1
0
mirror of https://github.com/ansible/awx.git synced 2024-10-30 22:21:13 +03:00
awx/tools/scripts/firehose.py

327 lines
12 KiB
Python
Raw Normal View History

#! /usr/bin/env awx-python
#
# !!! READ BEFORE POINTING THIS AT YOUR FOOT !!!
#
# This script attempts to connect to an AWX database and insert (by default)
# a billion main_jobevent rows as screamingly fast as possible.
#
# tl;dr for best results, feed it high IOPS.
#
# this script exists *solely* for the purpose of generating *test* data very
# quickly; do *not* point this at a production installation or you *will* be
# very unhappy
#
# Before running this script, you should give postgres *GOBS* of memory
# and disk so it can create indexes and constraints as quickly as possible.
# In fact, it's probably not smart to attempt this on anything less than 8 core,
# 32GB of RAM, and tens of thousands of IOPS.
#
# Also, a billion events is a *lot* of data; make sure you've
# provisioned *at least* 750GB of disk space
#
# if you want this script to complete in a few hours, a good starting point
# is something like m5.4xlarge w/ 1TB provisioned IOPS SSD (io1)
#
import argparse
import datetime
import itertools
import json
import multiprocessing
import pkg_resources
import random
import subprocess
import sys
from io import StringIO
from time import time
from uuid import uuid4
import psycopg2
from django import setup as setup_django
from django.db import connection
from django.db.models.sql import InsertQuery
from django.utils.timezone import now
db = json.loads(
subprocess.check_output(
['awx-manage', 'print_settings', 'DATABASES', '--format', 'json']
)
)
name = db['DATABASES']['default']['NAME']
user = db['DATABASES']['default']['USER']
pw = db['DATABASES']['default']['PASSWORD']
host = db['DATABASES']['default']['HOST']
dsn = f'dbname={name} user={user} password={pw} host={host}'
u = str(uuid4())
STATUS_OPTIONS = ('successful', 'failed', 'error', 'canceled')
EVENT_OPTIONS = ('runner_on_ok', 'runner_on_failed', 'runner_on_changed', 'runner_on_skipped', 'runner_on_unreachable')
MODULE_OPTIONS = ('yup', 'stonchronize', 'templotz', 'deboog')
2020-05-28 20:00:37 +03:00
class YieldedRows(StringIO):
def __init__(self, job_id, rows, created_stamp, modified_stamp, *args, **kwargs):
self.rows = rows
self.rowlist = []
for (event, module) in itertools.product(EVENT_OPTIONS, MODULE_OPTIONS):
event_data_json = {
"task_action": module,
"name": "Do a {} thing".format(module),
"task": "Do a {} thing".format(module)
}
row = "\t".join([
f"{created_stamp}",
f"{modified_stamp}",
event,
json.dumps(event_data_json),
str(event in ('runner_on_failed', 'runner_on_unreachable')),
str(event == 'runner_on_changed'),
"localhost",
"Example Play",
"Hello World",
"",
"0",
"1",
job_id,
u,
"",
"1",
"hello_world.yml",
"0",
"X",
"1",
]) + '\n'
self.rowlist.append(row)
def read(self, x):
if self.rows <= 0:
self.close()
return ''
self.rows -= 1000
return self.rowlist[random.randrange(len(self.rowlist))] * 1000
def firehose(job, count, created_stamp, modified_stamp):
conn = psycopg2.connect(dsn)
f = YieldedRows(job, count, created_stamp, modified_stamp)
with conn.cursor() as cursor:
cursor.copy_expert((
'COPY '
'main_jobevent('
'created, modified, event, event_data, failed, changed, '
'host_name, play, role, task, counter, host_id, job_id, uuid, '
'parent_uuid, end_line, playbook, start_line, stdout, verbosity'
') '
'FROM STDIN'
), f, size=1024 * 1000)
conn.commit()
conn.close()
def cleanup(sql):
print(sql)
conn = psycopg2.connect(dsn)
with conn.cursor() as cursor:
cursor.execute(sql)
conn.commit()
conn.close()
def generate_jobs(jobs, batch_size, time_delta):
print(f'inserting {jobs} job(s)')
sys.path.insert(0, pkg_resources.get_distribution('awx').module_path)
from awx import prepare_env
prepare_env()
setup_django()
from awx.main.models import UnifiedJob, Job, JobTemplate
fields = list(set(Job._meta.fields) - set(UnifiedJob._meta.fields))
job_field_names = set([f.attname for f in fields])
# extra unified job field names from base class
for field_name in ('name', 'created_by_id', 'modified_by_id'):
job_field_names.add(field_name)
jt_count = JobTemplate.objects.count()
def make_batch(N, jt_pos=0):
jt = None
while not jt:
try:
jt = JobTemplate.objects.all()[jt_pos % jt_count]
except IndexError as e:
# seems to happen every now and then due to some race condition
print('Warning: IndexError on {} JT, error: {}'.format(
jt_pos % jt_count, e
))
jt_pos += 1
jt_defaults = dict(
(f.attname, getattr(jt, f.attname))
for f in JobTemplate._meta.get_fields()
if f.concrete and f.attname in job_field_names and getattr(jt, f.attname)
)
jt_defaults['job_template_id'] = jt.pk
jt_defaults['unified_job_template_id'] = jt.pk # populated by save method
jobs = [
Job(
status=STATUS_OPTIONS[i % len(STATUS_OPTIONS)],
2020-05-28 20:00:37 +03:00
started=now() - time_delta, created=now() - time_delta, modified=now() - time_delta, finished=now() - time_delta,
elapsed=0., **jt_defaults)
for i in range(N)
]
ujs = UnifiedJob.objects.bulk_create(jobs)
query = InsertQuery(Job)
query.insert_values(fields, ujs)
with connection.cursor() as cursor:
query, params = query.sql_with_params()[0]
cursor.execute(query, params)
return ujs[-1], jt_pos
i = 1
jt_pos = 0
s = time()
while jobs > 0:
s_loop = time()
print('running batch {}, runtime {}'.format(i, time() - s))
created, jt_pos = make_batch(min(jobs, batch_size), jt_pos)
print('took {}'.format(time() - s_loop))
i += 1
jobs -= batch_size
return created
def generate_events(events, job, time_delta):
conn = psycopg2.connect(dsn)
cursor = conn.cursor()
print('removing indexes and constraints')
created_time = datetime.datetime.today() - time_delta - datetime.timedelta(seconds=5)
modified_time = datetime.datetime.today() - time_delta
created_stamp = created_time.strftime("%Y-%m-%d %H:%M:%S")
modified_stamp = modified_time.strftime("%Y-%m-%d %H:%M:%S")
# get all the indexes for main_jobevent
try:
# disable WAL to drastically increase write speed
# we're not doing replication, and the goal of this script is to just
# insert data as quickly as possible without concern for the risk of
# data loss on crash
# see: https://www.compose.com/articles/faster-performance-with-unlogged-tables-in-postgresql/
cursor.execute('ALTER TABLE main_jobevent SET UNLOGGED')
cursor.execute("SELECT indexname, indexdef FROM pg_indexes WHERE tablename='main_jobevent' AND indexname != 'main_jobevent_pkey1';")
indexes = cursor.fetchall()
cursor.execute(
"SELECT conname, contype, pg_catalog.pg_get_constraintdef(r.oid, true) as condef FROM pg_catalog.pg_constraint r WHERE r.conrelid = 'main_jobevent'::regclass AND conname != 'main_jobevent_pkey1';" # noqa
)
constraints = cursor.fetchall()
# drop all indexes for speed
for indexname, indexdef in indexes:
cursor.execute(f'DROP INDEX IF EXISTS {indexname}')
print(f'DROP INDEX IF EXISTS {indexname}')
for conname, contype, condef in constraints:
cursor.execute(f'ALTER TABLE main_jobevent DROP CONSTRAINT IF EXISTS {conname}')
print(f'ALTER TABLE main_jobevent DROP CONSTRAINT IF EXISTS {conname}')
conn.commit()
print(f'attaching {events} events to job {job}')
cores = multiprocessing.cpu_count()
workers = []
num_procs = min(cores, events)
num_events = events // num_procs
if num_events <= 1:
num_events = events
for i in range(num_procs):
p = multiprocessing.Process(target=firehose, args=(job, num_events, created_stamp, modified_stamp))
p.daemon = True
workers.append(p)
for w in workers:
w.start()
for w in workers:
w.join()
workers = []
print('generating unique start/end line counts')
cursor.execute('CREATE SEQUENCE IF NOT EXISTS firehose_seq;')
cursor.execute('CREATE SEQUENCE IF NOT EXISTS firehose_line_seq MINVALUE 0;')
cursor.execute('ALTER SEQUENCE firehose_seq RESTART WITH 1;')
cursor.execute('ALTER SEQUENCE firehose_line_seq RESTART WITH 0;')
cursor.execute("SELECT nextval('firehose_line_seq')")
conn.commit()
cursor.execute(
"UPDATE main_jobevent SET "
"counter=nextval('firehose_seq')::integer,"
"start_line=nextval('firehose_line_seq')::integer,"
"end_line=currval('firehose_line_seq')::integer + 2 "
f"WHERE job_id={job}"
)
conn.commit()
finally:
# restore all indexes
print(datetime.datetime.utcnow().isoformat())
print('restoring indexes and constraints (this may take awhile)')
workers = []
for indexname, indexdef in indexes:
p = multiprocessing.Process(target=cleanup, args=(indexdef,))
p.daemon = True
workers.append(p)
for w in workers:
w.start()
for w in workers:
w.join()
for conname, contype, condef in constraints:
if contype == 'c':
# if there are any check constraints, don't add them back
# (historically, these are > 0 checks, which are basically
# worthless, because Ansible doesn't emit counters, line
# numbers, verbosity, etc... < 0)
continue
sql = f'ALTER TABLE main_jobevent ADD CONSTRAINT {conname} {condef}'
cleanup(sql)
conn.close()
print(datetime.datetime.utcnow().isoformat())
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--jobs', type=int, help='Number of jobs to create.',
default=1000000) # 1M by default
parser.add_argument(
'--events', type=int, help='Number of events to create.',
default=1000000000) # 1B by default
parser.add_argument(
'--batch-size', type=int, help='Number of jobs to create in a single batch.',
default=1000)
parser.add_argument(
'--days-delta', type=int, help='Number of days old to create the events. Defaults to 0.',
default=0)
parser.add_argument(
'--hours-delta', type=int, help='Number of hours old to create the events. Defaults to 1.',
default=1)
params = parser.parse_args()
jobs = params.jobs
time_delta = params.days_delta, params.hours_delta
time_delta = datetime.timedelta(days=time_delta[0], hours=time_delta[1], seconds=0)
events = params.events
batch_size = params.batch_size
print(datetime.datetime.utcnow().isoformat())
created = generate_jobs(jobs, batch_size=batch_size, time_delta=time_delta)
generate_events(events, str(created.pk), time_delta)