linux/drivers/net/ethernet/ti/am65-cpsw-qos.c
Roger Quadros 49a2eb9068 net: ethernet: ti: am65-cpsw-qos: Add Frame Preemption MAC Merge support
Add driver support for viewing / changing the MAC Merge sublayer
parameters and seeing the verification state machine's current state
via ethtool.

As hardware does not support interrupt notification for verification
events we resort to polling on link up. On link up we try a couple of
times for verification success and if unsuccessful then give up.

The Frame Preemption feature is described in the Technical Reference
Manual [1] in section:
	12.3.1.4.6.7 Intersperced Express Traffic (IET – P802.3br/D2.0)

Due to Silicon Errata i2208 [2] we set limit min IET fragment size to
124 (excluding 4 bytes mCRC).

[1] AM62x TRM - https://www.ti.com/lit/ug/spruiv7a/spruiv7a.pdf
[2] AM62x Silicon Errata - https://www.ti.com/lit/er/sprz487c/sprz487c.pdf

Signed-off-by: Roger Quadros <rogerq@kernel.org>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-12-23 01:01:19 +00:00

1308 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments K3 AM65 Ethernet QoS submodule
* Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/
*
* quality of service module includes:
* Enhanced Scheduler Traffic (EST - P802.1Qbv/D2.2)
* Interspersed Express Traffic (IET - P802.3br/D2.0)
*/
#include <linux/pm_runtime.h>
#include <linux/math.h>
#include <linux/time.h>
#include <linux/units.h>
#include <net/pkt_cls.h>
#include "am65-cpsw-nuss.h"
#include "am65-cpsw-qos.h"
#include "am65-cpts.h"
#include "cpsw_ale.h"
#define TO_MBPS(x) DIV_ROUND_UP((x), BYTES_PER_MBIT)
enum timer_act {
TACT_PROG, /* need program timer */
TACT_NEED_STOP, /* need stop first */
TACT_SKIP_PROG, /* just buffer can be updated */
};
static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs);
static u32
am65_cpsw_qos_tx_rate_calc(u32 rate_mbps, unsigned long bus_freq)
{
u32 ir;
bus_freq /= 1000000;
ir = DIV_ROUND_UP(((u64)rate_mbps * 32768), bus_freq);
return ir;
}
static void am65_cpsw_tx_pn_shaper_reset(struct am65_cpsw_port *port)
{
int prio;
for (prio = 0; prio < AM65_CPSW_PN_FIFO_PRIO_NUM; prio++) {
writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio));
writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio));
}
}
static void am65_cpsw_tx_pn_shaper_apply(struct am65_cpsw_port *port)
{
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct am65_cpsw_common *common = port->common;
struct tc_mqprio_qopt_offload *mqprio;
bool enable, shaper_susp = false;
u32 rate_mbps;
int tc, prio;
mqprio = &p_mqprio->mqprio_hw;
/* takes care of no link case as well */
if (p_mqprio->max_rate_total > port->qos.link_speed)
shaper_susp = true;
am65_cpsw_tx_pn_shaper_reset(port);
enable = p_mqprio->shaper_en && !shaper_susp;
if (!enable)
return;
/* Rate limit is specified per Traffic Class but
* for CPSW, rate limit can be applied per priority
* at port FIFO.
*
* We have assigned the same priority (TCn) to all queues
* of a Traffic Class so they share the same shaper
* bandwidth.
*/
for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
prio = tc;
rate_mbps = TO_MBPS(mqprio->min_rate[tc]);
rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps,
common->bus_freq);
writel(rate_mbps,
port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio));
rate_mbps = 0;
if (mqprio->max_rate[tc]) {
rate_mbps = mqprio->max_rate[tc] - mqprio->min_rate[tc];
rate_mbps = TO_MBPS(rate_mbps);
rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps,
common->bus_freq);
}
writel(rate_mbps,
port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio));
}
}
static int am65_cpsw_mqprio_verify_shaper(struct am65_cpsw_port *port,
struct tc_mqprio_qopt_offload *mqprio)
{
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct netlink_ext_ack *extack = mqprio->extack;
u64 min_rate_total = 0, max_rate_total = 0;
u32 min_rate_msk = 0, max_rate_msk = 0;
bool has_min_rate, has_max_rate;
int num_tc, i;
if (!(mqprio->flags & TC_MQPRIO_F_SHAPER))
return 0;
if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE)
return 0;
has_min_rate = !!(mqprio->flags & TC_MQPRIO_F_MIN_RATE);
has_max_rate = !!(mqprio->flags & TC_MQPRIO_F_MAX_RATE);
if (!has_min_rate && has_max_rate) {
NL_SET_ERR_MSG_MOD(extack, "min_rate is required with max_rate");
return -EOPNOTSUPP;
}
if (!has_min_rate)
return 0;
num_tc = mqprio->qopt.num_tc;
for (i = num_tc - 1; i >= 0; i--) {
u32 ch_msk;
if (mqprio->min_rate[i])
min_rate_msk |= BIT(i);
min_rate_total += mqprio->min_rate[i];
if (has_max_rate) {
if (mqprio->max_rate[i])
max_rate_msk |= BIT(i);
max_rate_total += mqprio->max_rate[i];
if (!mqprio->min_rate[i] && mqprio->max_rate[i]) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"TX tc%d rate max>0 but min=0",
i);
return -EINVAL;
}
if (mqprio->max_rate[i] &&
mqprio->max_rate[i] < mqprio->min_rate[i]) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"TX tc%d rate min(%llu)>max(%llu)",
i, mqprio->min_rate[i],
mqprio->max_rate[i]);
return -EINVAL;
}
}
ch_msk = GENMASK(num_tc - 1, i);
if ((min_rate_msk & BIT(i)) && (min_rate_msk ^ ch_msk)) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Min rate must be set sequentially hi->lo tx_rate_msk%x",
min_rate_msk);
return -EINVAL;
}
if ((max_rate_msk & BIT(i)) && (max_rate_msk ^ ch_msk)) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Max rate must be set sequentially hi->lo tx_rate_msk%x",
max_rate_msk);
return -EINVAL;
}
}
min_rate_total = TO_MBPS(min_rate_total);
max_rate_total = TO_MBPS(max_rate_total);
p_mqprio->shaper_en = true;
p_mqprio->max_rate_total = max_t(u64, min_rate_total, max_rate_total);
return 0;
}
static void am65_cpsw_reset_tc_mqprio(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
p_mqprio->shaper_en = false;
p_mqprio->max_rate_total = 0;
am65_cpsw_tx_pn_shaper_reset(port);
netdev_reset_tc(ndev);
/* Reset all Queue priorities to 0 */
writel(0, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP);
am65_cpsw_iet_change_preemptible_tcs(port, 0);
}
static int am65_cpsw_setup_mqprio(struct net_device *ndev, void *type_data)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio;
struct tc_mqprio_qopt_offload *mqprio = type_data;
struct am65_cpsw_common *common = port->common;
struct tc_mqprio_qopt *qopt = &mqprio->qopt;
int i, tc, offset, count, prio, ret;
u8 num_tc = qopt->num_tc;
u32 tx_prio_map = 0;
memcpy(&p_mqprio->mqprio_hw, mqprio, sizeof(*mqprio));
ret = pm_runtime_get_sync(common->dev);
if (ret < 0) {
pm_runtime_put_noidle(common->dev);
return ret;
}
if (!num_tc) {
am65_cpsw_reset_tc_mqprio(ndev);
ret = 0;
goto exit_put;
}
ret = am65_cpsw_mqprio_verify_shaper(port, mqprio);
if (ret)
goto exit_put;
netdev_set_num_tc(ndev, num_tc);
/* Multiple Linux priorities can map to a Traffic Class
* A Traffic Class can have multiple contiguous Queues,
* Queues get mapped to Channels (thread_id),
* if not VLAN tagged, thread_id is used as packet_priority
* if VLAN tagged. VLAN priority is used as packet_priority
* packet_priority gets mapped to header_priority in p0_rx_pri_map,
* header_priority gets mapped to switch_priority in pn_tx_pri_map.
* As p0_rx_pri_map is left at defaults (0x76543210), we can
* assume that Queue_n gets mapped to header_priority_n. We can then
* set the switch priority in pn_tx_pri_map.
*/
for (tc = 0; tc < num_tc; tc++) {
prio = tc;
/* For simplicity we assign the same priority (TCn) to
* all queues of a Traffic Class.
*/
for (i = qopt->offset[tc]; i < qopt->offset[tc] + qopt->count[tc]; i++)
tx_prio_map |= prio << (4 * i);
count = qopt->count[tc];
offset = qopt->offset[tc];
netdev_set_tc_queue(ndev, tc, count, offset);
}
writel(tx_prio_map, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP);
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_change_preemptible_tcs(port, mqprio->preemptible_tcs);
exit_put:
pm_runtime_put(common->dev);
return ret;
}
static int am65_cpsw_iet_set_verify_timeout_count(struct am65_cpsw_port *port)
{
int verify_time_ms = port->qos.iet.verify_time_ms;
u32 val;
/* The number of wireside clocks contained in the verify
* timeout counter. The default is 0x1312d0
* (10ms at 125Mhz in 1G mode).
*/
val = 125 * HZ_PER_MHZ; /* assuming 125MHz wireside clock */
val /= MILLIHZ_PER_HZ; /* count per ms timeout */
val *= verify_time_ms; /* count for timeout ms */
if (val > AM65_CPSW_PN_MAC_VERIFY_CNT_MASK)
return -EINVAL;
writel(val, port->port_base + AM65_CPSW_PN_REG_IET_VERIFY);
return 0;
}
static int am65_cpsw_iet_verify_wait(struct am65_cpsw_port *port)
{
u32 ctrl, status;
int try;
try = 20;
do {
/* Reset the verify state machine by writing 1
* to LINKFAIL
*/
ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
ctrl |= AM65_CPSW_PN_IET_MAC_LINKFAIL;
writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
/* Clear MAC_LINKFAIL bit to start Verify. */
ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
ctrl &= ~AM65_CPSW_PN_IET_MAC_LINKFAIL;
writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
msleep(port->qos.iet.verify_time_ms);
status = readl(port->port_base + AM65_CPSW_PN_REG_IET_STATUS);
if (status & AM65_CPSW_PN_MAC_VERIFIED)
return 0;
if (status & AM65_CPSW_PN_MAC_VERIFY_FAIL) {
netdev_dbg(port->ndev,
"MAC Merge verify failed, trying again\n");
continue;
}
if (status & AM65_CPSW_PN_MAC_RESPOND_ERR) {
netdev_dbg(port->ndev, "MAC Merge respond error\n");
return -ENODEV;
}
if (status & AM65_CPSW_PN_MAC_VERIFY_ERR) {
netdev_dbg(port->ndev, "MAC Merge verify error\n");
return -ENODEV;
}
} while (try-- > 0);
netdev_dbg(port->ndev, "MAC Merge verify timeout\n");
return -ETIMEDOUT;
}
static void am65_cpsw_iet_set_preempt_mask(struct am65_cpsw_port *port, u8 preemptible_tcs)
{
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
val &= ~AM65_CPSW_PN_IET_MAC_PREMPT_MASK;
val |= AM65_CPSW_PN_IET_MAC_SET_PREEMPT(preemptible_tcs);
writel(val, port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
}
/* enable common IET_ENABLE only if at least 1 port has rx IET enabled.
* UAPI doesn't allow tx enable without rx enable.
*/
void am65_cpsw_iet_common_enable(struct am65_cpsw_common *common)
{
struct am65_cpsw_port *port;
bool rx_enable = false;
u32 val;
int i;
for (i = 0; i < common->port_num; i++) {
port = &common->ports[i];
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
rx_enable = !!(val & AM65_CPSW_PN_CTL_IET_PORT_EN);
if (rx_enable)
break;
}
val = readl(common->cpsw_base + AM65_CPSW_REG_CTL);
if (rx_enable)
val |= AM65_CPSW_CTL_IET_EN;
else
val &= ~AM65_CPSW_CTL_IET_EN;
writel(val, common->cpsw_base + AM65_CPSW_REG_CTL);
common->iet_enabled = rx_enable;
}
/* CPSW does not have an IRQ to notify changes to the MAC Merge TX status
* (active/inactive), but the preemptible traffic classes should only be
* committed to hardware once TX is active. Resort to polling.
*/
void am65_cpsw_iet_commit_preemptible_tcs(struct am65_cpsw_port *port)
{
u8 preemptible_tcs;
int err;
u32 val;
if (port->qos.link_speed == SPEED_UNKNOWN)
return;
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
if (!(val & AM65_CPSW_PN_CTL_IET_PORT_EN))
return;
/* update common IET enable */
am65_cpsw_iet_common_enable(port->common);
/* update verify count */
err = am65_cpsw_iet_set_verify_timeout_count(port);
if (err) {
netdev_err(port->ndev, "couldn't set verify count: %d\n", err);
return;
}
val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL);
if (!(val & AM65_CPSW_PN_IET_MAC_DISABLEVERIFY)) {
err = am65_cpsw_iet_verify_wait(port);
if (err)
return;
}
preemptible_tcs = port->qos.iet.preemptible_tcs;
am65_cpsw_iet_set_preempt_mask(port, preemptible_tcs);
}
static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs)
{
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(port->ndev);
port->qos.iet.preemptible_tcs = preemptible_tcs;
mutex_lock(&priv->mm_lock);
am65_cpsw_iet_commit_preemptible_tcs(port);
mutex_unlock(&priv->mm_lock);
}
static void am65_cpsw_iet_link_state_update(struct net_device *ndev)
{
struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(ndev);
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
mutex_lock(&priv->mm_lock);
am65_cpsw_iet_commit_preemptible_tcs(port);
mutex_unlock(&priv->mm_lock);
}
static int am65_cpsw_port_est_enabled(struct am65_cpsw_port *port)
{
return port->qos.est_oper || port->qos.est_admin;
}
static void am65_cpsw_est_enable(struct am65_cpsw_common *common, int enable)
{
u32 val;
val = readl(common->cpsw_base + AM65_CPSW_REG_CTL);
if (enable)
val |= AM65_CPSW_CTL_EST_EN;
else
val &= ~AM65_CPSW_CTL_EST_EN;
writel(val, common->cpsw_base + AM65_CPSW_REG_CTL);
common->est_enabled = enable;
}
static void am65_cpsw_port_est_enable(struct am65_cpsw_port *port, int enable)
{
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_CTL);
if (enable)
val |= AM65_CPSW_PN_CTL_EST_PORT_EN;
else
val &= ~AM65_CPSW_PN_CTL_EST_PORT_EN;
writel(val, port->port_base + AM65_CPSW_PN_REG_CTL);
}
/* target new EST RAM buffer, actual toggle happens after cycle completion */
static void am65_cpsw_port_est_assign_buf_num(struct net_device *ndev,
int buf_num)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
if (buf_num)
val |= AM65_CPSW_PN_EST_BUFSEL;
else
val &= ~AM65_CPSW_PN_EST_BUFSEL;
writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL);
}
/* am65_cpsw_port_est_is_swapped() - Indicate if h/w is transitioned
* admin -> oper or not
*
* Return true if already transitioned. i.e oper is equal to admin and buf
* numbers match (est_oper->buf match with est_admin->buf).
* false if before transition. i.e oper is not equal to admin, (i.e a
* previous admin command is waiting to be transitioned to oper state
* and est_oper->buf not match with est_oper->buf).
*/
static int am65_cpsw_port_est_is_swapped(struct net_device *ndev, int *oper,
int *admin)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_FIFO_STATUS);
*oper = !!(val & AM65_CPSW_PN_FST_EST_BUFACT);
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
*admin = !!(val & AM65_CPSW_PN_EST_BUFSEL);
return *admin == *oper;
}
/* am65_cpsw_port_est_get_free_buf_num() - Get free buffer number for
* Admin to program the new schedule.
*
* Logic as follows:-
* If oper is same as admin, return the other buffer (!oper) as the admin
* buffer. If oper is not the same, driver let the current oper to continue
* as it is in the process of transitioning from admin -> oper. So keep the
* oper by selecting the same oper buffer by writing to EST_BUFSEL bit in
* EST CTL register. In the second iteration they will match and code returns.
* The actual buffer to write command is selected later before it is ready
* to update the schedule.
*/
static int am65_cpsw_port_est_get_free_buf_num(struct net_device *ndev)
{
int oper, admin;
int roll = 2;
while (roll--) {
if (am65_cpsw_port_est_is_swapped(ndev, &oper, &admin))
return !oper;
/* admin is not set, so hinder transition as it's not allowed
* to touch memory in-flight, by targeting same oper buf.
*/
am65_cpsw_port_est_assign_buf_num(ndev, oper);
dev_info(&ndev->dev,
"Prev. EST admin cycle is in transit %d -> %d\n",
oper, admin);
}
return admin;
}
static void am65_cpsw_admin_to_oper(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
devm_kfree(&ndev->dev, port->qos.est_oper);
port->qos.est_oper = port->qos.est_admin;
port->qos.est_admin = NULL;
}
static void am65_cpsw_port_est_get_buf_num(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 val;
val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL);
val &= ~AM65_CPSW_PN_EST_ONEBUF;
writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL);
est_new->buf = am65_cpsw_port_est_get_free_buf_num(ndev);
/* rolled buf num means changed buf while configuring */
if (port->qos.est_oper && port->qos.est_admin &&
est_new->buf == port->qos.est_oper->buf)
am65_cpsw_admin_to_oper(ndev);
}
static void am65_cpsw_est_set(struct net_device *ndev, int enable)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
int common_enable = 0;
int i;
am65_cpsw_port_est_enable(port, enable);
for (i = 0; i < common->port_num; i++)
common_enable |= am65_cpsw_port_est_enabled(&common->ports[i]);
common_enable |= enable;
am65_cpsw_est_enable(common, common_enable);
}
/* This update is supposed to be used in any routine before getting real state
* of admin -> oper transition, particularly it's supposed to be used in some
* generic routine for providing real state to Taprio Qdisc.
*/
static void am65_cpsw_est_update_state(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int oper, admin;
if (!port->qos.est_admin)
return;
if (!am65_cpsw_port_est_is_swapped(ndev, &oper, &admin))
return;
am65_cpsw_admin_to_oper(ndev);
}
/* Fetch command count it's number of bytes in Gigabit mode or nibbles in
* 10/100Mb mode. So, having speed and time in ns, recalculate ns to number of
* bytes/nibbles that can be sent while transmission on given speed.
*/
static int am65_est_cmd_ns_to_cnt(u64 ns, int link_speed)
{
u64 temp;
temp = ns * link_speed;
if (link_speed < SPEED_1000)
temp <<= 1;
return DIV_ROUND_UP(temp, 8 * 1000);
}
static void __iomem *am65_cpsw_est_set_sched_cmds(void __iomem *addr,
int fetch_cnt,
int fetch_allow)
{
u32 prio_mask, cmd_fetch_cnt, cmd;
do {
if (fetch_cnt > AM65_CPSW_FETCH_CNT_MAX) {
fetch_cnt -= AM65_CPSW_FETCH_CNT_MAX;
cmd_fetch_cnt = AM65_CPSW_FETCH_CNT_MAX;
} else {
cmd_fetch_cnt = fetch_cnt;
/* fetch count can't be less than 16? */
if (cmd_fetch_cnt && cmd_fetch_cnt < 16)
cmd_fetch_cnt = 16;
fetch_cnt = 0;
}
prio_mask = fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK;
cmd = (cmd_fetch_cnt << AM65_CPSW_FETCH_CNT_OFFSET) | prio_mask;
writel(cmd, addr);
addr += 4;
} while (fetch_cnt);
return addr;
}
static int am65_cpsw_est_calc_cmd_num(struct net_device *ndev,
struct tc_taprio_qopt_offload *taprio,
int link_speed)
{
int i, cmd_cnt, cmd_sum = 0;
u32 fetch_cnt;
for (i = 0; i < taprio->num_entries; i++) {
if (taprio->entries[i].command != TC_TAPRIO_CMD_SET_GATES) {
dev_err(&ndev->dev, "Only SET command is supported");
return -EINVAL;
}
fetch_cnt = am65_est_cmd_ns_to_cnt(taprio->entries[i].interval,
link_speed);
cmd_cnt = DIV_ROUND_UP(fetch_cnt, AM65_CPSW_FETCH_CNT_MAX);
if (!cmd_cnt)
cmd_cnt++;
cmd_sum += cmd_cnt;
if (!fetch_cnt)
break;
}
return cmd_sum;
}
static int am65_cpsw_est_check_scheds(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
int cmd_num;
cmd_num = am65_cpsw_est_calc_cmd_num(ndev, &est_new->taprio,
port->qos.link_speed);
if (cmd_num < 0)
return cmd_num;
if (cmd_num > AM65_CPSW_FETCH_RAM_CMD_NUM / 2) {
dev_err(&ndev->dev, "No fetch RAM");
return -ENOMEM;
}
return 0;
}
static void am65_cpsw_est_set_sched_list(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
u32 fetch_cnt, fetch_allow, all_fetch_allow = 0;
void __iomem *ram_addr, *max_ram_addr;
struct tc_taprio_sched_entry *entry;
int i, ram_size;
ram_addr = port->fetch_ram_base;
ram_size = AM65_CPSW_FETCH_RAM_CMD_NUM * 2;
ram_addr += est_new->buf * ram_size;
max_ram_addr = ram_size + ram_addr;
for (i = 0; i < est_new->taprio.num_entries; i++) {
entry = &est_new->taprio.entries[i];
fetch_cnt = am65_est_cmd_ns_to_cnt(entry->interval,
port->qos.link_speed);
fetch_allow = entry->gate_mask;
if (fetch_allow > AM65_CPSW_FETCH_ALLOW_MAX)
dev_dbg(&ndev->dev, "fetch_allow > 8 bits: %d\n",
fetch_allow);
ram_addr = am65_cpsw_est_set_sched_cmds(ram_addr, fetch_cnt,
fetch_allow);
if (!fetch_cnt && i < est_new->taprio.num_entries - 1) {
dev_info(&ndev->dev,
"next scheds after %d have no impact", i + 1);
break;
}
all_fetch_allow |= fetch_allow;
}
/* end cmd, enabling non-timed queues for potential over cycle time */
if (ram_addr < max_ram_addr)
writel(~all_fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK, ram_addr);
}
/*
* Enable ESTf periodic output, set cycle start time and interval.
*/
static int am65_cpsw_timer_set(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
struct am65_cpts *cpts = common->cpts;
struct am65_cpts_estf_cfg cfg;
cfg.ns_period = est_new->taprio.cycle_time;
cfg.ns_start = est_new->taprio.base_time;
return am65_cpts_estf_enable(cpts, port->port_id - 1, &cfg);
}
static void am65_cpsw_timer_stop(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = port->common->cpts;
am65_cpts_estf_disable(cpts, port->port_id - 1);
}
static enum timer_act am65_cpsw_timer_act(struct net_device *ndev,
struct am65_cpsw_est *est_new)
{
struct tc_taprio_qopt_offload *taprio_oper, *taprio_new;
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = port->common->cpts;
u64 cur_time;
s64 diff;
if (!port->qos.est_oper)
return TACT_PROG;
taprio_new = &est_new->taprio;
taprio_oper = &port->qos.est_oper->taprio;
if (taprio_new->cycle_time != taprio_oper->cycle_time)
return TACT_NEED_STOP;
/* in order to avoid timer reset get base_time form oper taprio */
if (!taprio_new->base_time && taprio_oper)
taprio_new->base_time = taprio_oper->base_time;
if (taprio_new->base_time == taprio_oper->base_time)
return TACT_SKIP_PROG;
/* base times are cycle synchronized */
diff = taprio_new->base_time - taprio_oper->base_time;
diff = diff < 0 ? -diff : diff;
if (diff % taprio_new->cycle_time)
return TACT_NEED_STOP;
cur_time = am65_cpts_ns_gettime(cpts);
if (taprio_new->base_time <= cur_time + taprio_new->cycle_time)
return TACT_SKIP_PROG;
/* TODO: Admin schedule at future time is not currently supported */
return TACT_NEED_STOP;
}
static void am65_cpsw_stop_est(struct net_device *ndev)
{
am65_cpsw_est_set(ndev, 0);
am65_cpsw_timer_stop(ndev);
}
static void am65_cpsw_taprio_destroy(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
am65_cpsw_stop_est(ndev);
devm_kfree(&ndev->dev, port->qos.est_admin);
devm_kfree(&ndev->dev, port->qos.est_oper);
port->qos.est_oper = NULL;
port->qos.est_admin = NULL;
am65_cpsw_reset_tc_mqprio(ndev);
}
static void am65_cpsw_cp_taprio(struct tc_taprio_qopt_offload *from,
struct tc_taprio_qopt_offload *to)
{
int i;
*to = *from;
for (i = 0; i < from->num_entries; i++)
to->entries[i] = from->entries[i];
}
static int am65_cpsw_taprio_replace(struct net_device *ndev,
struct tc_taprio_qopt_offload *taprio)
{
struct am65_cpsw_common *common = am65_ndev_to_common(ndev);
struct netlink_ext_ack *extack = taprio->mqprio.extack;
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpts *cpts = common->cpts;
struct am65_cpsw_est *est_new;
int ret, tact;
if (!netif_running(ndev)) {
NL_SET_ERR_MSG_MOD(extack, "interface is down, link speed unknown");
return -ENETDOWN;
}
if (common->pf_p0_rx_ptype_rrobin) {
NL_SET_ERR_MSG_MOD(extack,
"p0-rx-ptype-rrobin flag conflicts with taprio qdisc");
return -EINVAL;
}
if (port->qos.link_speed == SPEED_UNKNOWN)
return -ENOLINK;
if (taprio->cycle_time_extension) {
NL_SET_ERR_MSG_MOD(extack,
"cycle time extension not supported");
return -EOPNOTSUPP;
}
est_new = devm_kzalloc(&ndev->dev,
struct_size(est_new, taprio.entries, taprio->num_entries),
GFP_KERNEL);
if (!est_new)
return -ENOMEM;
ret = am65_cpsw_setup_mqprio(ndev, &taprio->mqprio);
if (ret)
return ret;
am65_cpsw_cp_taprio(taprio, &est_new->taprio);
am65_cpsw_est_update_state(ndev);
ret = am65_cpsw_est_check_scheds(ndev, est_new);
if (ret < 0)
goto fail;
tact = am65_cpsw_timer_act(ndev, est_new);
if (tact == TACT_NEED_STOP) {
NL_SET_ERR_MSG_MOD(extack,
"Can't toggle estf timer, stop taprio first");
ret = -EINVAL;
goto fail;
}
if (tact == TACT_PROG)
am65_cpsw_timer_stop(ndev);
if (!est_new->taprio.base_time)
est_new->taprio.base_time = am65_cpts_ns_gettime(cpts);
am65_cpsw_port_est_get_buf_num(ndev, est_new);
am65_cpsw_est_set_sched_list(ndev, est_new);
am65_cpsw_port_est_assign_buf_num(ndev, est_new->buf);
am65_cpsw_est_set(ndev, 1);
if (tact == TACT_PROG) {
ret = am65_cpsw_timer_set(ndev, est_new);
if (ret) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to set cycle time");
goto fail;
}
}
devm_kfree(&ndev->dev, port->qos.est_admin);
port->qos.est_admin = est_new;
am65_cpsw_iet_change_preemptible_tcs(port, taprio->mqprio.preemptible_tcs);
return 0;
fail:
am65_cpsw_reset_tc_mqprio(ndev);
devm_kfree(&ndev->dev, est_new);
return ret;
}
static void am65_cpsw_est_link_up(struct net_device *ndev, int link_speed)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
ktime_t cur_time;
s64 delta;
if (!am65_cpsw_port_est_enabled(port))
return;
if (port->qos.link_down_time) {
cur_time = ktime_get();
delta = ktime_us_delta(cur_time, port->qos.link_down_time);
if (delta > USEC_PER_SEC) {
dev_err(&ndev->dev,
"Link has been lost too long, stopping TAS");
goto purge_est;
}
}
return;
purge_est:
am65_cpsw_taprio_destroy(ndev);
}
static int am65_cpsw_setup_taprio(struct net_device *ndev, void *type_data)
{
struct tc_taprio_qopt_offload *taprio = type_data;
int err = 0;
switch (taprio->cmd) {
case TAPRIO_CMD_REPLACE:
err = am65_cpsw_taprio_replace(ndev, taprio);
break;
case TAPRIO_CMD_DESTROY:
am65_cpsw_taprio_destroy(ndev);
break;
default:
err = -EOPNOTSUPP;
}
return err;
}
static int am65_cpsw_tc_query_caps(struct net_device *ndev, void *type_data)
{
struct tc_query_caps_base *base = type_data;
switch (base->type) {
case TC_SETUP_QDISC_MQPRIO: {
struct tc_mqprio_caps *caps = base->caps;
caps->validate_queue_counts = true;
return 0;
}
case TC_SETUP_QDISC_TAPRIO: {
struct tc_taprio_caps *caps = base->caps;
caps->gate_mask_per_txq = true;
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static int am65_cpsw_qos_clsflower_add_policer(struct am65_cpsw_port *port,
struct netlink_ext_ack *extack,
struct flow_cls_offload *cls,
u64 rate_pkt_ps)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
struct am65_cpsw_qos *qos = &port->qos;
struct flow_match_eth_addrs match;
int ret;
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
NL_SET_ERR_MSG_MOD(extack,
"Unsupported keys used");
return -EOPNOTSUPP;
}
if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address");
return -EOPNOTSUPP;
}
flow_rule_match_eth_addrs(rule, &match);
if (!is_zero_ether_addr(match.mask->src)) {
NL_SET_ERR_MSG_MOD(extack,
"Matching on source MAC not supported");
return -EOPNOTSUPP;
}
if (is_broadcast_ether_addr(match.key->dst) &&
is_broadcast_ether_addr(match.mask->dst)) {
ret = cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, rate_pkt_ps);
if (ret)
return ret;
qos->ale_bc_ratelimit.cookie = cls->cookie;
qos->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps;
} else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) &&
ether_addr_equal_unaligned(match.mask->dst, mc_mac)) {
ret = cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, rate_pkt_ps);
if (ret)
return ret;
qos->ale_mc_ratelimit.cookie = cls->cookie;
qos->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps;
} else {
NL_SET_ERR_MSG_MOD(extack, "Not supported matching key");
return -EOPNOTSUPP;
}
return 0;
}
static int am65_cpsw_qos_clsflower_policer_validate(const struct flow_action *action,
const struct flow_action_entry *act,
struct netlink_ext_ack *extack)
{
if (act->police.exceed.act_id != FLOW_ACTION_DROP) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when exceed action is not drop");
return -EOPNOTSUPP;
}
if (act->police.notexceed.act_id != FLOW_ACTION_PIPE &&
act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when conform action is not pipe or ok");
return -EOPNOTSUPP;
}
if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT &&
!flow_action_is_last_entry(action, act)) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when conform action is ok, but action is not last");
return -EOPNOTSUPP;
}
if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps ||
act->police.avrate || act->police.overhead) {
NL_SET_ERR_MSG_MOD(extack,
"Offload not supported when bytes per second/peakrate/avrate/overhead is configured");
return -EOPNOTSUPP;
}
return 0;
}
static int am65_cpsw_qos_configure_clsflower(struct am65_cpsw_port *port,
struct flow_cls_offload *cls)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct netlink_ext_ack *extack = cls->common.extack;
const struct flow_action_entry *act;
int i, ret;
flow_action_for_each(i, act, &rule->action) {
switch (act->id) {
case FLOW_ACTION_POLICE:
ret = am65_cpsw_qos_clsflower_policer_validate(&rule->action, act, extack);
if (ret)
return ret;
return am65_cpsw_qos_clsflower_add_policer(port, extack, cls,
act->police.rate_pkt_ps);
default:
NL_SET_ERR_MSG_MOD(extack,
"Action not supported");
return -EOPNOTSUPP;
}
}
return -EOPNOTSUPP;
}
static int am65_cpsw_qos_delete_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls)
{
struct am65_cpsw_qos *qos = &port->qos;
if (cls->cookie == qos->ale_bc_ratelimit.cookie) {
qos->ale_bc_ratelimit.cookie = 0;
qos->ale_bc_ratelimit.rate_packet_ps = 0;
cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, 0);
}
if (cls->cookie == qos->ale_mc_ratelimit.cookie) {
qos->ale_mc_ratelimit.cookie = 0;
qos->ale_mc_ratelimit.rate_packet_ps = 0;
cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, 0);
}
return 0;
}
static int am65_cpsw_qos_setup_tc_clsflower(struct am65_cpsw_port *port,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return am65_cpsw_qos_configure_clsflower(port, cls_flower);
case FLOW_CLS_DESTROY:
return am65_cpsw_qos_delete_clsflower(port, cls_flower);
default:
return -EOPNOTSUPP;
}
}
static int am65_cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
{
struct am65_cpsw_port *port = cb_priv;
if (!tc_cls_can_offload_and_chain0(port->ndev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return am65_cpsw_qos_setup_tc_clsflower(port, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(am65_cpsw_qos_block_cb_list);
static int am65_cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
return flow_block_cb_setup_simple(f, &am65_cpsw_qos_block_cb_list,
am65_cpsw_qos_setup_tc_block_cb,
port, port, true);
}
static void
am65_cpsw_qos_tx_p0_rate_apply(struct am65_cpsw_common *common,
int tx_ch, u32 rate_mbps)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
u32 ch_cir;
int i;
ch_cir = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq);
writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch));
/* update rates for every port tx queues */
for (i = 0; i < common->port_num; i++) {
struct net_device *ndev = common->ports[i].ndev;
if (!ndev)
continue;
netdev_get_tx_queue(ndev, tx_ch)->tx_maxrate = rate_mbps;
}
}
int am65_cpsw_qos_ndo_tx_p0_set_maxrate(struct net_device *ndev,
int queue, u32 rate_mbps)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
struct am65_cpsw_common *common = port->common;
struct am65_cpsw_tx_chn *tx_chn;
u32 ch_rate, tx_ch_rate_msk_new;
u32 ch_msk = 0;
int ret;
dev_dbg(common->dev, "apply TX%d rate limiting %uMbps tx_rate_msk%x\n",
queue, rate_mbps, common->tx_ch_rate_msk);
if (common->pf_p0_rx_ptype_rrobin) {
dev_err(common->dev, "TX Rate Limiting failed - rrobin mode\n");
return -EINVAL;
}
ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
if (ch_rate == rate_mbps)
return 0;
ret = pm_runtime_get_sync(common->dev);
if (ret < 0) {
pm_runtime_put_noidle(common->dev);
return ret;
}
ret = 0;
tx_ch_rate_msk_new = common->tx_ch_rate_msk;
if (rate_mbps && !(tx_ch_rate_msk_new & BIT(queue))) {
tx_ch_rate_msk_new |= BIT(queue);
ch_msk = GENMASK(common->tx_ch_num - 1, queue);
ch_msk = tx_ch_rate_msk_new ^ ch_msk;
} else if (!rate_mbps) {
tx_ch_rate_msk_new &= ~BIT(queue);
ch_msk = queue ? GENMASK(queue - 1, 0) : 0;
ch_msk = tx_ch_rate_msk_new & ch_msk;
}
if (ch_msk) {
dev_err(common->dev, "TX rate limiting has to be enabled sequentially hi->lo tx_rate_msk:%x tx_rate_msk_new:%x\n",
common->tx_ch_rate_msk, tx_ch_rate_msk_new);
ret = -EINVAL;
goto exit_put;
}
tx_chn = &common->tx_chns[queue];
tx_chn->rate_mbps = rate_mbps;
common->tx_ch_rate_msk = tx_ch_rate_msk_new;
if (!common->usage_count)
/* will be applied on next netif up */
goto exit_put;
am65_cpsw_qos_tx_p0_rate_apply(common, queue, rate_mbps);
exit_put:
pm_runtime_put(common->dev);
return ret;
}
void am65_cpsw_qos_tx_p0_rate_init(struct am65_cpsw_common *common)
{
struct am65_cpsw_host *host = am65_common_get_host(common);
int tx_ch;
for (tx_ch = 0; tx_ch < common->tx_ch_num; tx_ch++) {
struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[tx_ch];
u32 ch_cir;
if (!tx_chn->rate_mbps)
continue;
ch_cir = am65_cpsw_qos_tx_rate_calc(tx_chn->rate_mbps,
common->bus_freq);
writel(ch_cir,
host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch));
}
}
int am65_cpsw_qos_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_QUERY_CAPS:
return am65_cpsw_tc_query_caps(ndev, type_data);
case TC_SETUP_QDISC_TAPRIO:
return am65_cpsw_setup_taprio(ndev, type_data);
case TC_SETUP_QDISC_MQPRIO:
return am65_cpsw_setup_mqprio(ndev, type_data);
case TC_SETUP_BLOCK:
return am65_cpsw_qos_setup_tc_block(ndev, type_data);
default:
return -EOPNOTSUPP;
}
}
void am65_cpsw_qos_link_up(struct net_device *ndev, int link_speed)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
port->qos.link_speed = link_speed;
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_link_state_update(ndev);
am65_cpsw_est_link_up(ndev, link_speed);
port->qos.link_down_time = 0;
}
void am65_cpsw_qos_link_down(struct net_device *ndev)
{
struct am65_cpsw_port *port = am65_ndev_to_port(ndev);
port->qos.link_speed = SPEED_UNKNOWN;
am65_cpsw_tx_pn_shaper_apply(port);
am65_cpsw_iet_link_state_update(ndev);
if (!port->qos.link_down_time)
port->qos.link_down_time = ktime_get();
}