mirror of
https://github.com/ansible/awx.git
synced 2024-10-30 22:21:13 +03:00
327 lines
12 KiB
Python
Executable File
327 lines
12 KiB
Python
Executable File
#! /usr/bin/env awx-python
|
|
|
|
#
|
|
# !!! READ BEFORE POINTING THIS AT YOUR FOOT !!!
|
|
#
|
|
# This script attempts to connect to an AWX database and insert (by default)
|
|
# a billion main_jobevent rows as screamingly fast as possible.
|
|
#
|
|
# tl;dr for best results, feed it high IOPS.
|
|
#
|
|
# this script exists *solely* for the purpose of generating *test* data very
|
|
# quickly; do *not* point this at a production installation or you *will* be
|
|
# very unhappy
|
|
#
|
|
# Before running this script, you should give postgres *GOBS* of memory
|
|
# and disk so it can create indexes and constraints as quickly as possible.
|
|
# In fact, it's probably not smart to attempt this on anything less than 8 core,
|
|
# 32GB of RAM, and tens of thousands of IOPS.
|
|
#
|
|
# Also, a billion events is a *lot* of data; make sure you've
|
|
# provisioned *at least* 750GB of disk space
|
|
#
|
|
# if you want this script to complete in a few hours, a good starting point
|
|
# is something like m5.4xlarge w/ 1TB provisioned IOPS SSD (io1)
|
|
#
|
|
|
|
import argparse
|
|
import datetime
|
|
import itertools
|
|
import json
|
|
import multiprocessing
|
|
import pkg_resources
|
|
import random
|
|
import subprocess
|
|
import sys
|
|
from io import StringIO
|
|
from time import time
|
|
from uuid import uuid4
|
|
|
|
import psycopg2
|
|
|
|
from django import setup as setup_django
|
|
from django.db import connection
|
|
from django.db.models.sql import InsertQuery
|
|
from django.utils.timezone import now
|
|
|
|
db = json.loads(
|
|
subprocess.check_output(
|
|
['awx-manage', 'print_settings', 'DATABASES', '--format', 'json']
|
|
)
|
|
)
|
|
name = db['DATABASES']['default']['NAME']
|
|
user = db['DATABASES']['default']['USER']
|
|
pw = db['DATABASES']['default']['PASSWORD']
|
|
host = db['DATABASES']['default']['HOST']
|
|
|
|
dsn = f'dbname={name} user={user} password={pw} host={host}'
|
|
|
|
u = str(uuid4())
|
|
|
|
STATUS_OPTIONS = ('successful', 'failed', 'error', 'canceled')
|
|
|
|
EVENT_OPTIONS = ('runner_on_ok', 'runner_on_failed', 'runner_on_changed', 'runner_on_skipped', 'runner_on_unreachable')
|
|
|
|
MODULE_OPTIONS = ('yup', 'stonchronize', 'templotz', 'deboog')
|
|
|
|
|
|
class YieldedRows(StringIO):
|
|
|
|
def __init__(self, job_id, rows, created_stamp, modified_stamp, *args, **kwargs):
|
|
self.rows = rows
|
|
self.rowlist = []
|
|
for (event, module) in itertools.product(EVENT_OPTIONS, MODULE_OPTIONS):
|
|
event_data_json = {
|
|
"task_action": module,
|
|
"name": "Do a {} thing".format(module),
|
|
"task": "Do a {} thing".format(module)
|
|
}
|
|
row = "\t".join([
|
|
f"{created_stamp}",
|
|
f"{modified_stamp}",
|
|
event,
|
|
json.dumps(event_data_json),
|
|
str(event in ('runner_on_failed', 'runner_on_unreachable')),
|
|
str(event == 'runner_on_changed'),
|
|
"localhost",
|
|
"Example Play",
|
|
"Hello World",
|
|
"",
|
|
"0",
|
|
"1",
|
|
job_id,
|
|
u,
|
|
"",
|
|
"1",
|
|
"hello_world.yml",
|
|
"0",
|
|
"X",
|
|
"1",
|
|
]) + '\n'
|
|
self.rowlist.append(row)
|
|
|
|
def read(self, x):
|
|
if self.rows <= 0:
|
|
self.close()
|
|
return ''
|
|
self.rows -= 1000
|
|
return self.rowlist[random.randrange(len(self.rowlist))] * 1000
|
|
|
|
|
|
def firehose(job, count, created_stamp, modified_stamp):
|
|
conn = psycopg2.connect(dsn)
|
|
f = YieldedRows(job, count, created_stamp, modified_stamp)
|
|
with conn.cursor() as cursor:
|
|
cursor.copy_expert((
|
|
'COPY '
|
|
'main_jobevent('
|
|
'created, modified, event, event_data, failed, changed, '
|
|
'host_name, play, role, task, counter, host_id, job_id, uuid, '
|
|
'parent_uuid, end_line, playbook, start_line, stdout, verbosity'
|
|
') '
|
|
'FROM STDIN'
|
|
), f, size=1024 * 1000)
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
|
|
def cleanup(sql):
|
|
print(sql)
|
|
conn = psycopg2.connect(dsn)
|
|
with conn.cursor() as cursor:
|
|
cursor.execute(sql)
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
|
|
def generate_jobs(jobs, batch_size, time_delta):
|
|
print(f'inserting {jobs} job(s)')
|
|
sys.path.insert(0, pkg_resources.get_distribution('awx').module_path)
|
|
from awx import prepare_env
|
|
prepare_env()
|
|
setup_django()
|
|
|
|
from awx.main.models import UnifiedJob, Job, JobTemplate
|
|
fields = list(set(Job._meta.fields) - set(UnifiedJob._meta.fields))
|
|
job_field_names = set([f.attname for f in fields])
|
|
# extra unified job field names from base class
|
|
for field_name in ('name', 'created_by_id', 'modified_by_id'):
|
|
job_field_names.add(field_name)
|
|
jt_count = JobTemplate.objects.count()
|
|
|
|
def make_batch(N, jt_pos=0):
|
|
jt = None
|
|
while not jt:
|
|
try:
|
|
jt = JobTemplate.objects.all()[jt_pos % jt_count]
|
|
except IndexError as e:
|
|
# seems to happen every now and then due to some race condition
|
|
print('Warning: IndexError on {} JT, error: {}'.format(
|
|
jt_pos % jt_count, e
|
|
))
|
|
jt_pos += 1
|
|
jt_defaults = dict(
|
|
(f.attname, getattr(jt, f.attname))
|
|
for f in JobTemplate._meta.get_fields()
|
|
if f.concrete and f.attname in job_field_names and getattr(jt, f.attname)
|
|
)
|
|
jt_defaults['job_template_id'] = jt.pk
|
|
jt_defaults['unified_job_template_id'] = jt.pk # populated by save method
|
|
|
|
jobs = [
|
|
Job(
|
|
status=STATUS_OPTIONS[i % len(STATUS_OPTIONS)],
|
|
started=now() - time_delta, created=now() - time_delta, modified=now() - time_delta, finished=now() - time_delta,
|
|
elapsed=0., **jt_defaults)
|
|
for i in range(N)
|
|
]
|
|
ujs = UnifiedJob.objects.bulk_create(jobs)
|
|
query = InsertQuery(Job)
|
|
query.insert_values(fields, ujs)
|
|
with connection.cursor() as cursor:
|
|
query, params = query.sql_with_params()[0]
|
|
cursor.execute(query, params)
|
|
return ujs[-1], jt_pos
|
|
|
|
i = 1
|
|
jt_pos = 0
|
|
s = time()
|
|
while jobs > 0:
|
|
s_loop = time()
|
|
print('running batch {}, runtime {}'.format(i, time() - s))
|
|
created, jt_pos = make_batch(min(jobs, batch_size), jt_pos)
|
|
print('took {}'.format(time() - s_loop))
|
|
i += 1
|
|
jobs -= batch_size
|
|
return created
|
|
|
|
|
|
def generate_events(events, job, time_delta):
|
|
conn = psycopg2.connect(dsn)
|
|
cursor = conn.cursor()
|
|
print('removing indexes and constraints')
|
|
created_time = datetime.datetime.today() - time_delta - datetime.timedelta(seconds=5)
|
|
modified_time = datetime.datetime.today() - time_delta
|
|
created_stamp = created_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
modified_stamp = modified_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
# get all the indexes for main_jobevent
|
|
try:
|
|
# disable WAL to drastically increase write speed
|
|
# we're not doing replication, and the goal of this script is to just
|
|
# insert data as quickly as possible without concern for the risk of
|
|
# data loss on crash
|
|
# see: https://www.compose.com/articles/faster-performance-with-unlogged-tables-in-postgresql/
|
|
cursor.execute('ALTER TABLE main_jobevent SET UNLOGGED')
|
|
|
|
cursor.execute("SELECT indexname, indexdef FROM pg_indexes WHERE tablename='main_jobevent' AND indexname != 'main_jobevent_pkey1';")
|
|
indexes = cursor.fetchall()
|
|
|
|
cursor.execute(
|
|
"SELECT conname, contype, pg_catalog.pg_get_constraintdef(r.oid, true) as condef FROM pg_catalog.pg_constraint r WHERE r.conrelid = 'main_jobevent'::regclass AND conname != 'main_jobevent_pkey1';" # noqa
|
|
)
|
|
constraints = cursor.fetchall()
|
|
|
|
# drop all indexes for speed
|
|
for indexname, indexdef in indexes:
|
|
cursor.execute(f'DROP INDEX IF EXISTS {indexname}')
|
|
print(f'DROP INDEX IF EXISTS {indexname}')
|
|
for conname, contype, condef in constraints:
|
|
cursor.execute(f'ALTER TABLE main_jobevent DROP CONSTRAINT IF EXISTS {conname}')
|
|
print(f'ALTER TABLE main_jobevent DROP CONSTRAINT IF EXISTS {conname}')
|
|
conn.commit()
|
|
|
|
print(f'attaching {events} events to job {job}')
|
|
cores = multiprocessing.cpu_count()
|
|
workers = []
|
|
|
|
num_procs = min(cores, events)
|
|
num_events = events // num_procs
|
|
if num_events <= 1:
|
|
num_events = events
|
|
|
|
for i in range(num_procs):
|
|
p = multiprocessing.Process(target=firehose, args=(job, num_events, created_stamp, modified_stamp))
|
|
p.daemon = True
|
|
workers.append(p)
|
|
|
|
for w in workers:
|
|
w.start()
|
|
|
|
for w in workers:
|
|
w.join()
|
|
|
|
workers = []
|
|
|
|
print('generating unique start/end line counts')
|
|
cursor.execute('CREATE SEQUENCE IF NOT EXISTS firehose_seq;')
|
|
cursor.execute('CREATE SEQUENCE IF NOT EXISTS firehose_line_seq MINVALUE 0;')
|
|
cursor.execute('ALTER SEQUENCE firehose_seq RESTART WITH 1;')
|
|
cursor.execute('ALTER SEQUENCE firehose_line_seq RESTART WITH 0;')
|
|
cursor.execute("SELECT nextval('firehose_line_seq')")
|
|
conn.commit()
|
|
|
|
cursor.execute(
|
|
"UPDATE main_jobevent SET "
|
|
"counter=nextval('firehose_seq')::integer,"
|
|
"start_line=nextval('firehose_line_seq')::integer,"
|
|
"end_line=currval('firehose_line_seq')::integer + 2 "
|
|
f"WHERE job_id={job}"
|
|
)
|
|
conn.commit()
|
|
finally:
|
|
# restore all indexes
|
|
print(datetime.datetime.utcnow().isoformat())
|
|
print('restoring indexes and constraints (this may take awhile)')
|
|
|
|
workers = []
|
|
for indexname, indexdef in indexes:
|
|
p = multiprocessing.Process(target=cleanup, args=(indexdef,))
|
|
p.daemon = True
|
|
workers.append(p)
|
|
|
|
for w in workers:
|
|
w.start()
|
|
|
|
for w in workers:
|
|
w.join()
|
|
|
|
for conname, contype, condef in constraints:
|
|
if contype == 'c':
|
|
# if there are any check constraints, don't add them back
|
|
# (historically, these are > 0 checks, which are basically
|
|
# worthless, because Ansible doesn't emit counters, line
|
|
# numbers, verbosity, etc... < 0)
|
|
continue
|
|
sql = f'ALTER TABLE main_jobevent ADD CONSTRAINT {conname} {condef}'
|
|
cleanup(sql)
|
|
conn.close()
|
|
print(datetime.datetime.utcnow().isoformat())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument(
|
|
'--jobs', type=int, help='Number of jobs to create.',
|
|
default=1000000) # 1M by default
|
|
parser.add_argument(
|
|
'--events', type=int, help='Number of events to create.',
|
|
default=1000000000) # 1B by default
|
|
parser.add_argument(
|
|
'--batch-size', type=int, help='Number of jobs to create in a single batch.',
|
|
default=1000)
|
|
parser.add_argument(
|
|
'--days-delta', type=int, help='Number of days old to create the events. Defaults to 0.',
|
|
default=0)
|
|
parser.add_argument(
|
|
'--hours-delta', type=int, help='Number of hours old to create the events. Defaults to 1.',
|
|
default=1)
|
|
params = parser.parse_args()
|
|
jobs = params.jobs
|
|
time_delta = params.days_delta, params.hours_delta
|
|
time_delta = datetime.timedelta(days=time_delta[0], hours=time_delta[1], seconds=0)
|
|
events = params.events
|
|
batch_size = params.batch_size
|
|
print(datetime.datetime.utcnow().isoformat())
|
|
created = generate_jobs(jobs, batch_size=batch_size, time_delta=time_delta)
|
|
generate_events(events, str(created.pk), time_delta)
|