_restore_fpu(&vcpu->arch.fpu);
vcpu->arch.aux_inuse |= KVM_LARCH_FPU;
trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
preempt_enable();
}
#ifdef CONFIG_CPU_HAS_LSX
/* Enable LSX and restore context */
int kvm_own_lsx(struct kvm_vcpu *vcpu)
{
if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch))
return -EINVAL;
preempt_disable();
/* Enable LSX for guest */
set_csr_euen(CSR_EUEN_LSXEN | CSR_EUEN_FPEN);
switch (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
case KVM_LARCH_FPU:
/*
* Guest FPU state already loaded,
* only restore upper LSX state
*/
_restore_lsx_upper(&vcpu->arch.fpu);
break;
default:
/* Neither FP or LSX already active,
* restore full LSX state
*/
kvm_restore_lsx(&vcpu->arch.fpu);
break;
}
trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LSX);
vcpu->arch.aux_inuse |= KVM_LARCH_LSX | KVM_LARCH_FPU;
preempt_enable();
return 0;
}
#endif
#ifdef CONFIG_CPU_HAS_LASX
/* Enable LASX and restore context */
int kvm_own_lasx(struct kvm_vcpu *vcpu)
{
if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch) || !kvm_guest_has_lasx(&vcpu->arch))
return -EINVAL;
preempt_disable();
set_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
switch (vcpu->arch.aux_inuse & (KVM_LARCH_FPU | KVM_LARCH_LSX)) {
case KVM_LARCH_LSX:
case KVM_LARCH_LSX | KVM_LARCH_FPU:
/* Guest LSX state already loaded, only restore upper LASX state */
_restore_lasx_upper(&vcpu->arch.fpu);
break;
case KVM_LARCH_FPU:
/* Guest FP state already loaded, only restore upper LSX & LASX state */
_restore_lsx_upper(&vcpu->arch.fpu);
_restore_lasx_upper(&vcpu->arch.fpu);
break;
default:
/* Neither FP or LSX already active, restore full LASX state */
kvm_restore_lasx(&vcpu->arch.fpu);
break;
}
trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LASX);
vcpu->arch.aux_inuse |= KVM_LARCH_LASX | KVM_LARCH_LSX | KVM_LARCH_FPU;
preempt_enable();
return 0;
}
#endif
/* Save context and disable FPU */
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
if (vcpu->arch.aux_inuse & KVM_LARCH_LASX) {
kvm_save_lasx(&vcpu->arch.fpu);
vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU | KVM_LARCH_LASX);
trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LASX);
/* Disable LASX & LSX & FPU */
clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
} else if (vcpu->arch.aux_inuse & KVM_LARCH_LSX) {
kvm_save_lsx(&vcpu->arch.fpu);
vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU);
trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LSX);
/* Disable LSX & FPU */
clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN);
} else if (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
kvm_save_fpu(&vcpu->arch.fpu);
vcpu->arch.aux_inuse &= ~KVM_LARCH_FPU;
trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
/* Disable FPU */
clear_csr_euen(CSR_EUEN_FPEN);
}
preempt_enable();
}
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
int intr = (int)irq->irq;
if (intr > 0)
kvm_queue_irq(vcpu, intr);
else if (intr < 0)
kvm_dequeue_irq(vcpu, -intr);
else {
kvm_err("%s: invalid interrupt ioctl %d\n", __func__, irq->irq);
return -EINVAL;
}
kvm_vcpu_kick(vcpu);
return 0;
}
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct kvm_vcpu *vcpu = filp->private_data;
if (ioctl == KVM_INTERRUPT) {
struct kvm_interrupt irq;
if (copy_from_user(&irq, argp, sizeof(irq)))
return -EFAULT;
kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, irq.irq);
return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
}
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
return 0;
}
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
{
unsigned long timer_hz;
struct loongarch_csrs *csr;
vcpu->arch.vpid = 0;
vcpu->arch.flush_gpa = INVALID_GPA;
hrtimer_init(&vcpu->arch.swtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
vcpu->arch.swtimer.function = kvm_swtimer_wakeup;
vcpu->arch.handle_exit = kvm_handle_exit;
vcpu->arch.guest_eentry = (unsigned long)kvm_loongarch_ops->exc_entry;
vcpu->arch.csr = kzalloc(sizeof(struct loongarch_csrs), GFP_KERNEL);
if (!vcpu->arch.csr)
return -ENOMEM;
/*
* All kvm exceptions share one exception entry, and host <-> guest
* switch also switch ECFG.VS field, keep host ECFG.VS info here.
*/
vcpu->arch.host_ecfg = (read_csr_ecfg() & CSR_ECFG_VS);
/* Init */
vcpu->arch.last_sched_cpu = -1;
/*
* Initialize guest register state to valid architectural reset state.
*/
timer_hz = calc_const_freq();
kvm_init_timer(vcpu, timer_hz);
/* Set Initialize mode for guest */
csr = vcpu->arch.csr;
kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CRMD, CSR_CRMD_DA);
/* Set cpuid */
kvm_write_sw_gcsr(csr, LOONGARCH_CSR_TMID, vcpu->vcpu_id);
kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, KVM_MAX_PHYID);
/* Start with no pending virtual guest interrupts */
csr->csrs[LOONGARCH_CSR_GINTC] = 0;
return 0;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int cpu;
struct kvm_context *context;
hrtimer_cancel(&vcpu->arch.swtimer);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
kvm_drop_cpuid(vcpu);
kfree(vcpu->arch.csr);
/*
* If the vCPU is freed and reused as another vCPU, we don't want the
* matching pointer wrongly hanging around in last_vcpu.
*/
for_each_possible_cpu(cpu) {
context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
if (context->last_vcpu == vcpu)
context->last_vcpu = NULL;
}
}
static int _kvm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
bool migrated;
struct kvm_context *context;
struct loongarch_csrs *csr = vcpu->arch.csr;
/*
* Have we migrated to a different CPU?
* If so, any old guest TLB state may be stale.
*/
migrated = (vcpu->arch.last_sched_cpu != cpu);
/*
* Was this the last vCPU to run on this CPU?
* If not, any old guest state from this vCPU will have been clobbered.
*/
context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
if (migrated || (context->last_vcpu != vcpu))
vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
context->last_vcpu = vcpu;
/* Restore timer state regardless */
kvm_restore_timer(vcpu);
/* Control guest page CCA attribute */
change_csr_gcfg(CSR_GCFG_MATC_MASK, CSR_GCFG_MATC_ROOT);
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
/* Don't bother restoring registers multiple times unless necessary */
if (vcpu->arch.aux_inuse & KVM_LARCH_HWCSR_USABLE)
return 0;
write_csr_gcntc((ulong)vcpu->kvm->arch.time_offset);
/* Restore guest CSR registers */
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_MISC);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ERA);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADV);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADI);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ASID);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS0);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS1);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS2);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS3);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS4);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS5);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS6);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS7);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TMID);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
/* Restore Root.GINTC from unused Guest.GINTC register */
write_csr_gintc(csr->csrs[LOONGARCH_CSR_GINTC]);
/*
* We should clear linked load bit to break interrupted atomics. This
* prevents a SC on the next vCPU from succeeding by matching a LL on
* the previous vCPU.
*/
if (vcpu->kvm->created_vcpus > 1)
set_gcsr_llbctl(CSR_LLBCTL_WCLLB);
vcpu->arch.aux_inuse |= KVM_LARCH_HWCSR_USABLE;
return 0;
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
unsigned long flags;
local_irq_save(flags);
/* Restore guest state to registers */
_kvm_vcpu_load(vcpu, cpu);
local_irq_restore(flags);
}
static int _kvm_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
{
struct loongarch_csrs *csr = vcpu->arch.csr;
kvm_lose_fpu(vcpu);
/*
* Update CSR state from hardware if software CSR state is stale,
* most CSR registers are kept unchanged during process context
* switch except CSR registers like remaining timer tick value and
* injected interrupt state.
*/
if (vcpu->arch.aux_inuse & KVM_LARCH_SWCSR_LATEST)
goto out;
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_MISC);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ERA);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADV);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADI);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ASID);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG2);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG3);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS0);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS2);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS3);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS4);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS5);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS6);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS7);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TMID);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
vcpu->arch.aux_inuse |= KVM_LARCH_SWCSR_LATEST;
out:
kvm_save_timer(vcpu);
/* Save Root.GINTC into unused Guest.GINTC register */
csr->csrs[LOONGARCH_CSR_GINTC] = read_csr_gintc();
return 0;
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
int cpu;
unsigned long flags;
local_irq_save(flags);
cpu = smp_processor_id();
vcpu->arch.last_sched_cpu = cpu;
/* Save guest state in registers */
_kvm_vcpu_put(vcpu, cpu);
local_irq_restore(flags);
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
int r = -EINTR;
struct kvm_run *run = vcpu->run;
if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
kvm_complete_mmio_read(vcpu, run);
vcpu->mmio_needed = 0;
}
if (run->exit_reason == KVM_EXIT_LOONGARCH_IOCSR) {
if (!run->iocsr_io.is_write)
kvm_complete_iocsr_read(vcpu, run);
}
if (!vcpu->wants_to_run)
return r;
/* Clear exit_reason */
run->exit_reason = KVM_EXIT_UNKNOWN;
lose_fpu(1);
vcpu_load(vcpu);
kvm_sigset_activate(vcpu);
r = kvm_pre_enter_guest(vcpu);
if (r != RESUME_GUEST)
goto out;
guest_timing_enter_irqoff();
guest_state_enter_irqoff();
trace_kvm_enter(vcpu);
r = kvm_loongarch_ops->enter_guest(run, vcpu);
trace_kvm_out(vcpu);
/*
* Guest exit is already recorded at kvm_handle_exit()
* return value must not be RESUME_GUEST
*/
local_irq_enable();
out:
kvm_sigset_deactivate(vcpu);
vcpu_put(vcpu);
return r;
}