2013-05-03 18:25:37 +04:00
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
< html xmlns = "http://www.w3.org/1999/xhtml" >
2008-04-23 21:08:31 +04:00
< body >
< h1 > Domain XML format< / h1 >
2008-05-08 18:20:07 +04:00
< ul id = "toc" > < / ul >
< p >
This section describes the XML format used to represent domains, there are
variations on the format based on the kind of domains run and the options
used to launch them. For hypervisor specific details consult the
< a href = "drivers.html" > driver docs< / a >
< / p >
< h2 > < a name = "elements" > Element and attribute overview< / a > < / h2 >
< p >
The root element required for all virtual machines is
named < code > domain< / code > . It has two attributes, the
< code > type< / code > specifies the hypervisor used for running
the domain. The allowed values are driver specific, but
include "xen", "kvm", "qemu", "lxc" and "kqemu". The
second attribute is < code > id< / code > which is a unique
integer identifier for the running guest machine. Inactive
machines have no id value.
< / p >
< h3 > < a name = "elementsMetadata" > General metadata< / a > < / h3 >
2010-02-04 17:27:52 +03:00
< pre >
< domain type='xen' id='3'>
< name> fv0< /name>
< uuid> 4dea22b31d52d8f32516782e98ab3fa0< /uuid>
2012-02-01 17:03:49 +04:00
< title> A short description - title - of the domain< /title>
2010-02-23 00:06:04 +03:00
< description> Some human readable description< /description>
2012-01-25 04:26:38 +04:00
< metadata>
< app1:foo xmlns:app1="http://app1.org/app1/"> ..< /app1:foo>
< app2:bar xmlns:app2="http://app1.org/app2/"> ..< /app2:bar>
< /metadata>
2010-02-04 17:27:52 +03:00
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > name< / code > < / dt >
< dd > The content of the < code > name< / code > element provides
2009-11-06 18:04:19 +03:00
a short name for the virtual machine. This name should
consist only of alpha-numeric characters and is required
to be unique within the scope of a single host. It is
often used to form the filename for storing the persistent
configuration file. < span class = "since" > Since 0.0.1< / span > < / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > uuid< / code > < / dt >
< dd > The content of the < code > uuid< / code > element provides
2009-11-06 18:04:19 +03:00
a globally unique identifier for the virtual machine.
2011-07-06 23:49:28 +04:00
The format must be RFC 4122 compliant,
eg < code > 3e3fce45-4f53-4fa7-bb32-11f34168b82b< / code > .
2009-11-06 18:04:19 +03:00
If omitted when defining/creating a new machine, a random
2011-01-18 23:41:55 +03:00
UUID is generated. It is also possible to provide the UUID
via a < a href = "#elementsSysinfo" > < code > sysinfo< / code > < / a >
specification. < span class = "since" > Since 0.0.1, sysinfo
since 0.8.7< / span > < / dd >
2010-02-23 00:06:04 +03:00
2012-02-01 17:03:49 +04:00
< dt > < code > title< / code > < / dt >
< dd > The optional element < code > title< / code > provides space for a
short description of the domain. The title should not contain
any newlines. < span class = "since" > Since 0.9.10< / span > .< / dd >
2010-02-23 00:06:04 +03:00
< dt > < code > description< / code > < / dt >
< dd > The content of the < code > description< / code > element provides a
2012-01-25 04:26:38 +04:00
human readable description of the virtual machine. This data is not
used by libvirt in any way, it can contain any information the user
wants. < span class = "since" > Since 0.7.2< / span > < / dd >
< dt > < code > metadata< / code > < / dt >
< dd > The < code > metadata< / code > node can be used by applications
to store custom metadata in the form of XML
nodes/trees. Applications must use custom namespaces on their
XML nodes/trees, with only one top-level element per namespace
(if the application needs structure, they should have
sub-elements to their namespace
element). < span class = "since" > Since 0.9.10< / span > < / dd >
2012-02-01 17:03:49 +04:00
< / dl >
2008-05-08 18:20:07 +04:00
< h3 > < a name = "elementsOS" > Operating system booting< / a > < / h3 >
< p >
There are a number of different ways to boot virtual machines
each with their own pros and cons.
< / p >
< h4 > < a name = "elementsOSBIOS" > BIOS bootloader< / a > < / h4 >
< p >
Booting via the BIOS is available for hypervisors supporting
full virtualization. In this case the BIOS has a boot order
priority (floppy, harddisk, cdrom, network) determining where
to obtain/find the boot image.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< os>
< type> hvm< /type>
< loader> /usr/lib/xen/boot/hvmloader< /loader>
< boot dev='hd'/>
2010-07-26 18:28:58 +04:00
< boot dev='cdrom'/>
< bootmenu enable='yes'/>
2011-01-18 23:41:55 +03:00
< smbios mode='sysinfo'/>
2012-09-18 14:30:52 +04:00
< bios useserial='yes' rebootTimeout='0'/>
2010-02-04 17:27:52 +03:00
< /os>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > type< / code > < / dt >
< dd > The content of the < code > type< / code > element specifies the
2009-11-06 18:04:19 +03:00
type of operating system to be booted in the virtual machine.
< code > hvm< / code > indicates that the OS is one designed to run
on bare metal, so requires full virtualization. < code > linux< / code >
(badly named!) refers to an OS that supports the Xen 3 hypervisor
guest ABI. There are also two optional attributes, < code > arch< / code >
2011-07-06 23:49:28 +04:00
specifying the CPU architecture to virtualization,
and < code > machine< / code > referring to the machine
type. The < a href = "formatcaps.html" > Capabilities XML< / a >
provides details on allowed values for
these. < span class = "since" > Since 0.0.1< / span > < / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > loader< / code > < / dt >
< dd > The optional < code > loader< / code > tag refers to a firmware blob
2014-04-29 11:47:26 +04:00
used to assist the domain creation process. It is used by Xen
fully virtualized domains as well as setting the QEMU BIOS file
path for QEMU/KVM domains. < span class = "since" > Xen since 0.1.0,
QEMU/KVM since 0.9.12< / span > < / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > boot< / code > < / dt >
< dd > The < code > dev< / code > attribute takes one of the values "fd", "hd",
2009-11-06 18:04:19 +03:00
"cdrom" or "network" and is used to specify the next boot device
to consider. The < code > boot< / code > element can be repeated multiple
2012-02-03 16:33:36 +04:00
times to setup a priority list of boot devices to try in turn.
Multiple devices of the same type are sorted according to their
targets while preserving the order of buses. After defining the
domain, its XML configuration returned by libvirt (through
virDomainGetXMLDesc) lists devices in the sorted order. Once sorted,
the first device is marked as bootable. Thus, e.g., a domain
configured to boot from "hd" with vdb, hda, vda, and hdc disks
assigned to it will boot from vda (the sorted list is vda, vdb, hda,
hdc). Similar domain with hdc, vda, vdb, and hda disks will boot from
hda (sorted disks are: hda, hdc, vda, vdb). It can be tricky to
configure in the desired way, which is why per-device boot elements
(see < a href = "#elementsDisks" > disks< / a > ,
2011-02-03 15:06:21 +03:00
< a href = "#elementsNICS" > network interfaces< / a > , and
2013-06-28 21:06:30 +04:00
< a href = "#elementsHostDev" > USB and PCI devices< / a > sections below) were
2012-02-03 16:33:36 +04:00
introduced and they are the preferred way providing full control over
booting order. The < code > boot< / code > element and per-device boot
elements are mutually exclusive. < span class = "since" > Since 0.1.3,
per-device boot since 0.8.8< / span >
2008-05-08 18:20:07 +04:00
< / dd >
2010-07-26 18:28:58 +04:00
< dt > < code > bootmenu< / code > < / dt >
< dd > Whether or not to enable an interactive boot menu prompt on guest
startup. The < code > enable< / code > attribute can be either "yes" or "no".
If not specified, the hypervisor default is used. < span class = "since" >
Since 0.8.3< / span >
< / dd >
2011-01-18 23:41:55 +03:00
< dt > < code > smbios< / code > < / dt >
< dd > How to populate SMBIOS information visible in the guest.
The < code > mode< / code > attribute must be specified, and is either
"emulate" (let the hypervisor generate all values), "host" (copy
all of Block 0 and Block 1, except for the UUID, from the host's
2011-02-08 00:48:24 +03:00
SMBIOS values;
the < a href = "html/libvirt-libvirt.html#virConnectGetSysinfo" >
< code > virConnectGetSysinfo< / code > < / a > call can be
used to see what values are copied), or "sysinfo" (use the values in
2011-01-18 23:41:55 +03:00
the < a href = "#elementsSysinfo" > sysinfo< / a > element). If not
specified, the hypervisor default is used. < span class = "since" >
Since 0.8.7< / span >
< / dd >
2011-07-08 11:56:17 +04:00
< dt > < code > bios< / code > < / dt >
< dd > This element has attribute < code > useserial< / code > with possible
values < code > yes< / code > or < code > no< / code > . It enables or disables
Serial Graphics Adapter which allows users to see BIOS messages
on a serial port. Therefore, one needs to have
< a href = "#elementCharSerial" > serial port< / a > defined.
2012-09-18 14:30:52 +04:00
< span class = "since" > Since 0.9.4< / span > .
< span class = "since" > Since 0.10.2 (QEMU only)< / span > there is
another attribute, < code > rebootTimeout< / code > that controls
whether and after how long the guest should start booting
again in case the boot fails (according to BIOS). The value is
in milliseconds with maximum of < code > 65535< / code > and special
value < code > -1< / code > disables the reboot.
2013-05-03 18:25:37 +04:00
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
< h4 > < a name = "elementsOSBootloader" > Host bootloader< / a > < / h4 >
< p >
Hypervisors employing paravirtualization do not usually emulate
a BIOS, and instead the host is responsible to kicking off the
2008-08-08 14:24:14 +04:00
operating system boot. This may use a pseudo-bootloader in the
2008-05-08 18:20:07 +04:00
host to provide an interface to choose a kernel for the guest.
An example is < code > pygrub< / code > with Xen.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< bootloader> /usr/bin/pygrub< /bootloader>
< bootloader_args> --append single< /bootloader_args>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > bootloader< / code > < / dt >
< dd > The content of the < code > bootloader< / code > element provides
2009-11-06 18:04:19 +03:00
a fully qualified path to the bootloader executable in the
host OS. This bootloader will be run to choose which kernel
to boot. The required output of the bootloader is dependent
on the hypervisor in use. < span class = "since" > Since 0.1.0< / span > < / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > bootloader_args< / code > < / dt >
< dd > The optional < code > bootloader_args< / code > element allows
2009-11-06 18:04:19 +03:00
command line arguments to be passed to the bootloader.
< span class = "since" > Since 0.2.3< / span >
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
< h4 > < a name = "elementsOSKernel" > Direct kernel boot< / a > < / h4 >
< p >
When installing a new guest OS it is often useful to boot directly
from a kernel and initrd stored in the host OS, allowing command
line arguments to be passed directly to the installer. This capability
is usually available for both para and full virtualized guests.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< os>
< type> hvm< /type>
< loader> /usr/lib/xen/boot/hvmloader< /loader>
< kernel> /root/f8-i386-vmlinuz< /kernel>
< initrd> /root/f8-i386-initrd< /initrd>
< cmdline> console=ttyS0 ks=http://example.com/f8-i386/os/< /cmdline>
2013-03-14 08:49:42 +04:00
< dtb> /root/ppc.dtb< /dtb>
2010-02-04 17:27:52 +03:00
< /os>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > type< / code > < / dt >
< dd > This element has the same semantics as described earlier in the
2009-11-06 18:04:19 +03:00
< a href = "#elementsOSBIOS" > BIOS boot section< / a > < / dd >
2008-05-22 18:57:32 +04:00
< dt > < code > loader< / code > < / dt >
2008-05-08 18:20:07 +04:00
< dd > This element has the same semantics as described earlier in the
2009-11-06 18:04:19 +03:00
< a href = "#elementsOSBIOS" > BIOS boot section< / a > < / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > kernel< / code > < / dt >
< dd > The contents of this element specify the fully-qualified path
2009-11-06 18:04:19 +03:00
to the kernel image in the host OS.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > initrd< / code > < / dt >
< dd > The contents of this element specify the fully-qualified path
2009-11-06 18:04:19 +03:00
to the (optional) ramdisk image in the host OS.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > cmdline< / code > < / dt >
< dd > The contents of this element specify arguments to be passed to
2013-09-10 22:10:55 +04:00
the kernel (or installer) at boot time. This is often used to
2009-11-06 18:04:19 +03:00
specify an alternate primary console (eg serial port), or the
installation media source / kickstart file< / dd >
2013-03-14 08:49:42 +04:00
< dt > < code > dtb< / code > < / dt >
< dd > The contents of this element specify the fully-qualified path
to the (optional) device tree binary (dtb) image in the host OS.
< span class = "since" > Since 1.0.4< / span > < / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2013-09-10 13:00:15 +04:00
< h4 > < a name = "elementsOSContainer" > Container boot< / a > < / h4 >
2012-03-26 21:09:31 +04:00
< p >
When booting a domain using container based virtualization, instead
of a kernel / boot image, a path to the init binary is required, using
the < code > init< / code > element. By default this will be launched with
no arguments. To specify the initial argv, use the < code > initarg< / code >
element, repeated as many time as is required. The < code > cmdline< / code >
element, if set will be used to provide an equivalent to < code > /proc/cmdline< / code >
2013-10-21 05:35:11 +04:00
but will not affect init argv.
2012-03-26 21:09:31 +04:00
< / p >
< pre >
< os>
< type arch='x86_64'> exe< /type>
< init> /bin/systemd< /init>
< initarg> --unit< /initarg>
< initarg> emergency.service< /initarg>
< /os>
< / pre >
2013-06-07 11:12:18 +04:00
< p >
2014-02-10 06:37:35 +04:00
If you want to enable user namespace, set the < code > idmap< / code > element.
The < code > uid< / code > and < code > gid< / code > elements have three attributes:
2013-06-07 11:12:18 +04:00
< / p >
< dl >
< dt > < code > start< / code > < / dt >
2014-02-10 06:37:35 +04:00
< dd > First user ID in container.< / dd >
2013-06-07 11:12:18 +04:00
< dt > < code > target< / code > < / dt >
2014-02-10 06:37:35 +04:00
< dd > The first user ID in container will be mapped to this target user
ID in host.< / dd >
2013-06-07 11:12:18 +04:00
< dt > < code > count< / code > < / dt >
2014-02-10 06:37:35 +04:00
< dd > How many users in container are allowed to map to host's user.< / dd >
2013-06-07 11:12:18 +04:00
< / dl >
< pre >
< idmap>
< uid start='0' target='1000' count='10'/>
< gid start='0' target='1000' count='10'/>
< /idmap>
< / pre >
2011-01-18 23:41:55 +03:00
< h3 > < a name = "elementsSysinfo" > SMBIOS System Information< / a > < / h3 >
< p >
Some hypervisors allow control over what system information is
presented to the guest (for example, SMBIOS fields can be
populated by a hypervisor and inspected via
the < code > dmidecode< / code > command in the guest). The
optional < code > sysinfo< / code > element covers all such categories
of information. < span class = "since" > Since 0.8.7< / span >
< / p >
< pre >
...
< os>
< smbios mode='sysinfo'/>
...
< /os>
< sysinfo type='smbios'>
< bios>
< entry name='vendor'> LENOVO< /entry>
< /bios>
< system>
< entry name='manufacturer'> Fedora< /entry>
2013-04-26 00:42:31 +04:00
< entry name='product'> Virt-Manager< /entry>
< entry name='version'> 0.9.4< /entry>
2011-01-18 23:41:55 +03:00
< /system>
< /sysinfo>
...< / pre >
< p >
The < code > sysinfo< / code > element has a mandatory
attribute < code > type< / code > that determine the layout of
sub-elements, with supported values of:
< / p >
< dl >
< dt > < code > smbios< / code > < / dt >
< dd > Sub-elements call out specific SMBIOS values, which will
affect the guest if used in conjunction with
the < code > smbios< / code > sub-element of
the < a href = "#elementsOS" > < code > os< / code > < / a > element. Each
sub-element of < code > sysinfo< / code > names a SMBIOS block, and
within those elements can be a list of < code > entry< / code >
elements that describe a field within the block. The following
blocks and entries are recognized:
< dl >
< dt > < code > bios< / code > < / dt >
< dd >
2013-04-26 00:42:31 +04:00
This is block 0 of SMBIOS, with entry names drawn from:
< dl >
< dt > < code > vendor< / code > < / dt >
< dd > BIOS Vendor's Name< / dd >
< dt > < code > version< / code > < / dt >
< dd > BIOS Version< / dd >
< dt > < code > date< / code > < / dt >
< dd > BIOS release date. If supplied, is in either mm/dd/yy or
mm/dd/yyyy format. If the year portion of the string is
two digits, the year is assumed to be 19yy.< / dd >
< dt > < code > release< / code > < / dt >
< dd > System BIOS Major and Minor release number values
concatenated together as one string separated by
a period, for example, 10.22.< / dd >
< / dl >
2011-01-18 23:41:55 +03:00
< / dd >
< dt > < code > system< / code > < / dt >
< dd >
2013-04-26 00:42:31 +04:00
This is block 1 of SMBIOS, with entry names drawn from:
< dl >
< dt > < code > manufacturer< / code > < / dt >
< dd > Manufacturer of BIOS< / dd >
< dt > < code > product< / code > < / dt >
< dd > Product Name< / dd >
< dt > < code > version< / code > < / dt >
< dd > Version of the product< / dd >
< dt > < code > serial< / code > < / dt >
< dd > Serial number< / dd >
< dt > < code > uuid< / code > < / dt >
< dd > Universal Unique ID number. If this entry is provided
alongside a top-level
< a href = "#elementsMetadata" > < code > uuid< / code > < / a > element,
then the two values must match.< / dd >
< dt > < code > sku< / code > < / dt >
< dd > SKU number to identify a particular configuration.< / dd >
< dt > < code > family< / code > < / dt >
< dd > Identify the family a particular computer belongs to.< / dd >
< / dl >
NB: Incorrectly supplied entries in either the < code > bios< / code >
or < code > system< / code > blocks will be ignored without error.
Other than < code > uuid< / code > validation and < code > date< / code >
format checking, all values are passed as strings to the
hypervisor driver.
2011-01-18 23:41:55 +03:00
< / dd >
< / dl >
< / dd >
< / dl >
2011-07-24 06:00:26 +04:00
< h3 > < a name = "elementsCPUAllocation" > CPU Allocation< / a > < / h3 >
2008-05-08 18:20:07 +04:00
2010-02-04 17:27:52 +03:00
< pre >
2011-07-24 06:00:26 +04:00
< domain>
2010-02-04 17:27:52 +03:00
...
2012-03-08 17:36:26 +04:00
< vcpu placement='static' cpuset="1-4,^3,6" current="1"> 2< /vcpu>
2011-07-24 06:00:26 +04:00
...
< /domain>
< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > vcpu< / code > < / dt >
2010-09-28 03:36:06 +04:00
< dd > The content of this element defines the maximum number of virtual
2010-09-28 03:29:13 +04:00
CPUs allocated for the guest OS, which must be between 1 and
the maximum supported by the hypervisor. < span class = "since" > Since
0.4.4< / span > , this element can contain an optional
< code > cpuset< / code > attribute, which is a comma-separated
doc: Sort out the relationship between <vcpu>, <vcpupin>, and <emulatorpin>
These 3 elements conflicts with each other in either the doc
or the underlying codes.
Current problems:
Problem 1:
The doc shouldn't simply say "These settings are superseded
by CPU tuning. " for element <vcpu>. As except the tuning, <vcpu>
allows to specify the current, maxmum vcpu number. Apart from that,
<vcpu> also allows to specify the placement as "auto", which binds
the domain process to the advisory nodeset from numad.
Problem 2:
Doc for <vcpu> says its "cpuset" specify the physical CPUs
that the vcpus can be pinned. But it's not the truth, as
actually it only pin domain process to the specified physical
CPUs. So either it's a document bug, or code bug.
Problem 3:
Doc for <vcpupin> says it supersed "cpuset" of <vcpu>, it's
not quite correct, as each <vcpupin> specify the pinning policy
only for one vcpu. How about the ones which doesn't have
<vcpupin> specified? it says the vcpu will be pinned to all
available physical CPUs, but what's the meaning of attribute
"cpuset" of <vcpu> then?
Problem 4:
Doc for <emulatorpin> says it pin the emulator threads (domain
process in other context, perhaps another follow up patch to
cleanup the inconsistency is needed) to the physical CPUs
specified its attribute "cpuset". Which conflicts with
<vcpu>'s "cpuset". And actually in the underlying codes,
it set the affinity for domain process twice if both
"cpuset" for <vcpu> and <emulatorpin> are specified,
and <emulatorpin>'s pinning will override <vcpu>'s.
Problem 5:
When "placement" of <vcpu> is "auto" (I.e. uses numad to
get the advisory nodeset to which the domain process is
pinned to), it will also be overridden by <emulatorpin>,
This patch is trying to sort out the conflicts or bugs by:
1) Don't say <vcpu> is superseded by <cputune>
2) Keep the semanteme for "cpuset" of <vcpu> (I.e. Still says it
specify the physical CPUs the virtual CPUs). But modifying it
to mention it also set the pinning policy for domain process,
and the CPU placement of domain process specified by "cpuset"
of <vcpu> will be ingored if <emulatorpin> specified, and
similary, the CPU placement of vcpu thread will be ignored
if it has <vcpupin> specified, for vcpu which doesn't have
<vcpupin> specified, it inherits "cpuset" of <vcpu>.
3) Don't say <vcpu> is supersed by <vcpupin>. If neither <vcpupin>
nor "cpuset" of <vcpu> is specified, the vcpu will be pinned
to all available pCPUs.
4) If neither <emulatorpin> nor "cpuset" of <vcpu> is specified,
the domain process (emulator threads in the context) will be
pinned to all available pCPUs.
5) If "placement" of <vcpu> is "auto", <emulatorpin> is not allowed.
6) hotplugged vcpus will also inherit "cpuset" of <vcpu>
Codes changes according to above document changes:
1) Inherit def->cpumask for each vcpu which doesn't have <vcpupin>
specified, during parsing.
2) ping the vcpu which doesn't have <vcpupin> specified to def->cpumask
either by cgroup for sched_setaffinity(2), which is actually done
by 1).
3) Error out if "placement" == "auto", and <emulatorpin> is specified.
Otherwise, <emulatorpin> is honored, and "cpuset" of <cpuset> is
ignored.
4) Setup cgroup for each hotplugged vcpu, and setup the pinning policy
by either cgroup or sched_setaffinity(2).
5) Remove cgroup and <vcpupin> for each hot unplugged vcpu.
Patches are following (6 in total except this patch)
2012-10-12 13:50:43 +04:00
list of physical CPU numbers that domain process and virtual CPUs
can be pinned to by default. (NB: The pinning policy of domain
process and virtual CPUs can be specified separately by
< code > cputune< / code > . If attribute < code > emulatorpin< / code >
of < code > cputune< / code > is specified, < code > cpuset< / code >
2013-09-10 22:10:55 +04:00
specified by < code > vcpu< / code > here will be ignored; Similarly,
doc: Sort out the relationship between <vcpu>, <vcpupin>, and <emulatorpin>
These 3 elements conflicts with each other in either the doc
or the underlying codes.
Current problems:
Problem 1:
The doc shouldn't simply say "These settings are superseded
by CPU tuning. " for element <vcpu>. As except the tuning, <vcpu>
allows to specify the current, maxmum vcpu number. Apart from that,
<vcpu> also allows to specify the placement as "auto", which binds
the domain process to the advisory nodeset from numad.
Problem 2:
Doc for <vcpu> says its "cpuset" specify the physical CPUs
that the vcpus can be pinned. But it's not the truth, as
actually it only pin domain process to the specified physical
CPUs. So either it's a document bug, or code bug.
Problem 3:
Doc for <vcpupin> says it supersed "cpuset" of <vcpu>, it's
not quite correct, as each <vcpupin> specify the pinning policy
only for one vcpu. How about the ones which doesn't have
<vcpupin> specified? it says the vcpu will be pinned to all
available physical CPUs, but what's the meaning of attribute
"cpuset" of <vcpu> then?
Problem 4:
Doc for <emulatorpin> says it pin the emulator threads (domain
process in other context, perhaps another follow up patch to
cleanup the inconsistency is needed) to the physical CPUs
specified its attribute "cpuset". Which conflicts with
<vcpu>'s "cpuset". And actually in the underlying codes,
it set the affinity for domain process twice if both
"cpuset" for <vcpu> and <emulatorpin> are specified,
and <emulatorpin>'s pinning will override <vcpu>'s.
Problem 5:
When "placement" of <vcpu> is "auto" (I.e. uses numad to
get the advisory nodeset to which the domain process is
pinned to), it will also be overridden by <emulatorpin>,
This patch is trying to sort out the conflicts or bugs by:
1) Don't say <vcpu> is superseded by <cputune>
2) Keep the semanteme for "cpuset" of <vcpu> (I.e. Still says it
specify the physical CPUs the virtual CPUs). But modifying it
to mention it also set the pinning policy for domain process,
and the CPU placement of domain process specified by "cpuset"
of <vcpu> will be ingored if <emulatorpin> specified, and
similary, the CPU placement of vcpu thread will be ignored
if it has <vcpupin> specified, for vcpu which doesn't have
<vcpupin> specified, it inherits "cpuset" of <vcpu>.
3) Don't say <vcpu> is supersed by <vcpupin>. If neither <vcpupin>
nor "cpuset" of <vcpu> is specified, the vcpu will be pinned
to all available pCPUs.
4) If neither <emulatorpin> nor "cpuset" of <vcpu> is specified,
the domain process (emulator threads in the context) will be
pinned to all available pCPUs.
5) If "placement" of <vcpu> is "auto", <emulatorpin> is not allowed.
6) hotplugged vcpus will also inherit "cpuset" of <vcpu>
Codes changes according to above document changes:
1) Inherit def->cpumask for each vcpu which doesn't have <vcpupin>
specified, during parsing.
2) ping the vcpu which doesn't have <vcpupin> specified to def->cpumask
either by cgroup for sched_setaffinity(2), which is actually done
by 1).
3) Error out if "placement" == "auto", and <emulatorpin> is specified.
Otherwise, <emulatorpin> is honored, and "cpuset" of <cpuset> is
ignored.
4) Setup cgroup for each hotplugged vcpu, and setup the pinning policy
by either cgroup or sched_setaffinity(2).
5) Remove cgroup and <vcpupin> for each hot unplugged vcpu.
Patches are following (6 in total except this patch)
2012-10-12 13:50:43 +04:00
For virtual CPUs which has < code > vcpupin< / code > specified,
< code > cpuset< / code > specified by < code > cpuset< / code > here
will be ignored; For virtual CPUs which doesn't have
< code > vcpupin< / code > specified, it will be pinned to the physical
CPUs specified by < code > cpuset< / code > here).
Each element in that list is either a single CPU number,
2010-09-28 03:29:13 +04:00
a range of CPU numbers, or a caret followed by a CPU number to
2010-09-28 03:36:06 +04:00
be excluded from a previous range. < span class = "since" > Since
0.8.5< / span > , the optional attribute < code > current< / code > can
be used to specify whether fewer than the maximum number of
2012-03-08 17:36:26 +04:00
virtual CPUs should be enabled. < span class = "since" > Since
2012-04-16 20:40:44 +04:00
0.9.11 (QEMU and KVM only)< / span > , the optional attribute
2012-03-08 17:36:26 +04:00
< code > placement< / code > can be used to indicate the CPU placement
mode for domain process, its value can be either "static" or
numad: Set memory policy from numad advisory nodeset
Though numad will manage the memory allocation of task dynamically,
it wants management application (libvirt) to pre-set the memory
policy according to the advisory nodeset returned from querying numad,
(just like pre-bind CPU nodeset for domain process), and thus the
performance could benefit much more from it.
This patch introduces new XML tag 'placement', value 'auto' indicates
whether to set the memory policy with the advisory nodeset from numad,
and its value defaults to the value of <vcpu> placement, or 'static'
if 'nodeset' is specified. Example of the new XML tag's usage:
<numatune>
<memory placement='auto' mode='interleave'/>
</numatune>
Just like what current "numatune" does, the 'auto' numa memory policy
setting uses libnuma's API too.
If <vcpu> "placement" is "auto", and <numatune> is not specified
explicitly, a default <numatume> will be added with "placement"
set as "auto", and "mode" set as "strict".
The following XML can now fully drive numad:
1) <vcpu> placement is 'auto', no <numatune> is specified.
<vcpu placement='auto'>10</vcpu>
2) <vcpu> placement is 'auto', no 'placement' is specified for
<numatune>.
<vcpu placement='auto'>10</vcpu>
<numatune>
<memory mode='interleave'/>
</numatune>
And it's also able to control the CPU placement and memory policy
independently. e.g.
1) <vcpu> placement is 'auto', and <numatune> placement is 'static'
<vcpu placement='auto'>10</vcpu>
<numatune>
<memory mode='strict' nodeset='0-10,^7'/>
</numatune>
2) <vcpu> placement is 'static', and <numatune> placement is 'auto'
<vcpu placement='static' cpuset='0-24,^12'>10</vcpu>
<numatune>
<memory mode='interleave' placement='auto'/>
</numatume>
A follow up patch will change the XML formatting codes to always output
'placement' for <vcpu>, even it's 'static'.
2012-05-08 20:04:34 +04:00
"auto", defaults to < code > placement< / code > of < code > numatune< / code > ,
or "static" if < code > cpuset< / code > is specified. "auto" indicates
the domain process will be pinned to the advisory nodeset from querying
numad, and the value of attribute < code > cpuset< / code > will be ignored
if it's specified. If both < code > cpuset< / code > and < code > placement< / code >
are not specified, or if < code > placement< / code > is "static", but no
< code > cpuset< / code > is specified, the domain process will be pinned to
doc: Sort out the relationship between <vcpu>, <vcpupin>, and <emulatorpin>
These 3 elements conflicts with each other in either the doc
or the underlying codes.
Current problems:
Problem 1:
The doc shouldn't simply say "These settings are superseded
by CPU tuning. " for element <vcpu>. As except the tuning, <vcpu>
allows to specify the current, maxmum vcpu number. Apart from that,
<vcpu> also allows to specify the placement as "auto", which binds
the domain process to the advisory nodeset from numad.
Problem 2:
Doc for <vcpu> says its "cpuset" specify the physical CPUs
that the vcpus can be pinned. But it's not the truth, as
actually it only pin domain process to the specified physical
CPUs. So either it's a document bug, or code bug.
Problem 3:
Doc for <vcpupin> says it supersed "cpuset" of <vcpu>, it's
not quite correct, as each <vcpupin> specify the pinning policy
only for one vcpu. How about the ones which doesn't have
<vcpupin> specified? it says the vcpu will be pinned to all
available physical CPUs, but what's the meaning of attribute
"cpuset" of <vcpu> then?
Problem 4:
Doc for <emulatorpin> says it pin the emulator threads (domain
process in other context, perhaps another follow up patch to
cleanup the inconsistency is needed) to the physical CPUs
specified its attribute "cpuset". Which conflicts with
<vcpu>'s "cpuset". And actually in the underlying codes,
it set the affinity for domain process twice if both
"cpuset" for <vcpu> and <emulatorpin> are specified,
and <emulatorpin>'s pinning will override <vcpu>'s.
Problem 5:
When "placement" of <vcpu> is "auto" (I.e. uses numad to
get the advisory nodeset to which the domain process is
pinned to), it will also be overridden by <emulatorpin>,
This patch is trying to sort out the conflicts or bugs by:
1) Don't say <vcpu> is superseded by <cputune>
2) Keep the semanteme for "cpuset" of <vcpu> (I.e. Still says it
specify the physical CPUs the virtual CPUs). But modifying it
to mention it also set the pinning policy for domain process,
and the CPU placement of domain process specified by "cpuset"
of <vcpu> will be ingored if <emulatorpin> specified, and
similary, the CPU placement of vcpu thread will be ignored
if it has <vcpupin> specified, for vcpu which doesn't have
<vcpupin> specified, it inherits "cpuset" of <vcpu>.
3) Don't say <vcpu> is supersed by <vcpupin>. If neither <vcpupin>
nor "cpuset" of <vcpu> is specified, the vcpu will be pinned
to all available pCPUs.
4) If neither <emulatorpin> nor "cpuset" of <vcpu> is specified,
the domain process (emulator threads in the context) will be
pinned to all available pCPUs.
5) If "placement" of <vcpu> is "auto", <emulatorpin> is not allowed.
6) hotplugged vcpus will also inherit "cpuset" of <vcpu>
Codes changes according to above document changes:
1) Inherit def->cpumask for each vcpu which doesn't have <vcpupin>
specified, during parsing.
2) ping the vcpu which doesn't have <vcpupin> specified to def->cpumask
either by cgroup for sched_setaffinity(2), which is actually done
by 1).
3) Error out if "placement" == "auto", and <emulatorpin> is specified.
Otherwise, <emulatorpin> is honored, and "cpuset" of <cpuset> is
ignored.
4) Setup cgroup for each hotplugged vcpu, and setup the pinning policy
by either cgroup or sched_setaffinity(2).
5) Remove cgroup and <vcpupin> for each hot unplugged vcpu.
Patches are following (6 in total except this patch)
2012-10-12 13:50:43 +04:00
all the available physical CPUs.
2010-09-28 03:29:13 +04:00
< / dd >
2011-07-24 06:00:26 +04:00
< / dl >
< h3 > < a name = "elementsCPUTuning" > CPU Tuning< / a > < / h3 >
< pre >
< domain>
...
< cputune>
< vcpupin vcpu="0" cpuset="1-4,^2"/>
< vcpupin vcpu="1" cpuset="0,1"/>
< vcpupin vcpu="2" cpuset="2,3"/>
< vcpupin vcpu="3" cpuset="0,4"/>
2012-08-31 10:22:57 +04:00
< emulatorpin cpuset="1-3"/>
2011-07-24 06:00:26 +04:00
< shares> 2048< /shares>
< period> 1000000< /period>
< quota> -1< /quota>
2012-08-31 11:59:34 +04:00
< emulator_period> 1000000< /emulator_period>
< emulator_quota> -1< /emulator_quota>
2011-07-24 06:00:26 +04:00
< /cputune>
...
< /domain>
< / pre >
< dl >
2011-03-29 17:04:21 +04:00
< dt > < code > cputune< / code > < / dt >
2011-05-12 14:48:23 +04:00
< dd >
The optional < code > cputune< / code > element provides details
regarding the cpu tunable parameters for the domain.
< span class = "since" > Since 0.9.0< / span >
< / dd >
2011-03-29 17:04:21 +04:00
< dt > < code > vcpupin< / code > < / dt >
2011-05-12 14:48:23 +04:00
< dd >
2012-08-27 18:26:26 +04:00
The optional < code > vcpupin< / code > element specifies which of host's
doc: Sort out the relationship between <vcpu>, <vcpupin>, and <emulatorpin>
These 3 elements conflicts with each other in either the doc
or the underlying codes.
Current problems:
Problem 1:
The doc shouldn't simply say "These settings are superseded
by CPU tuning. " for element <vcpu>. As except the tuning, <vcpu>
allows to specify the current, maxmum vcpu number. Apart from that,
<vcpu> also allows to specify the placement as "auto", which binds
the domain process to the advisory nodeset from numad.
Problem 2:
Doc for <vcpu> says its "cpuset" specify the physical CPUs
that the vcpus can be pinned. But it's not the truth, as
actually it only pin domain process to the specified physical
CPUs. So either it's a document bug, or code bug.
Problem 3:
Doc for <vcpupin> says it supersed "cpuset" of <vcpu>, it's
not quite correct, as each <vcpupin> specify the pinning policy
only for one vcpu. How about the ones which doesn't have
<vcpupin> specified? it says the vcpu will be pinned to all
available physical CPUs, but what's the meaning of attribute
"cpuset" of <vcpu> then?
Problem 4:
Doc for <emulatorpin> says it pin the emulator threads (domain
process in other context, perhaps another follow up patch to
cleanup the inconsistency is needed) to the physical CPUs
specified its attribute "cpuset". Which conflicts with
<vcpu>'s "cpuset". And actually in the underlying codes,
it set the affinity for domain process twice if both
"cpuset" for <vcpu> and <emulatorpin> are specified,
and <emulatorpin>'s pinning will override <vcpu>'s.
Problem 5:
When "placement" of <vcpu> is "auto" (I.e. uses numad to
get the advisory nodeset to which the domain process is
pinned to), it will also be overridden by <emulatorpin>,
This patch is trying to sort out the conflicts or bugs by:
1) Don't say <vcpu> is superseded by <cputune>
2) Keep the semanteme for "cpuset" of <vcpu> (I.e. Still says it
specify the physical CPUs the virtual CPUs). But modifying it
to mention it also set the pinning policy for domain process,
and the CPU placement of domain process specified by "cpuset"
of <vcpu> will be ingored if <emulatorpin> specified, and
similary, the CPU placement of vcpu thread will be ignored
if it has <vcpupin> specified, for vcpu which doesn't have
<vcpupin> specified, it inherits "cpuset" of <vcpu>.
3) Don't say <vcpu> is supersed by <vcpupin>. If neither <vcpupin>
nor "cpuset" of <vcpu> is specified, the vcpu will be pinned
to all available pCPUs.
4) If neither <emulatorpin> nor "cpuset" of <vcpu> is specified,
the domain process (emulator threads in the context) will be
pinned to all available pCPUs.
5) If "placement" of <vcpu> is "auto", <emulatorpin> is not allowed.
6) hotplugged vcpus will also inherit "cpuset" of <vcpu>
Codes changes according to above document changes:
1) Inherit def->cpumask for each vcpu which doesn't have <vcpupin>
specified, during parsing.
2) ping the vcpu which doesn't have <vcpupin> specified to def->cpumask
either by cgroup for sched_setaffinity(2), which is actually done
by 1).
3) Error out if "placement" == "auto", and <emulatorpin> is specified.
Otherwise, <emulatorpin> is honored, and "cpuset" of <cpuset> is
ignored.
4) Setup cgroup for each hotplugged vcpu, and setup the pinning policy
by either cgroup or sched_setaffinity(2).
5) Remove cgroup and <vcpupin> for each hot unplugged vcpu.
Patches are following (6 in total except this patch)
2012-10-12 13:50:43 +04:00
physical CPUs the domain VCPU will be pinned to. If this is omitted,
and attribute < code > cpuset< / code > of element < code > vcpu< / code > is
not specified, the vCPU is pinned to all the physical CPUs by default.
It contains two required attributes, the attribute < code > vcpu< / code >
specifies vcpu id, and the attribute < code > cpuset< / code > is same as
attribute < code > cpuset< / code > of element < code > vcpu< / code > .
(NB: Only qemu driver support)
2011-05-12 14:48:23 +04:00
< span class = "since" > Since 0.9.0< / span >
< / dd >
2012-08-21 13:18:32 +04:00
< dt > < code > emulatorpin< / code > < / dt >
< dd >
The optional < code > emulatorpin< / code > element specifies which of host
physical CPUs the "emulator", a subset of a domain not including vcpu,
doc: Sort out the relationship between <vcpu>, <vcpupin>, and <emulatorpin>
These 3 elements conflicts with each other in either the doc
or the underlying codes.
Current problems:
Problem 1:
The doc shouldn't simply say "These settings are superseded
by CPU tuning. " for element <vcpu>. As except the tuning, <vcpu>
allows to specify the current, maxmum vcpu number. Apart from that,
<vcpu> also allows to specify the placement as "auto", which binds
the domain process to the advisory nodeset from numad.
Problem 2:
Doc for <vcpu> says its "cpuset" specify the physical CPUs
that the vcpus can be pinned. But it's not the truth, as
actually it only pin domain process to the specified physical
CPUs. So either it's a document bug, or code bug.
Problem 3:
Doc for <vcpupin> says it supersed "cpuset" of <vcpu>, it's
not quite correct, as each <vcpupin> specify the pinning policy
only for one vcpu. How about the ones which doesn't have
<vcpupin> specified? it says the vcpu will be pinned to all
available physical CPUs, but what's the meaning of attribute
"cpuset" of <vcpu> then?
Problem 4:
Doc for <emulatorpin> says it pin the emulator threads (domain
process in other context, perhaps another follow up patch to
cleanup the inconsistency is needed) to the physical CPUs
specified its attribute "cpuset". Which conflicts with
<vcpu>'s "cpuset". And actually in the underlying codes,
it set the affinity for domain process twice if both
"cpuset" for <vcpu> and <emulatorpin> are specified,
and <emulatorpin>'s pinning will override <vcpu>'s.
Problem 5:
When "placement" of <vcpu> is "auto" (I.e. uses numad to
get the advisory nodeset to which the domain process is
pinned to), it will also be overridden by <emulatorpin>,
This patch is trying to sort out the conflicts or bugs by:
1) Don't say <vcpu> is superseded by <cputune>
2) Keep the semanteme for "cpuset" of <vcpu> (I.e. Still says it
specify the physical CPUs the virtual CPUs). But modifying it
to mention it also set the pinning policy for domain process,
and the CPU placement of domain process specified by "cpuset"
of <vcpu> will be ingored if <emulatorpin> specified, and
similary, the CPU placement of vcpu thread will be ignored
if it has <vcpupin> specified, for vcpu which doesn't have
<vcpupin> specified, it inherits "cpuset" of <vcpu>.
3) Don't say <vcpu> is supersed by <vcpupin>. If neither <vcpupin>
nor "cpuset" of <vcpu> is specified, the vcpu will be pinned
to all available pCPUs.
4) If neither <emulatorpin> nor "cpuset" of <vcpu> is specified,
the domain process (emulator threads in the context) will be
pinned to all available pCPUs.
5) If "placement" of <vcpu> is "auto", <emulatorpin> is not allowed.
6) hotplugged vcpus will also inherit "cpuset" of <vcpu>
Codes changes according to above document changes:
1) Inherit def->cpumask for each vcpu which doesn't have <vcpupin>
specified, during parsing.
2) ping the vcpu which doesn't have <vcpupin> specified to def->cpumask
either by cgroup for sched_setaffinity(2), which is actually done
by 1).
3) Error out if "placement" == "auto", and <emulatorpin> is specified.
Otherwise, <emulatorpin> is honored, and "cpuset" of <cpuset> is
ignored.
4) Setup cgroup for each hotplugged vcpu, and setup the pinning policy
by either cgroup or sched_setaffinity(2).
5) Remove cgroup and <vcpupin> for each hot unplugged vcpu.
Patches are following (6 in total except this patch)
2012-10-12 13:50:43 +04:00
will be pinned to. If this is omitted, and attribute
< code > cpuset< / code > of element < code > vcpu< / code > is not specified,
"emulator" is pinned to all the physical CPUs by default. It contains
one required attribute < code > cpuset< / code > specifying which physical
CPUs to pin to. NB, < code > emulatorpin< / code > is not allowed if
attribute < code > placement< / code > of element < code > vcpu< / code > is
"auto".
2012-08-21 13:18:32 +04:00
< / dd >
2011-03-29 17:04:21 +04:00
< dt > < code > shares< / code > < / dt >
2011-05-12 14:48:23 +04:00
< dd >
The optional < code > shares< / code > element specifies the proportional
2012-04-16 20:41:25 +04:00
weighted share for the domain. If this is omitted, it defaults to
2011-07-06 23:49:28 +04:00
the OS provided defaults. NB, There is no unit for the value,
it's a relative measure based on the setting of other VM,
e.g. A VM configured with value
2011-05-12 14:48:23 +04:00
2048 will get twice as much CPU time as a VM configured with value 1024.
< span class = "since" > Since 0.9.0< / span >
< / dd >
2011-07-21 12:36:39 +04:00
< dt > < code > period< / code > < / dt >
< dd >
The optional < code > period< / code > element specifies the enforcement
interval(unit: microseconds). Within < code > period< / code > , each vcpu of
the domain will not be allowed to consume more than < code > quota< / code >
worth of runtime. The value should be in range [1000, 1000000]. A period
2012-08-15 04:09:11 +04:00
with value 0 means no value.
< span class = "since" > Only QEMU driver support since 0.9.4, LXC since
0.9.10< / span >
2011-07-21 12:36:39 +04:00
< / dd >
< dt > < code > quota< / code > < / dt >
< dd >
The optional < code > quota< / code > element specifies the maximum allowed
bandwidth(unit: microseconds). A domain with < code > quota< / code > as any
negative value indicates that the domain has infinite bandwidth, which
means that it is not bandwidth controlled. The value should be in range
[1000, 18446744073709551] or less than 0. A quota with value 0 means no
value. You can use this feature to ensure that all vcpus run at the same
2012-08-15 04:09:11 +04:00
speed.
< span class = "since" > Only QEMU driver support since 0.9.4, LXC since
0.9.10< / span >
2011-07-21 12:36:39 +04:00
< / dd >
2012-08-21 13:18:42 +04:00
< dt > < code > emulator_period< / code > < / dt >
< dd >
The optional < code > emulator_period< / code > element specifies the enforcement
interval(unit: microseconds). Within < code > emulator_period< / code > , emulator
threads(those excluding vcpus) of the domain will not be allowed to consume
more than < code > emulator_quota< / code > worth of runtime. The value should be
in range [1000, 1000000]. A period with value 0 means no value.
< span class = "since" > Only QEMU driver support since 0.10.0< / span >
< / dd >
< dt > < code > emulator_quota< / code > < / dt >
< dd >
The optional < code > emulator_quota< / code > element specifies the maximum
allowed bandwidth(unit: microseconds) for domain's emulator threads(those
excluding vcpus). A domain with < code > emulator_quota< / code > as any negative
value indicates that the domain has infinite bandwidth for emulator threads
(those excluding vcpus), which means that it is not bandwidth controlled.
The value should be in range [1000, 18446744073709551] or less than 0. A
quota with value 0 means no value.
< span class = "since" > Only QEMU driver support since 0.10.0< / span >
< / dd >
2011-07-24 06:00:26 +04:00
< / dl >
< h3 > < a name = "elementsMemoryAllocation" > Memory Allocation< / a > < / h3 >
< pre >
< domain>
...
2012-03-06 01:52:07 +04:00
< memory unit='KiB'> 524288< /memory>
< currentMemory unit='KiB'> 524288< /currentMemory>
2011-07-24 06:00:26 +04:00
...
< /domain>
< / pre >
< dl >
< dt > < code > memory< / code > < / dt >
< dd > The maximum allocation of memory for the guest at boot time.
2012-03-06 01:52:07 +04:00
The units for this value are determined by the optional
2012-08-22 22:29:18 +04:00
attribute < code > unit< / code > , which defaults to "KiB"
2012-03-06 01:52:07 +04:00
(kibibytes, 2< sup > 10< / sup > or blocks of 1024 bytes). Valid
units are "b" or "bytes" for bytes, "KB" for kilobytes
(10< sup > 3< / sup > or 1,000 bytes), "k" or "KiB" for kibibytes
(1024 bytes), "MB" for megabytes (10< sup > 6< / sup > or 1,000,000
bytes), "M" or "MiB" for mebibytes (2< sup > 20< / sup > or
1,048,576 bytes), "GB" for gigabytes (10< sup > 9< / sup > or
1,000,000,000 bytes), "G" or "GiB" for gibibytes
(2< sup > 30< / sup > or 1,073,741,824 bytes), "TB" for terabytes
(10< sup > 12< / sup > or 1,000,000,000,000 bytes), or "T" or "TiB"
for tebibytes (2< sup > 40< / sup > or 1,099,511,627,776 bytes).
However, the value will be rounded up to the nearest kibibyte
by libvirt, and may be further rounded to the granularity
supported by the hypervisor. Some hypervisors also enforce a
2012-08-15 11:51:58 +04:00
minimum, such as 4000KiB.
In the case of crash, optional attribute < code > dumpCore< / code >
can be used to control whether the guest memory should be
included in the generated coredump or not (values "on", "off").
< span class = 'since' > < code > unit< / code > since 0.9.11< / span > ,
< span class = 'since' > < code > dumpCore< / code > since 0.10.2
(QEMU only)< / span > < / dd >
2011-07-24 06:00:26 +04:00
< dt > < code > currentMemory< / code > < / dt >
< dd > The actual allocation of memory for the guest. This value can
be less than the maximum allocation, to allow for ballooning
up the guests memory on the fly. If this is omitted, it defaults
2012-03-06 01:52:07 +04:00
to the same value as the < code > memory< / code > element.
The < code > unit< / code > attribute behaves the same as
for < code > memory< / code > .< / dd >
2011-07-24 06:00:26 +04:00
< / dl >
< h3 > < a name = "elementsMemoryBacking" > Memory Backing< / a > < / h3 >
< pre >
< domain>
...
< memoryBacking>
2014-07-23 19:37:20 +04:00
< hugepages>
< page size="1" unit="G" nodeset="0-3,5"/>
< page size="2" unit="M" nodeset="4"/>
2014-07-30 07:03:15 +04:00
< /hugepages>
2013-05-14 09:25:50 +04:00
< nosharepages/>
2013-05-17 00:00:03 +04:00
< locked/>
2011-07-24 06:00:26 +04:00
< /memoryBacking>
...
< /domain>
< / pre >
2013-05-17 00:00:03 +04:00
< p > The optional < code > memoryBacking< / code > element may contain several
elements that influence how virtual memory pages are backed by host
pages.< / p >
2011-07-24 06:00:26 +04:00
< dl >
2013-05-17 00:00:03 +04:00
< dt > < code > hugepages< / code > < / dt >
< dd > This tells the hypervisor that the guest should have its memory
2014-07-23 19:37:20 +04:00
allocated using hugepages instead of the normal native page size.
< span class = 'since' > Since 1.2.5< / span > it's possible to set hugepages
more specifically per numa node. The < code > page< / code > element is
introduced. It has one compulsory attribute < code > size< / code > which
specifies which hugepages should be used (especially useful on systems
supporting hugepages of different sizes). The default unit for the
< code > size< / code > attribute is kilobytes (multiplier of 1024). If you
want to use different unit, use optional < code > unit< / code > attribute.
For systems with NUMA, the optional < code > nodeset< / code > attribute may
come handy as it ties given guest's NUMA nodes to certain hugepage
sizes. From the example snippet, one gigabyte hugepages are used for
every NUMA node except node number four. For the correct syntax see
< a href = "#elementsNUMATuning" > this< / a > .< / dd >
2013-05-17 00:00:03 +04:00
< dt > < code > nosharepages< / code > < / dt >
< dd > Instructs hypervisor to disable shared pages (memory merge, KSM) for
this domain. < span class = "since" > Since 1.0.6< / span > < / dd >
< dt > < code > locked< / code > < / dt >
< dd > When set and supported by the hypervisor, memory pages belonging
to the domain will be locked in host's memory and the host will not
2013-12-09 18:42:15 +04:00
be allowed to swap them out. For QEMU/KVM this requires
2013-12-10 18:03:58 +04:00
< code > hard_limit< / code > < a href = "#elementsMemoryTuning" > memory tuning< / a >
2013-12-09 18:42:15 +04:00
element to be used and set to the maximum memory configured for the
domain plus any memory consumed by the QEMU process itself.
2013-05-17 00:00:03 +04:00
< span class = "since" > Since 1.0.6< / span > < / dd >
2011-07-24 06:00:26 +04:00
< / dl >
< h3 > < a name = "elementsMemoryTuning" > Memory Tuning< / a > < / h3 >
< pre >
< domain>
...
< memtune>
2012-03-06 01:52:07 +04:00
< hard_limit unit='G'> 1< /hard_limit>
< soft_limit unit='M'> 128< /soft_limit>
< swap_hard_limit unit='G'> 2< /swap_hard_limit>
< min_guarantee unit='bytes'> 67108864< /min_guarantee>
2011-07-24 06:00:26 +04:00
< /memtune>
...
< /domain>
< / pre >
< dl >
< dt > < code > memtune< / code > < / dt >
< dd > The optional < code > memtune< / code > element provides details
regarding the memory tunable parameters for the domain. If this is
omitted, it defaults to the OS provided defaults. For QEMU/KVM, the
parameters are applied to the QEMU process as a whole. Thus, when
counting them, one needs to add up guest RAM, guest video RAM, and
some memory overhead of QEMU itself. The last piece is hard to
2012-03-06 01:52:07 +04:00
determine so one needs guess and try. For each tunable, it
is possible to designate which unit the number is in on
input, using the same values as
for < code > < memory> < / code > . For backwards
compatibility, output is always in
KiB. < span class = 'since' > < code > unit< / code >
since 0.9.11< / span > < / dd >
2011-07-24 06:00:26 +04:00
< dt > < code > hard_limit< / code > < / dt >
< dd > The optional < code > hard_limit< / code > element is the maximum memory
2012-03-02 19:23:07 +04:00
the guest can use. The units for this value are kibibytes (i.e. blocks
2013-08-19 13:54:05 +04:00
of 1024 bytes). < strong > However, users of QEMU and KVM are strongly
2013-08-19 18:51:12 +04:00
advised not to set this limit as domain may get killed by the kernel
if the guess is too low. To determine the memory needed for a process
to run is an
2013-08-19 13:54:05 +04:00
< a href = "http://en.wikipedia.org/wiki/Undecidable_problem" >
undecidable problem< / a > .< / strong > < / dd >
2011-07-24 06:00:26 +04:00
< dt > < code > soft_limit< / code > < / dt >
< dd > The optional < code > soft_limit< / code > element is the memory limit to
enforce during memory contention. The units for this value are
2012-03-02 19:23:07 +04:00
kibibytes (i.e. blocks of 1024 bytes)< / dd >
2011-07-24 06:00:26 +04:00
< dt > < code > swap_hard_limit< / code > < / dt >
< dd > The optional < code > swap_hard_limit< / code > element is the maximum
memory plus swap the guest can use. The units for this value are
2012-03-02 19:23:07 +04:00
kibibytes (i.e. blocks of 1024 bytes). This has to be more than
2011-07-24 06:00:26 +04:00
hard_limit value provided< / dd >
< dt > < code > min_guarantee< / code > < / dt >
< dd > The optional < code > min_guarantee< / code > element is the guaranteed
minimum memory allocation for the guest. The units for this value are
2012-03-02 19:23:07 +04:00
kibibytes (i.e. blocks of 1024 bytes)< / dd >
2011-07-24 06:00:26 +04:00
< / dl >
< h3 > < a name = "elementsNUMATuning" > NUMA Node Tuning< / a > < / h3 >
< pre >
< domain>
...
< numatune>
< memory mode="strict" nodeset="1-4,^3"/>
2014-07-15 13:39:44 +04:00
< memnode cellid="0" mode="strict" nodeset="1"/>
< memnode cellid="2" mode="preferred" nodeset="2"/>
2011-07-24 06:00:26 +04:00
< /numatune>
...
< /domain>
< / pre >
< dl >
2011-06-20 11:15:05 +04:00
< dt > < code > numatune< / code > < / dt >
< dd >
The optional < code > numatune< / code > element provides details of
how to tune the performance of a NUMA host via controlling NUMA policy
for domain process. NB, only supported by QEMU driver.
< span class = 'since' > Since 0.9.3< / span >
2013-05-03 18:25:37 +04:00
< / dd >
2011-06-20 11:15:05 +04:00
< dt > < code > memory< / code > < / dt >
< dd >
2012-03-08 17:36:26 +04:00
The optional < code > memory< / code > element specifies how to allocate memory
numad: Set memory policy from numad advisory nodeset
Though numad will manage the memory allocation of task dynamically,
it wants management application (libvirt) to pre-set the memory
policy according to the advisory nodeset returned from querying numad,
(just like pre-bind CPU nodeset for domain process), and thus the
performance could benefit much more from it.
This patch introduces new XML tag 'placement', value 'auto' indicates
whether to set the memory policy with the advisory nodeset from numad,
and its value defaults to the value of <vcpu> placement, or 'static'
if 'nodeset' is specified. Example of the new XML tag's usage:
<numatune>
<memory placement='auto' mode='interleave'/>
</numatune>
Just like what current "numatune" does, the 'auto' numa memory policy
setting uses libnuma's API too.
If <vcpu> "placement" is "auto", and <numatune> is not specified
explicitly, a default <numatume> will be added with "placement"
set as "auto", and "mode" set as "strict".
The following XML can now fully drive numad:
1) <vcpu> placement is 'auto', no <numatune> is specified.
<vcpu placement='auto'>10</vcpu>
2) <vcpu> placement is 'auto', no 'placement' is specified for
<numatune>.
<vcpu placement='auto'>10</vcpu>
<numatune>
<memory mode='interleave'/>
</numatune>
And it's also able to control the CPU placement and memory policy
independently. e.g.
1) <vcpu> placement is 'auto', and <numatune> placement is 'static'
<vcpu placement='auto'>10</vcpu>
<numatune>
<memory mode='strict' nodeset='0-10,^7'/>
</numatune>
2) <vcpu> placement is 'static', and <numatune> placement is 'auto'
<vcpu placement='static' cpuset='0-24,^12'>10</vcpu>
<numatune>
<memory mode='interleave' placement='auto'/>
</numatume>
A follow up patch will change the XML formatting codes to always output
'placement' for <vcpu>, even it's 'static'.
2012-05-08 20:04:34 +04:00
for the domain process on a NUMA host. It contains several optional
attributes. Attribute < code > mode< / code > is either 'interleave',
'strict', or 'preferred', defaults to 'strict'. Attribute
< code > nodeset< / code > specifies the NUMA nodes, using the same syntax as
attribute < code > cpuset< / code > of element < code > vcpu< / code > . Attribute
< code > placement< / code > (< span class = 'since' > since 0.9.12< / span > ) can be
used to indicate the memory placement mode for domain process, its value
can be either "static" or "auto", defaults to < code > placement< / code > of
< code > vcpu< / code > , or "static" if < code > nodeset< / code > is specified.
"auto" indicates the domain process will only allocate memory from the
advisory nodeset returned from querying numad, and the value of attribute
< code > nodeset< / code > will be ignored if it's specified.
If < code > placement< / code > of < code > vcpu< / code > is 'auto', and
< code > numatune< / code > is not specified, a default < code > numatune< / code >
with < code > placement< / code > 'auto' and < code > mode< / code > 'strict' will
be added implicitly.
2011-06-20 11:15:05 +04:00
< span class = 'since' > Since 0.9.3< / span >
< / dd >
2014-07-15 13:39:44 +04:00
< dt > < code > memnode< / code > < / dt >
< dd >
Optional < code > memnode< / code > elements can specify memory allocation
policies per each guest NUMA node. For those nodes having no
corresponding < code > memnode< / code > element, the default from
element < code > memory< / code > will be used. Attribute < code > cellid< / code >
addresses guest NUMA node for which the settings are applied.
Attributes < code > mode< / code > and < code > nodeset< / code > have the same
meaning and syntax as in < code > memory< / code > element.
This setting is not compatible with automatic placement.
< span class = 'since' > QEMU Since 1.2.7< / span >
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2011-07-24 06:00:26 +04:00
< h3 > < a name = "elementsBlockTuning" > Block I/O Tuning< / a > < / h3 >
< pre >
< domain>
...
< blkiotune>
< weight> 800< /weight>
2011-11-08 15:00:33 +04:00
< device>
< path> /dev/sda< /path>
< weight> 1000< /weight>
< /device>
< device>
< path> /dev/sdb< /path>
< weight> 500< /weight>
< /device>
2011-07-24 06:00:26 +04:00
< /blkiotune>
...
< /domain>
< / pre >
< dl >
< dt > < code > blkiotune< / code > < / dt >
< dd > The optional < code > blkiotune< / code > element provides the ability
to tune Blkio cgroup tunable parameters for the domain. If this is
2011-11-08 15:00:33 +04:00
omitted, it defaults to the OS provided
defaults. < span class = "since" > Since 0.8.8< / span > < / dd >
2011-07-24 06:00:26 +04:00
< dt > < code > weight< / code > < / dt >
2011-11-08 15:00:33 +04:00
< dd > The optional < code > weight< / code > element is the overall I/O
weight of the guest. The value should be in the range [100,
2013-10-11 17:41:22 +04:00
1000]. After kernel 2.6.39, the value could be in the
range [10, 1000].< / dd >
2011-11-08 15:00:33 +04:00
< dt > < code > device< / code > < / dt >
< dd > The domain may have multiple < code > device< / code > elements
that further tune the weights for each host block device in
use by the domain. Note that
multiple < a href = "#elementsDisks" > guest disks< / a > can share a
single host block device, if they are backed by files within
the same host file system, which is why this tuning parameter
is at the global domain level rather than associated with each
2011-11-15 13:02:46 +04:00
guest disk device (contrast this to
the < a href = "#elementsDisks" > < code > < iotune> < / code > < / a >
element which can apply to an
individual < code > < disk> < / code > ).
Each < code > device< / code > element has two
2011-11-08 15:00:33 +04:00
mandatory sub-elements, < code > path< / code > describing the
absolute path of the device, and < code > weight< / code > giving
the relative weight of that device, in the range [100,
2013-10-11 17:41:22 +04:00
1000]. After kernel 2.6.39, the value could be in the
range [10, 1000].< span class = "since" > Since 0.9.8< / span > < / dd >
2011-07-24 06:00:26 +04:00
< / dl >
2013-03-21 15:28:10 +04:00
< h3 > < a name = "resPartition" > Resource partitioning< / a > < / h3 >
< p >
Hypervisors may allow for virtual machines to be placed into
resource partitions, potentially with nesting of said partitions.
The < code > resource< / code > element groups together configuration
related to resource partitioning. It currently supports a child
element < code > partition< / code > whose content defines the path
of the resource partition in which to place the domain. If no
partition is listed, then the domain will be placed in a default
partition. It is the responsibility of the app/admin to ensure
that the partition exists prior to starting the guest. Only the
(hypervisor specific) default partition can be assumed to exist
by default.
< / p >
< pre >
...
< resource>
< partition> /virtualmachines/production< /partition>
< /resource>
...
< / pre >
< p >
Resource partitions are currently supported by the QEMU and
2013-04-20 00:18:14 +04:00
LXC drivers, which map partition paths to cgroups directories,
2013-03-21 15:28:10 +04:00
in all mounted controllers. < span class = "since" > Since 1.0.5< / span >
< / p >
2010-01-19 20:22:45 +03:00
< h3 > < a name = "elementsCPU" > CPU model and topology< / a > < / h3 >
< p >
Requirements for CPU model, its features and topology can be specified
using the following collection of elements.
< span class = "since" > Since 0.7.5< / span >
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< cpu match='exact'>
2011-12-21 17:27:16 +04:00
< model fallback='allow'> core2duo< /model>
2010-07-02 19:51:59 +04:00
< vendor> Intel< /vendor>
2010-02-04 17:27:52 +03:00
< topology sockets='1' cores='2' threads='1'/>
< feature policy='disable' name='lahf_lm'/>
< /cpu>
...< / pre >
2010-01-19 20:22:45 +03:00
2011-08-18 14:14:36 +04:00
< pre >
< cpu mode='host-model'>
< model fallback='forbid'/>
< topology sockets='1' cores='2' threads='1'/>
< /cpu>
...< / pre >
< pre >
< cpu mode='host-passthrough'/>
...< / pre >
2010-01-19 20:22:45 +03:00
< p >
In case no restrictions need to be put on CPU model and its features, a
simpler < code > cpu< / code > element can be used.
< span class = "since" > Since 0.7.6< / span >
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< cpu>
< topology sockets='1' cores='2' threads='1'/>
< /cpu>
...< / pre >
2010-01-19 20:22:45 +03:00
< dl >
< dt > < code > cpu< / code > < / dt >
< dd > The < code > cpu< / code > element is the main container for describing
guest CPU requirements. Its < code > match< / code > attribute specified how
strictly has the virtual CPU provided to the guest match these
requirements. < span class = "since" > Since 0.7.6< / span > the
< code > match< / code > attribute can be omitted if < code > topology< / code >
is the only element within < code > cpu< / code > . Possible values for the
< code > match< / code > attribute are:
< dl >
< dt > < code > minimum< / code > < / dt >
< dd > The specified CPU model and features describes the minimum
requested CPU.< / dd >
< dt > < code > exact< / code > < / dt >
< dd > The virtual CPU provided to the guest will exactly match the
specification< / dd >
< dt > < code > strict< / code > < / dt >
< dd > The guest will not be created unless the host CPU does exactly
match the specification.< / dd >
< / dl >
2010-09-22 15:47:48 +04:00
2011-02-04 21:16:35 +03:00
< span class = "since" > Since 0.8.5< / span > the < code > match< / code >
attribute can be omitted and will default to < code > exact< / code > .
2011-08-18 14:14:36 +04:00
< span class = "since" > Since 0.9.10< / span > , an optional < code > mode< / code >
attribute may be used to make it easier to configure a guest CPU to be
as close to host CPU as possible. Possible values for the
< code > mode< / code > attribute are:
< dl >
< dt > < code > custom< / code > < / dt >
< dd > In this mode, the < code > cpu< / code > element describes the CPU
that should be presented to the guest. This is the default when no
< code > mode< / code > attribute is specified. This mode makes it so that
a persistent guest will see the same hardware no matter what host
the guest is booted on.< / dd >
< dt > < code > host-model< / code > < / dt >
< dd > The < code > host-model< / code > mode is essentially a shortcut to
copying host CPU definition from capabilities XML into domain XML.
Since the CPU definition is copied just before starting a domain,
exactly the same XML can be used on different hosts while still
2013-07-15 19:38:55 +04:00
providing the best guest CPU each host supports. The
< code > match< / code > attribute can't be used in this mode. Specifying
CPU model is not supported either, but < code > model< / code > 's
< code > fallback< / code > attribute may still be used. Using the
< code > feature< / code > element, specific flags may be enabled or
disabled specifically in addition to the host model. This may be
used to fine tune features that can be emulated.
< span class = "since" > (Since 1.1.1)< / span > .
Libvirt does not model every aspect of each CPU so
2011-08-18 14:14:36 +04:00
the guest CPU will not match the host CPU exactly. On the other
hand, the ABI provided to the guest is reproducible. During
migration, complete CPU model definition is transferred to the
destination host so the migrated guest will see exactly the same CPU
model even if the destination host contains more capable CPUs for
the running instance of the guest; but shutting down and restarting
the guest may present different hardware to the guest according to
2013-10-17 18:02:38 +04:00
the capabilities of the new host. < strong > Beware< / strong > , due to the
way libvirt detects host CPU and due to the fact libvirt does not
talk to QEMU/KVM when creating the CPU model, CPU configuration
created using < code > host-model< / code > may not work as expected. The
guest CPU may differ from the configuration and it may also confuse
guest OS by using a combination of CPU features and other parameters
(such as CPUID level) that don't work. Until these issues are fixed,
it's a good idea to avoid using < code > host-model< / code > and use
< code > custom< / code > mode with just the CPU model from host
capabilities XML.< / dd >
2011-08-18 14:14:36 +04:00
< dt > < code > host-passthrough< / code > < / dt >
< dd > With this mode, the CPU visible to the guest should be exactly
the same as the host CPU even in the aspects that libvirt does not
understand. Though the downside of this mode is that the guest
environment cannot be reproduced on different hardware. Thus, if you
hit any bugs, you are on your own. Neither < code > model< / code > nor
< code > feature< / code > elements are allowed in this mode.< / dd >
< / dl >
In both < code > host-model< / code > and < code > host-passthrough< / code >
mode, the real (approximate in < code > host-passthrough< / code > mode) CPU
definition which would be used on current host can be determined by
specifying < code > VIR_DOMAIN_XML_UPDATE_CPU< / code > flag when calling
< code > virDomainGetXMLDesc< / code > API. When running a guest that might
be prone to operating system reactivation when presented with
different hardware, and which will be migrated between hosts with
different capabilities, you can use this output to rewrite XML to the
< code > custom< / code > mode for more robust migration.
2010-01-19 20:22:45 +03:00
< / dd >
< dt > < code > model< / code > < / dt >
< dd > The content of the < code > model< / code > element specifies CPU model
requested by the guest. The list of available CPU models and their
definition can be found in < code > cpu_map.xml< / code > file installed
2011-12-21 17:27:16 +04:00
in libvirt's data directory. If a hypervisor is not able to use the
exact CPU model, libvirt automatically falls back to a closest model
supported by the hypervisor while maintaining the list of CPU
features. < span class = "since" > Since 0.9.10< / span > , an optional
< code > fallback< / code > attribute can be used to forbid this behavior,
in which case an attempt to start a domain requesting an unsupported
CPU model will fail. Supported values for < code > fallback< / code >
attribute are: < code > allow< / code > (this is the default), and
2012-07-10 12:01:03 +04:00
< code > forbid< / code > . The optional < code > vendor_id< / code > attribute
2012-08-01 21:00:35 +04:00
(< span class = "since" > Since 0.10.0< / span > ) can be used to set the
2012-07-10 12:01:03 +04:00
vendor id seen by the guest. It must be exactly 12 characters long.
If not set the vendor id of the host is used. Typical possible
values are "AuthenticAMD" and "GenuineIntel".< / dd >
2010-01-19 20:22:45 +03:00
2010-07-02 19:51:59 +04:00
< dt > < code > vendor< / code > < / dt >
< dd > < span class = "since" > Since 0.8.3< / span > the content of the
< code > vendor< / code > element specifies CPU vendor requested by the
guest. If this element is missing, the guest can be run on a CPU
matching given features regardless on its vendor. The list of
supported vendors can be found in < code > cpu_map.xml< / code > .< / dd >
2010-01-19 20:22:45 +03:00
< dt > < code > topology< / code > < / dt >
< dd > The < code > topology< / code > element specifies requested topology of
virtual CPU provided to the guest. Three non-zero values have to be
given for < code > sockets< / code > , < code > cores< / code > , and
< code > threads< / code > : total number of CPU sockets, number of cores per
socket, and number of threads per core, respectively.< / dd >
< dt > < code > feature< / code > < / dt >
< dd > The < code > cpu< / code > element can contain zero or more
< code > elements< / code > used to fine-tune features provided by the
selected CPU model. The list of known feature names can be found in
the same file as CPU models. The meaning of each < code > feature< / code >
element depends on its < code > policy< / code > attribute, which has to be
set to one of the following values:
< dl >
< dt > < code > force< / code > < / dt >
< dd > The virtual CPU will claim the feature is supported regardless
of it being supported by host CPU.< / dd >
< dt > < code > require< / code > < / dt >
< dd > Guest creation will fail unless the feature is supported by host
CPU.< / dd >
< dt > < code > optional< / code > < / dt >
< dd > The feature will be supported by virtual CPU if and only if it
is supported by host CPU.< / dd >
< dt > < code > disable< / code > < / dt >
< dd > The feature will not be supported by virtual CPU.< / dd >
< dt > < code > forbid< / code > < / dt >
< dd > Guest creation will fail if the feature is supported by host
CPU.< / dd >
< / dl >
2010-09-22 15:47:48 +04:00
2011-02-04 21:16:35 +03:00
< span class = "since" > Since 0.8.5< / span > the < code > policy< / code >
attribute can be omitted and will default to < code > require< / code > .
2010-01-19 20:22:45 +03:00
< / dd >
< / dl >
2011-11-11 16:51:45 +04:00
< p >
2013-07-30 12:21:11 +04:00
Guest NUMA topology can be specified using the < code > numa< / code > element.
2011-11-11 16:51:45 +04:00
< span class = "since" > Since 0.9.8< / span >
< / p >
< pre >
...
< cpu>
...
< numa>
2014-05-22 11:13:05 +04:00
< cell id='0' cpus='0-3' memory='512000'/>
< cell id='1' cpus='4-7' memory='512000'/>
2011-11-11 16:51:45 +04:00
< /numa>
...
< /cpu>
...< / pre >
< p >
Each < code > cell< / code > element specifies a NUMA cell or a NUMA node.
2014-05-22 11:13:05 +04:00
< code > cpus< / code > specifies the CPU or range of CPUs that are
part of the node. < code > memory< / code > specifies the node memory
in kibibytes (i.e. blocks of 1024 bytes).
< span class = "since" > Since 1.2.7< / span > all cells should
have < code > id< / code > attribute in case referring to some cell is
necessary in the code, otherwise the cells are
assigned < code > id< / code > s in the increasing order starting from
0. Mixing cells with and without the < code > id< / code > attribute
is not recommended as it may result in unwanted behaviour.
2011-11-11 16:51:45 +04:00
< / p >
< p >
This guest NUMA specification is currently available only for QEMU/KVM.
< / p >
2012-09-06 23:56:49 +04:00
< h3 > < a name = "elementsEvents" > Events configuration< / a > < / h3 >
2008-05-08 18:20:07 +04:00
< p >
2008-08-08 14:24:14 +04:00
It is sometimes necessary to override the default actions taken
2013-04-24 01:51:08 +04:00
on various events. Not all hypervisors support all events and actions.
The actions may be taken as a result of calls to libvirt APIs
< code class = 'docref' > virDomainReboot< / code > ,
< code class = 'docref' > virDomainShutdown< / code > , or
< code class = 'docref' > virDomainShutdownFlags< / code > .
Using < code > virsh reboot< / code > or < code > virsh shutdown< / code > would
also trigger the event.
2008-05-08 18:20:07 +04:00
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< on_poweroff> destroy< /on_poweroff>
< on_reboot> restart< /on_reboot>
< on_crash> restart< /on_crash>
2012-09-07 00:17:01 +04:00
< on_lockfailure> poweroff< /on_lockfailure>
2010-02-04 17:27:52 +03:00
...< / pre >
2008-05-08 18:20:07 +04:00
2012-09-06 23:56:49 +04:00
< p >
The following collections of elements allow the actions to be
specified when a guest OS triggers a lifecycle operation. A
common use case is to force a reboot to be treated as a poweroff
when doing the initial OS installation. This allows the VM to be
re-configured for the first post-install bootup.
< / p >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > on_poweroff< / code > < / dt >
< dd > The content of this element specifies the action to take when
2009-11-06 18:04:19 +03:00
the guest requests a poweroff.< / dd >
2008-05-22 18:57:32 +04:00
< dt > < code > on_reboot< / code > < / dt >
2008-05-08 18:20:07 +04:00
< dd > The content of this element specifies the action to take when
2009-11-06 18:04:19 +03:00
the guest requests a reboot.< / dd >
2008-05-22 18:57:32 +04:00
< dt > < code > on_crash< / code > < / dt >
2008-05-08 18:20:07 +04:00
< dd > The content of this element specifies the action to take when
2009-11-06 18:04:19 +03:00
the guest crashes.< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
< p >
Each of these states allow for the same four possible actions.
< / p >
< dl >
< dt > < code > destroy< / code > < / dt >
< dd > The domain will be terminated completely and all resources
2013-04-24 01:51:08 +04:00
released.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > restart< / code > < / dt >
2013-04-24 01:51:08 +04:00
< dd > The domain will be terminated and then restarted with
the same configuration.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > preserve< / code > < / dt >
2013-04-24 01:51:08 +04:00
< dd > The domain will be terminated and its resource preserved
2009-11-06 18:04:19 +03:00
to allow analysis.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > rename-restart< / code > < / dt >
2013-04-24 01:51:08 +04:00
< dd > The domain will be terminated and then restarted with
a new name.< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2010-08-12 21:15:44 +04:00
< p >
2013-04-24 01:51:08 +04:00
QEMU/KVM supports the < code > on_poweroff< / code > and < code > on_reboot< / code >
events handling the < code > destroy< / code > and < code > restart< / code > actions.
The < code > preserve< / code > action for an < code > on_reboot< / code > event
is treated as a < code > destroy< / code > and the < code > rename-restart< / code >
action for an < code > on_poweroff< / code > event is treated as a
< code > restart< / code > event.
< / p >
< p >
The < code > on_crash< / code > event supports these additional
2010-08-12 21:15:44 +04:00
actions < span class = "since" > since 0.8.4< / span > .
< / p >
< dl >
< dt > < code > coredump-destroy< / code > < / dt >
< dd > The crashed domain's core will be dumped, and then the
domain will be terminated completely and all resources
released< / dd >
< dt > < code > coredump-restart< / code > < / dt >
< dd > The crashed domain's core will be dumped, and then the
domain will be restarted with the same configuration< / dd >
< / dl >
2012-09-07 00:17:01 +04:00
< p >
The < code > on_lockfailure< / code > element (< span class = "since" > since
2012-10-16 01:17:34 +04:00
1.0.0< / span > ) may be used to configure what action should be
2012-09-07 00:17:01 +04:00
taken when a lock manager loses resource locks. The following
actions are recognized by libvirt, although not all of them need
to be supported by individual lock managers. When no action is
specified, each lock manager will take its default action.
< / p >
< dl >
< dt > < code > poweroff< / code > < / dt >
< dd > The domain will be forcefully powered off.< / dd >
< dt > < code > restart< / code > < / dt >
< dd > The domain will be powered off and started up again to
reacquire its locks.< / dd >
< dt > < code > pause< / code > < / dt >
< dd > The domain will be paused so that it can be manually resumed
when lock issues are solved.< / dd >
< dt > < code > ignore< / code > < / dt >
< dd > Keep the domain running as if nothing happened.< / dd >
< / dl >
2012-08-02 14:12:50 +04:00
< h3 > < a name = "elementsPowerManagement" > Power Management< / a > < / h3 >
< p >
< span class = "since" > Since 0.10.2< / span > it is possible to
forcibly enable or disable BIOS advertisements to the guest
OS. (NB: Only qemu driver support)
< / p >
< pre >
...
< pm>
< suspend-to-disk enabled='no'/>
2012-10-10 23:44:35 +04:00
< suspend-to-mem enabled='yes'/>
2012-08-02 14:12:50 +04:00
< /pm>
...< / pre >
< dl >
< dt > < code > pm< / code > < / dt >
< dd > These elements enable ('yes') or disable ('no') BIOS support
for S3 (suspend-to-disk) and S4 (suspend-to-mem) ACPI sleep
states. If nothing is specified, then the hypervisor will be
left with its default value.< / dd >
< / dl >
2008-05-08 18:20:07 +04:00
< h3 > < a name = "elementsFeatures" > Hypervisor features< / a > < / h3 >
< p >
Hypervisors may allow certain CPU / machine features to be
toggled on/off.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< features>
< pae/>
< acpi/>
< apic/>
2011-01-06 02:07:54 +03:00
< hap/>
2012-01-18 15:38:49 +04:00
< privnet/>
2012-10-16 20:25:56 +04:00
< hyperv>
2012-12-14 19:28:57 +04:00
< relaxed state='on'/>
2013-06-21 14:20:12 +04:00
< vapic state='on'/>
2013-08-12 16:06:46 +04:00
< spinlocks state='on' retries='4096'/>
2012-10-16 20:25:56 +04:00
< /hyperv>
2013-09-23 20:32:11 +04:00
< pvspinlock/>
2012-10-16 20:25:56 +04:00
2010-02-04 17:27:52 +03:00
< /features>
...< / pre >
2008-05-08 18:20:07 +04:00
< p >
All features are listed within the < code > features< / code >
element, omitting a togglable feature tag turns it off.
The available features can be found by asking
for the < a href = "formatcaps.html" > capabilities XML< / a > ,
but a common set for fully virtualized domains are:
< / p >
< dl >
< dt > < code > pae< / code > < / dt >
< dd > Physical address extension mode allows 32-bit guests
2009-11-06 18:04:19 +03:00
to address more than 4 GB of memory.< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > acpi< / code > < / dt >
< dd > ACPI is useful for power management, for example, with
2009-11-06 18:04:19 +03:00
KVM guests it is required for graceful shutdown to work.
2008-05-08 18:20:07 +04:00
< / dd >
2012-09-13 02:10:56 +04:00
< dt > < code > apic< / code > < / dt >
< dd > APIC allows the use of programmable IRQ
2012-09-18 13:40:52 +04:00
management. < span class = "since" > Since 0.10.2 (QEMU only)< / span > there is
an optional attribute < code > eoi< / code > with values < code > on< / code >
and < code > off< / code > which toggles the availability of EOI (End of
2012-09-13 02:10:56 +04:00
Interrupt) for the guest.
< / dd >
2011-01-06 02:07:54 +03:00
< dt > < code > hap< / code > < / dt >
< dd > Enable use of Hardware Assisted Paging if available in
the hardware.
< / dd >
2012-01-25 18:34:12 +04:00
< dt > < code > viridian< / code > < / dt >
< dd > Enable Viridian hypervisor extensions for paravirtualizing
guest operating systems
< / dd >
2012-01-18 15:38:49 +04:00
< dt > < code > privnet< / code > < / dt >
< dd > Always create a private network namespace. This is
automatically set if any interface devices are defined.
This feature is only relevant for container based
virtualization drivers, such as LXC.
< / dd >
2012-10-16 20:25:56 +04:00
< dt > < code > hyperv< / code > < / dt >
< dd > Enable various features improving behavior of guests
running Microsoft Windows.
< table class = "top_table" >
< tr >
< th > Feature< / th >
< th > Description< / th >
< th > Value< / th >
2013-06-21 14:20:12 +04:00
< th > Since< / th >
2012-10-16 20:25:56 +04:00
< / tr >
< tr >
< td > relaxed< / td >
2013-09-10 22:10:55 +04:00
< td > Relax constraints on timers< / td >
2012-10-16 20:25:56 +04:00
< td > on, off< / td >
2013-06-21 14:20:12 +04:00
< td > < span class = "since" > 1.0.0 (QEMU only)< / span > < / td >
< / tr >
< tr >
< td > vapic< / td >
< td > Enable virtual APIC< / td >
< td > on, off< / td >
< td > < span class = "since" > 1.1.0 (QEMU only)< / span > < / td >
< / tr >
< tr >
< td > spinlocks< / td >
< td > Enable spinlock support< / td >
< td > on, off; retries - at least 4095< / td >
< td > < span class = "since" > 1.1.0 (QEMU only)< / span > < / td >
2012-10-16 20:25:56 +04:00
< / tr >
< / table >
< / dd >
2013-09-23 20:32:11 +04:00
< dt > < code > pvspinlock< / code > < / dt >
< dd > Notify the guest that the host supports paravirtual spinlocks
for example by exposing the pvticketlocks mechanism. This feature
can be explicitly disabled by using < code > state='off'< / code >
attribute.
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
< h3 > < a name = "elementsTime" > Time keeping< / a > < / h3 >
< p >
The guest clock is typically initialized from the host clock.
Most operating systems expect the hardware clock to be kept
in UTC, and this is the default. Windows, however, expects
it to be in so called 'localtime'.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
2012-07-21 17:14:44 +04:00
< clock offset='localtime'>
< timer name='rtc' tickpolicy='catchup' track='guest'>
< catchup threshold='123' slew='120' limit='10000'/>
2010-05-14 02:00:14 +04:00
< /timer>
2012-07-21 17:14:44 +04:00
< timer name='pit' tickpolicy='delay'/>
2010-05-14 02:00:14 +04:00
< /clock>
2010-02-04 17:27:52 +03:00
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > clock< / code > < / dt >
2010-02-02 21:46:52 +03:00
< dd >
2011-02-04 21:16:35 +03:00
< p > The < code > offset< / code > attribute takes four possible
values, allowing fine grained control over how the guest
clock is synchronized to the host. NB, not all hypervisors
support all modes.< / p >
< dl >
< dt > < code > utc< / code > < / dt >
< dd >
The guest clock will always be synchronized to UTC when
2012-02-06 17:59:16 +04:00
booted.
< span class = "since" > Since 0.9.11< / span > 'utc' mode can be converted
to 'variable' mode, which can be controlled by using the
< code > adjustment< / code > attribute. If the value is 'reset', the
conversion is never done (not all hypervisors can
synchronize to UTC on each boot; use of 'reset' will cause
an error on those hypervisors). A numeric value
forces the conversion to 'variable' mode using the value as the
initial adjustment. The default < code > adjustment< / code > is
hypervisor specific.
< / dd >
2011-02-04 21:16:35 +03:00
< dt > < code > localtime< / code > < / dt >
< dd >
The guest clock will be synchronized to the host's configured
timezone when booted, if any.
2012-02-06 17:59:16 +04:00
< span class = "since" > Since 0.9.11,< / span > the < code > adjustment< / code >
attribute behaves the same as in 'utc' mode.
2011-02-04 21:16:35 +03:00
< / dd >
< dt > < code > timezone< / code > < / dt >
< dd >
The guest clock will be synchronized to the requested timezone
using the < code > timezone< / code > attribute.
< span class = "since" > Since 0.7.7< / span >
< / dd >
< dt > < code > variable< / code > < / dt >
< dd >
The guest clock will have an arbitrary offset applied
2012-02-06 17:59:16 +04:00
relative to UTC or localtime, depending on the < code > basis< / code >
attribute. The delta relative to UTC (or localtime) is specified
2011-02-04 21:16:35 +03:00
in seconds, using the < code > adjustment< / code > attribute.
2011-10-18 18:53:55 +04:00
The guest is free to adjust the RTC over time and expect
2012-02-06 17:59:16 +04:00
that it will be honored at next reboot. This is in
contrast to 'utc' and 'localtime' mode (with the optional
attribute adjustment='reset'), where the RTC adjustments are
2011-02-04 21:16:35 +03:00
lost at each reboot. < span class = "since" > Since 0.7.7< / span >
2012-02-06 17:59:16 +04:00
< span class = "since" > Since 0.9.11< / span > the < code > basis< / code >
attribute can be either 'utc' (default) or 'localtime'.
2011-02-04 21:16:35 +03:00
< / dd >
< / dl >
< p >
A < code > clock< / code > may have zero or more
2014-01-17 21:08:33 +04:00
< code > timer< / code > sub-elements. < span class = "since" > Since
2011-02-04 21:16:35 +03:00
0.8.0< / span >
< / p >
2008-05-08 18:20:07 +04:00
< / dd >
2010-05-14 02:00:14 +04:00
< dt > < code > timer< / code > < / dt >
< dd >
2011-02-04 21:16:35 +03:00
< p >
Each timer element requires a < code > name< / code > attribute,
and has other optional attributes that depend on
the < code > name< / code > specified. Various hypervisors
support different combinations of attributes.
< / p >
< dl >
< dt > < code > name< / code > < / dt >
< dd >
The < code > name< / code > attribute selects which timer is
2013-06-24 18:03:37 +04:00
being modified, and can be one of
"platform" (currently unsupported),
"hpet" (libxl, xen, qemu), "kvmclock" (qemu),
2014-01-21 21:50:12 +04:00
"pit" (qemu), "rtc" (qemu), "tsc" (libxl) or "hypervclock"
(qemu - < span class = "since" > since 1.2.2< / span > ).
The < code > hypervclock< / code > timer adds support for the
reference time counter and the reference page for iTSC
feature for guests running the Microsoft Windows
operating system.
2011-02-04 21:16:35 +03:00
< / dd >
< dt > < code > track< / code > < / dt >
< dd >
The < code > track< / code > attribute specifies what the timer
tracks, and can be "boot", "guest", or "wall".
Only valid for < code > name="rtc"< / code >
or < code > name="platform"< / code > .
< / dd >
< dt > < code > tickpolicy< / code > < / dt >
< dd >
2012-03-26 16:29:41 +04:00
< p >
The < code > tickpolicy< / code > attribute determines what
2013-09-10 22:10:55 +04:00
happens when QEMU misses a deadline for injecting a
2012-03-26 16:29:41 +04:00
tick to the guest:
< / p >
< dl >
< dt > < code > delay< / code > < / dt >
< dd > Continue to deliver ticks at the normal rate.
The guest time will be delayed due to the late
tick< / dd >
< dt > < code > catchup< / code > < / dt >
< dd > Deliver ticks at a higher rate to catch up
with the missed tick. The guest time should
not be delayed once catchup is complete.< / dd >
< dt > < code > merge< / code > < / dt >
< dd > Merge the missed tick(s) into one tick and
inject. The guest time may be delayed, depending
on how the OS reacts to the merging of ticks< / dd >
< dt > < code > discard< / code > < / dt >
< dd > Throw away the missed tick(s) and continue
with future injection normally. The guest time
may be delayed, unless the OS has explicit
handling of lost ticks< / dd >
< / dl >
< p > If the policy is "catchup", there can be further details in
the < code > catchup< / code > sub-element.< / p >
2011-02-04 21:16:35 +03:00
< dl >
< dt > < code > catchup< / code > < / dt >
< dd >
The < code > catchup< / code > element has three optional
attributes, each a positive integer. The attributes
are < code > threshold< / code > , < code > slew< / code > ,
and < code > limit< / code > .
< / dd >
< / dl >
2012-03-26 16:29:41 +04:00
< p >
Note that hypervisors are not required to support all policies across all time sources
< / p >
2011-02-04 21:16:35 +03:00
< / dd >
< dt > < code > frequency< / code > < / dt >
< dd >
The < code > frequency< / code > attribute is an unsigned
integer specifying the frequency at
which < code > name="tsc"< / code > runs.
< / dd >
< dt > < code > mode< / code > < / dt >
< dd >
The < code > mode< / code > attribute controls how
the < code > name="tsc"< / code > timer is managed, and can be
"auto", "native", "emulate", "paravirt", or "smpsafe".
Other timers are always emulated.
< / dd >
< dt > < code > present< / code > < / dt >
< dd >
The < code > present< / code > attribute can be "yes" or "no" to
specify whether a particular timer is available to the guest.
< / dd >
< / dl >
2010-05-14 02:00:14 +04:00
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
< h3 > < a name = "elementsDevices" > Devices< / a > < / h3 >
< p >
2008-08-08 14:24:14 +04:00
The final set of XML elements are all used to describe devices
2008-05-08 18:20:07 +04:00
provided to the guest domain. All devices occur as children
of the main < code > devices< / code > element.
< span class = "since" > Since 0.1.3< / span >
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< emulator> /usr/lib/xen/bin/qemu-dm< /emulator>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > emulator< / code > < / dt >
< dd >
2009-11-06 18:04:19 +03:00
The contents of the < code > emulator< / code > element specify
the fully qualified path to the device model emulator binary.
The < a href = "formatcaps.html" > capabilities XML< / a > specifies
the recommended default emulator to use for each particular
domain type / architecture combination.
2008-05-08 18:20:07 +04:00
< / dd >
< / dl >
< h4 > < a name = "elementsDisks" > Hard drives, floppy disks, CDROMs< / a > < / h4 >
< p >
Any device that looks like a disk, be it a floppy, harddisk,
cdrom, or paravirtualized driver is specified via the < code > disk< / code >
element.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
2011-08-13 23:20:21 +04:00
< disk type='file' snapshot='external'>
2010-05-27 15:44:41 +04:00
< driver name="tap" type="aio" cache="default"/>
2011-12-31 17:42:01 +04:00
< source file='/var/lib/xen/images/fv0' startupPolicy='optional'>
seclabel: extend XML to allow per-disk label overrides
When doing security relabeling, there are cases where a per-file
override might be appropriate. For example, with a static label
and relabeling, it might be appropriate to skip relabeling on a
particular disk, where the backing file lives on NFS that lacks
the ability to track labeling. Or with dynamic labeling, it might
be appropriate to use a custom (non-dynamic) label for a disk
specifically intended to be shared across domains.
The new XML resembles the top-level <seclabel>, but with fewer
options (basically relabel='no', or <label>text</label>):
<domain ...>
...
<devices>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='no'/> <!-- override for just this disk -->
</source>
...
</disk>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='yes'> <!-- override for just this disk -->
<label>system_u:object_r:shared_content_t:s0</label>
</seclabel>
</source>
...
</disk>
...
</devices>
<seclabel type='dynamic' model='selinux'>
<baselabel>text</baselabel> <!-- used for all devices without override -->
</seclabel>
</domain>
This patch only introduces the XML and documentation; future patches
will actually parse and make use of it. The intent is that we can
further extend things as needed, adding a per-device <seclabel> in
more places (such as the source of a console device), and possibly
allowing a <baselabel> instead of <label> for labeling where we want
to reuse the cNNN,cNNN pair of a dynamically labeled domain but a
different base label.
First suggested by Daniel P. Berrange here:
https://www.redhat.com/archives/libvir-list/2011-December/msg00258.html
* docs/schemas/domaincommon.rng (devSeclabel): New define.
(disk): Use it.
* docs/formatdomain.html.in (elementsDisks, seclabel): Document
the new XML.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-dynamic-override.xml:
New test, to validate RNG.
2011-12-23 04:47:49 +04:00
< seclabel relabel='no'/>
< /source>
2010-02-04 17:27:52 +03:00
< target dev='hda' bus='ide'/>
2011-11-15 13:02:46 +04:00
< iotune>
< total_bytes_sec> 10000000< /total_bytes_sec>
< read_iops_sec> 400000< /read_iops_sec>
< write_iops_sec> 100000< /write_iops_sec>
< /iotune>
2011-01-12 17:19:34 +03:00
< boot order='2'/>
2010-02-04 17:27:52 +03:00
< encryption type='...'>
...
< /encryption>
< shareable/>
2010-05-27 15:44:41 +04:00
< serial>
...
< /serial>
2010-02-04 17:27:52 +03:00
< /disk>
2010-12-24 14:41:47 +03:00
...
< disk type='network'>
2011-08-13 10:32:45 +04:00
< driver name="qemu" type="raw" io="threads" ioeventfd="on" event_idx="off"/>
2010-12-24 14:41:47 +03:00
< source protocol="sheepdog" name="image_name">
< host name="hostname" port="7000"/>
< /source>
< target dev="hdb" bus="ide"/>
2011-01-12 17:19:34 +03:00
< boot order='1'/>
2011-08-13 23:20:21 +04:00
< transient/>
2011-01-18 00:33:00 +03:00
< address type='drive' controller='0' bus='1' unit='0'/>
2010-12-24 14:41:47 +03:00
< /disk>
2011-10-28 22:29:39 +04:00
< disk type='network'>
< driver name="qemu" type="raw"/>
< source protocol="rbd" name="image_name2">
< host name="hostname" port="7000"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev="hdc" bus="ide"/>
2011-10-28 22:29:39 +04:00
< auth username='myuser'>
< secret type='ceph' usage='mypassid'/>
< /auth>
< /disk>
2011-08-13 23:20:21 +04:00
< disk type='block' device='cdrom'>
< driver name='qemu' type='raw'/>
2014-08-07 18:35:53 +04:00
< target dev='hdd' bus='ide' tray='open'/>
2011-08-13 23:20:21 +04:00
< readonly/>
< /disk>
2013-08-22 23:03:07 +04:00
< disk type='network' device='cdrom'>
< driver name='qemu' type='raw'/>
< source protocol="http" name="url_path">
< host name="hostname" port="80"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev='hde' bus='ide' tray='open'/>
2013-08-22 23:03:07 +04:00
< readonly/>
< /disk>
2013-09-16 21:12:51 +04:00
< disk type='network' device='cdrom'>
< driver name='qemu' type='raw'/>
< source protocol="https" name="url_path">
< host name="hostname" port="443"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev='hdf' bus='ide' tray='open'/>
2013-09-16 21:12:51 +04:00
< readonly/>
< /disk>
2013-08-22 23:03:08 +04:00
< disk type='network' device='cdrom'>
< driver name='qemu' type='raw'/>
< source protocol="ftp" name="url_path">
< host name="hostname" port="21"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev='hdg' bus='ide' tray='open'/>
2013-08-22 23:03:08 +04:00
< readonly/>
< /disk>
2013-09-16 21:12:52 +04:00
< disk type='network' device='cdrom'>
< driver name='qemu' type='raw'/>
< source protocol="ftps" name="url_path">
< host name="hostname" port="990"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev='hdh' bus='ide' tray='open'/>
2013-09-16 21:12:52 +04:00
< readonly/>
< /disk>
2013-09-16 21:12:53 +04:00
< disk type='network' device='cdrom'>
< driver name='qemu' type='raw'/>
< source protocol="tftp" name="url_path">
< host name="hostname" port="69"/>
< /source>
2014-08-07 18:35:53 +04:00
< target dev='hdi' bus='ide' tray='open'/>
2013-09-16 21:12:53 +04:00
< readonly/>
< /disk>
2012-02-27 14:19:54 +04:00
< disk type='block' device='lun'>
< driver name='qemu' type='raw'/>
2012-03-07 08:01:33 +04:00
< source dev='/dev/sda'/>
< target dev='sda' bus='scsi'/>
< address type='drive' controller='0' bus='0' target='3' unit='0'/>
2012-02-27 14:19:54 +04:00
< /disk>
2012-08-20 17:58:50 +04:00
< disk type='block' device='disk'>
< driver name='qemu' type='raw'/>
< source dev='/dev/sda'/>
< geometry cyls='16383' heads='16' secs='63' trans='lba'/>
2012-09-04 18:30:55 +04:00
< blockio logical_block_size='512' physical_block_size='4096'/>
2014-08-07 18:35:53 +04:00
< target dev='sdb' bus='ide'/>
2012-08-20 17:58:50 +04:00
< /disk>
2013-04-04 23:37:56 +04:00
< disk type='volume' device='disk'>
< driver name='qemu' type='raw'/>
< source pool='blk-pool0' volume='blk-pool0-vol0'/>
2014-08-07 18:35:53 +04:00
< target dev='sdc' bus='ide'/>
2013-04-04 23:37:56 +04:00
< /disk>
2013-08-07 17:05:43 +04:00
< disk type='network' device='disk'>
< driver name='qemu' type='raw'/>
< source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/2'>
< host name='example.com' port='3260'/>
< /source>
< auth username='myuser'>
2014-06-25 20:16:54 +04:00
< secret type='iscsi' usage='libvirtiscsi'/>
2013-08-07 17:05:43 +04:00
< /auth>
< target dev='vda' bus='virtio'/>
< /disk>
< disk type='network' device='lun'>
< driver name='qemu' type='raw'/>
< source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/1'>
< host name='example.com' port='3260'/>
< /source>
< auth username='myuser'>
2014-06-25 20:16:54 +04:00
< secret type='iscsi' usage='libvirtiscsi'/>
2013-08-07 17:05:43 +04:00
< /auth>
2014-08-07 18:35:53 +04:00
< target dev='vdb' bus='scsi'/>
2013-08-07 17:05:43 +04:00
< /disk>
< disk type='volume' device='disk'>
< driver name='qemu' type='raw'/>
< source pool='iscsi-pool' volume='unit:0:0:1' mode='host'/>
< auth username='myuser'>
2014-06-25 20:16:54 +04:00
< secret type='iscsi' usage='libvirtiscsi'/>
2013-08-07 17:05:43 +04:00
< /auth>
2014-08-07 18:35:53 +04:00
< target dev='vdc' bus='virtio'/>
2013-08-07 17:05:43 +04:00
< /disk>
< disk type='volume' device='disk'>
< driver name='qemu' type='raw'/>
< source pool='iscsi-pool' volume='unit:0:0:2' mode='direct'/>
< auth username='myuser'>
2014-06-25 20:16:54 +04:00
< secret type='iscsi' usage='libvirtiscsi'/>
2013-08-07 17:05:43 +04:00
< /auth>
2014-08-07 18:35:53 +04:00
< target dev='vdd' bus='virtio'/>
2013-08-07 17:05:43 +04:00
< /disk>
2014-04-16 17:28:10 +04:00
< disk type='file' device='disk'>
< driver name='qemu' type='qcow2'/>
< source file='/var/lib/libvirt/images/domain.qcow'/>
< backingStore type='file'>
< format type='qcow2'/>
< source file='/var/lib/libvirt/images/snapshot.qcow'/>
< backingStore type='block'>
< format type='raw'/>
< source dev='/dev/mapper/base'/>
< backingStore/>
< /backingStore>
< /backingStore>
2014-08-07 18:35:53 +04:00
< target dev='vde' bus='virtio'/>
2014-04-16 17:28:10 +04:00
< /disk>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > disk< / code > < / dt >
< dd > The < code > disk< / code > element is the main container for describing
2013-08-20 23:37:00 +04:00
disks (< span class = "since" > since 0.0.3< / span > ).
< dl >
< dt > < code > type< / code > attribute
< span class = "since" > since 0.0.3< / span > < / dt >
< dd >
Valid values are "file", "block",
"dir" (< span class = "since" > since 0.7.5< / span > ),
"network" (< span class = "since" > since 0.8.7< / span > ), or
"volume" (< span class = "since" > since 1.0.5< / span > )
and refer to the underlying source for the disk.
< / dd >
< dt > < code > device< / code > attribute
< span class = "since" > since 0.1.4< / span > < / dt >
< dd >
Indicates how the disk is to be exposed to the guest OS. Possible
values for this attribute are "floppy", "disk", "cdrom", and "lun",
defaulting to "disk".
< p >
Using "lun" (< span class = "since" > since 0.9.10< / span > ) is only
2014-07-18 13:05:08 +04:00
valid when type is "block" or "network" using the iSCSI protocol,
and behaves identically to "disk",
2013-08-20 23:37:00 +04:00
except that generic SCSI commands from the guest are accepted
and passed through to the physical device. Also note that
device='lun' will only be recognized for actual raw devices,
but never for individual partitions or LVM partitions (in those
cases, the kernel will reject the generic SCSI commands, making
it identical to device='disk').
< / p >
< / dd >
< dt > < code > rawio< / code > attribute
< span class = "since" > since 0.9.10< / span > < / dt >
< dd >
Indicates whether the disk is needs rawio capability; valid
settings are "yes" or "no" (default is "no"). If any one disk
in a domain has rawio='yes', rawio capability will be enabled
for all disks in the domain (because, in the case of QEMU, this
capability can only be set on a per-process basis). This attribute
is only valid when device is "lun". NB, < code > rawio< / code > intends
to confine the capability per-device, however, current QEMU
implementation gives the domain process broader capability
than that (per-process basis, affects all the domain disks).
To confine the capability as much as possible for QEMU driver
as this stage, < code > sgio< / code > is recommended, it's more
secure than < code > rawio< / code > .
< / dd >
< dt > < code > sgio< / code > attribute
< span class = "since" > since 1.0.2< / span > < / dt >
< dd >
Indicates whether the kernel will filter unprivileged
SG_IO commands for the disk, valid settings are "filtered" or
"unfiltered". Defaults to "filtered". Similar to < code > rawio< / code > ,
< code > sgio< / code > is only valid for device 'lun'.
< / dd >
< dt > < code > snapshot< / code > attribute
< span class = "since" > since 0.9.5< / span > < / dt >
< dd >
Indicates the default behavior of the disk during disk snapshots:
"internal" requires a file format such as qcow2 that can store
both the snapshot and the data changes since the snapshot;
"external" will separate the snapshot from the live data; and
"no" means the disk will not participate in snapshots. Read-only
disks default to "no", while the default for other disks depends
on the hypervisor's capabilities. Some hypervisors allow a
per-snapshot choice as well, during
< a href = "formatsnapshot.html" > domain snapshot creation< / a > .
Not all snapshot modes are supported; for example,
< code > snapshot='yes'< / code > with a transient disk generally
does not make sense.
< / dd >
< / dl >
< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > source< / code > < / dt >
2013-08-07 17:05:43 +04:00
< dd > Representation of the disk < code > source< / code > depends on the
disk < code > type< / code > attribute value as follows:
< dl >
< dt > < code > type='file'< / code >
< span class = "since" > since 0.0.3< / span > < / dt >
< dd >
The < code > file< / code > attribute specifies the fully-qualified
path to the file holding the disk.
< / dd >
< dt > < code > type='block'< / code >
< span class = "since" > since 0.0.3< / span > < / dt >
< dd >
The < code > dev< / code > attribute specifies the path to the
host device to serve as the disk.
< / dd >
< dt > < code > type='dir'< / code >
< span class = "since" > since 0.7.5< / span > < / dt >
< dd >
The < code > dir< / code > attribute specifies the fully-qualified path
to the directory to use as the disk.
< / dd >
< dt > < code > type='network'< / code >
< span class = "since" > since 0.8.7< / span > < / dt >
< dd >
The < code > protocol< / code > attribute specifies the protocol to
access to the requested image. Possible values are "nbd",
"iscsi", "rbd", "sheepdog" or "gluster". If the
< code > protocol< / code > attribute is "rbd", "sheepdog" or
"gluster", an additional attribute < code > name< / code > is
mandatory to specify which volume/image will be used. For "nbd",
the < code > name< / code > attribute is optional. For "iscsi"
(< span class = "since" > since 1.0.4< / span > ), the < code > name< / code >
attribute may include a logical unit number, separated from the
target's name by a slash (e.g.,
< code > iqn.2013-07.com.example:iscsi-pool/1< / code > ). If not
specified, the default LUN is zero.
< / dd >
< dt > < code > type='volume'< / code >
< span class = "since" > since 1.0.5< / span > < / dt >
< dd >
The underlying disk source is represented by attributes
< code > pool< / code > and < code > volume< / code > . Attribute
< code > pool< / code > specifies the name of the
< a href = "formatstorage.html" > storage pool< / a > (managed
by libvirt) where the disk source resides. Attribute
< code > volume< / code > specifies the name of storage volume (managed
by libvirt) used as the disk source. The value for the
< code > volume< / code > attribute will be the output from the "Name"
column of a < code > virsh vol-list [pool-name]< / code > command.
< p >
Use the attribute < code > mode< / code >
(< span class = "since" > since 1.1.1< / span > ) to indicate how to
represent the LUN as the disk source. Valid values are
"direct" and "host". If < code > mode< / code > is not specified,
the default is to use "host".
Using "direct" as the < code > mode< / code > value indicates to use
the < a href = "formatstorage.html" > storage pool's< / a >
< code > source< / code > element < code > host< / code > attribute as
the disk source to generate the libiscsi URI (e.g.
'file=iscsi://example.com:3260/iqn.2013-07.com.example:iscsi-pool/1').
Using "host" as the < code > mode< / code > value indicates to use the
LUN's path as it shows up on host (e.g.
'file=/dev/disk/by-path/ip-example.com:3260-iscsi-iqn.2013-07.com.example:iscsi-pool-lun-1').
< / p >
< / dd >
< / dl >
With "file", "block", and "volume", one or more optional
2012-08-16 02:10:36 +04:00
sub-elements < code > seclabel< / code > , < a href = "#seclabel" > described
seclabel: extend XML to allow per-disk label overrides
When doing security relabeling, there are cases where a per-file
override might be appropriate. For example, with a static label
and relabeling, it might be appropriate to skip relabeling on a
particular disk, where the backing file lives on NFS that lacks
the ability to track labeling. Or with dynamic labeling, it might
be appropriate to use a custom (non-dynamic) label for a disk
specifically intended to be shared across domains.
The new XML resembles the top-level <seclabel>, but with fewer
options (basically relabel='no', or <label>text</label>):
<domain ...>
...
<devices>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='no'/> <!-- override for just this disk -->
</source>
...
</disk>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='yes'> <!-- override for just this disk -->
<label>system_u:object_r:shared_content_t:s0</label>
</seclabel>
</source>
...
</disk>
...
</devices>
<seclabel type='dynamic' model='selinux'>
<baselabel>text</baselabel> <!-- used for all devices without override -->
</seclabel>
</domain>
This patch only introduces the XML and documentation; future patches
will actually parse and make use of it. The intent is that we can
further extend things as needed, adding a per-device <seclabel> in
more places (such as the source of a console device), and possibly
allowing a <baselabel> instead of <label> for labeling where we want
to reuse the cNNN,cNNN pair of a dynamically labeled domain but a
different base label.
First suggested by Daniel P. Berrange here:
https://www.redhat.com/archives/libvir-list/2011-December/msg00258.html
* docs/schemas/domaincommon.rng (devSeclabel): New define.
(disk): Use it.
* docs/formatdomain.html.in (elementsDisks, seclabel): Document
the new XML.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-dynamic-override.xml:
New test, to validate RNG.
2011-12-23 04:47:49 +04:00
below< / a > (and < span class = "since" > since 0.9.9< / span > ), can be
used to override the domain security labeling policy for just
2013-04-04 23:37:59 +04:00
that source file. (NB, for "volume" type disk, < code > seclabel< / code >
is only valid when the specified storage volume is of 'file' or
2013-08-07 17:05:43 +04:00
'block' type).
< p >
2013-03-21 15:53:49 +04:00
When the disk < code > type< / code > is "network", the < code > source< / code >
may have zero or more < code > host< / code > sub-elements used to
2013-08-07 17:05:43 +04:00
specify the hosts to connect.
< / p >
< p >
2013-04-04 23:37:58 +04:00
For a "file" or "volume" disk type which represents a cdrom or floppy
2011-12-07 20:55:41 +04:00
(the < code > device< / code > attribute), it is possible to define
policy what to do with the disk if the source file is not accessible.
2013-04-04 23:37:58 +04:00
(NB, < code > startupPolicy< / code > is not valid for "volume" disk unless
the specified storage volume is of "file" type). This is done by the
2013-08-07 17:05:43 +04:00
< code > startupPolicy< / code > attribute
(< span class = "since" > since 0.9.7< / span > ),
2013-07-31 11:51:44 +04:00
accepting these values:
2013-08-07 17:05:43 +04:00
< / p >
2011-10-17 18:54:03 +04:00
< table class = "top_table" >
< tr >
< td > mandatory < / td >
< td > fail if missing for any reason (the default) < / td >
< / tr >
< tr >
< td > requisite < / td >
< td > fail if missing on boot up,
drop if missing on migrate/restore/revert < / td >
< / tr >
< tr >
< td > optional < / td >
< td > drop if missing at any start attempt < / td >
< / tr >
< / table >
2013-08-07 17:05:43 +04:00
< p >
< span class = "since" > Since 1.1.2< / span > the < code > startupPolicy< / code >
is extended to support hard disks besides cdrom and floppy. On guest
cold bootup, if a certain disk is not accessible or its disk chain is
broken, with startupPolicy 'optional' the guest will drop this disk.
This feature doesn't support migration currently.
< / p >
2011-10-17 18:54:03 +04:00
< / dd >
2014-04-16 17:28:10 +04:00
< dt > < code > backingStore< / code > < / dt >
< dd >
This element describes the backing store used by the disk specified by
sibling < code > source< / code > element. It is currently ignored on input
and only used for output to describe the detected backing chains.
< span class = "since" > Since 1.2.4< / span > . An empty
< code > backingStore< / code > element means the sibling source is
self-contained and is not based on any backing store. The following
attributes and sub-elements are supported in
< code > backingStore< / code > :
< dl >
< dt > < code > type< / code > attribute< / dt >
< dd >
The < code > type< / code > attribute represents the type of disk used
by the backing store, see disk type attribute above for more
details and possible values.
< / dd >
< dt > < code > index< / code > attribute< / dt >
< dd >
This attribute is only valid in output (and ignored on input) and
it can be used to refer to a specific part of the disk chain when
doing block operations (such as via the
< code > virDomainBlockRebase< / code > API). For example,
< code > vda[2]< / code > refers to the backing store with
< code > index='2'< / code > of the disk with < code > vda< / code > target.
< / dd >
< dt > < code > format< / code > sub-element< / dt >
< dd >
The < code > format< / code > element contains < code > type< / code >
attribute which specifies the internal format of the backing
store, such as < code > raw< / code > or < code > qcow2< / code > .
< / dd >
< dt > < code > source< / code > sub-element< / dt >
< dd >
This element has the same structure as the < code > source< / code >
element in < code > disk< / code > . It specifies which file, device,
or network location contains the data of the described backing
store.
< / dd >
< dt > < code > backingStore< / code > sub-element< / dt >
< dd >
If the backing store is not self-contained, the next element
in the chain is described by nested < code > backingStore< / code >
element.
< / dd >
< / dl >
< / dd >
blockjob: enhance xml to track mirrors across libvirtd restart
In order to track a block copy job across libvirtd restarts, we
need to save internal XML that tracks the name of the file
holding the mirror. Displaying this name in dumpxml might also
be useful to the user, even if we don't yet have a way to (re-)
start a domain with mirroring enabled up front. This is done
with a new <mirror> sub-element to <disk>, as in:
<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/var/lib/libvirt/images/original.img'/>
<mirror file='/var/lib/libvirt/images/copy.img' format='qcow2' ready='yes'/>
...
</disk>
For now, the element is output-only, in live domains; it is ignored
when defining a domain or hot-plugging a disk (since those contexts
use VIR_DOMAIN_XML_INACTIVE in parsing). The 'ready' attribute appears
when libvirt knows that the job has changed from the initial pulling
phase over to the mirroring phase, although absence of the attribute
is not a sure indicator of the current phase. If we come up with a way
to make qemu start with mirroring enabled, we can relax the xml
restriction, and allow <mirror> (but not attribute 'ready') on input.
Testing active-only XML meant tweaking the testsuite slightly, but it
was worth it.
* docs/schemas/domaincommon.rng (diskspec): Add diskMirror.
* docs/formatdomain.html.in (elementsDisks): Document it.
* src/conf/domain_conf.h (_virDomainDiskDef): New members.
* src/conf/domain_conf.c (virDomainDiskDefFree): Clean them.
(virDomainDiskDefParseXML): Parse them, but only internally.
(virDomainDiskDefFormat): Output them.
* tests/qemuxml2argvdata/qemuxml2argv-disk-mirror.xml: New test file.
* tests/qemuxml2xmloutdata/qemuxml2xmlout-disk-mirror.xml: Likewise.
* tests/qemuxml2xmltest.c (testInfo): Alter members.
(testCompareXMLToXMLHelper): Allow more test control.
(mymain): Run new test.
2012-03-29 04:10:18 +04:00
< dt > < code > mirror< / code > < / dt >
< dd >
2014-07-29 07:46:44 +04:00
This element is present if the hypervisor has started a
long-running block job operation, where the mirror location in
the < code > source< / code > sub-element will eventually have the
same contents as the source, and with the file format in the
conf: alter disk mirror xml output
Now that we track a disk mirror as a virStorageSource, we might
as well update the XML to theoretically allow any type of
mirroring destination (not just a local file). A later patch
will also be reusing <mirror> to track the block commit of the
top layer of a chain, which is another case where libvirt needs
to update the backing chain after the job is finally pivoted,
and since backing chains can have network backing files as the
destination to commit into, it makes more sense to display that
in the XML.
This patch changes output-only XML; it was already documented
that <mirror> does not affect a domain definition at this point
(because qemu doesn't provide persistent bitmaps yet). Any
application that was starting a block copy job with older libvirt
and then relying on the domain XML to determine if it was
complete will no longer be able to access the file= and format=
attributes of mirror that were previously used. However, this is
not going to be a problem in practice: the only time a block copy
job works is on a transient domain, and any app that is managing
a transient domain probably already does enough of its own
bookkeeping to know which file it is mirroring into without
having to re-read it from the libvirt XML. The one thing that
was likely to be used in a mirroring job was the ready=
attribute, which is unchanged. Meanwhile, I made sure the schema
and parser still accept the old format, even if we no longer
output it, so that upgrading from an older version of libvirt is
seamless.
* docs/schemas/domaincommon.rng (diskMirror): Alter definition.
* src/conf/domain_conf.c (virDomainDiskDefParseXML): Parse two
styles of mirror elements.
(virDomainDiskDefFormat): Output new style.
* tests/qemuxml2argvdata/qemuxml2argv-disk-mirror-old.xml: New
file, copied from...
* tests/qemuxml2argvdata/qemuxml2argv-disk-mirror.xml: ...here
before modernizing.
* tests/qemuxml2xmloutdata/qemuxml2xmlout-disk-mirror-old*: New
files.
* tests/qemuxml2xmltest.c (mymain): Test both styles.
Signed-off-by: Eric Blake <eblake@redhat.com>
2014-05-22 08:39:57 +04:00
sub-element < code > format< / code > (which might differ from the
format of the source). The details of the < code > source< / code >
sub-element are determined by the < code > type< / code > attribute
of the mirror, similar to what is done for the
2014-07-29 07:46:44 +04:00
overall < code > disk< / code > device element. The < code > job< / code >
attribute mentions which API started the operation ("copy" for
the < code > virDomainBlockRebase< / code > API, or "active-commit"
for the < code > virDomainBlockCommit< / code >
API), < span class = "since" > since 1.2.7< / span > . The
2014-07-29 02:25:28 +04:00
attribute < code > ready< / code > , if present, tracks progress of
the job: < code > yes< / code > if the disk is known to be ready to
pivot, or, < span class = "since" > since
1.2.7< / span > , < code > abort< / code > or < code > pivot< / code > if the
job is in the process of completing. If < code > ready< / code > is
not present, the disk is probably still
blockjob: enhance xml to track mirrors across libvirtd restart
In order to track a block copy job across libvirtd restarts, we
need to save internal XML that tracks the name of the file
holding the mirror. Displaying this name in dumpxml might also
be useful to the user, even if we don't yet have a way to (re-)
start a domain with mirroring enabled up front. This is done
with a new <mirror> sub-element to <disk>, as in:
<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/var/lib/libvirt/images/original.img'/>
<mirror file='/var/lib/libvirt/images/copy.img' format='qcow2' ready='yes'/>
...
</disk>
For now, the element is output-only, in live domains; it is ignored
when defining a domain or hot-plugging a disk (since those contexts
use VIR_DOMAIN_XML_INACTIVE in parsing). The 'ready' attribute appears
when libvirt knows that the job has changed from the initial pulling
phase over to the mirroring phase, although absence of the attribute
is not a sure indicator of the current phase. If we come up with a way
to make qemu start with mirroring enabled, we can relax the xml
restriction, and allow <mirror> (but not attribute 'ready') on input.
Testing active-only XML meant tweaking the testsuite slightly, but it
was worth it.
* docs/schemas/domaincommon.rng (diskspec): Add diskMirror.
* docs/formatdomain.html.in (elementsDisks): Document it.
* src/conf/domain_conf.h (_virDomainDiskDef): New members.
* src/conf/domain_conf.c (virDomainDiskDefFree): Clean them.
(virDomainDiskDefParseXML): Parse them, but only internally.
(virDomainDiskDefFormat): Output them.
* tests/qemuxml2argvdata/qemuxml2argv-disk-mirror.xml: New test file.
* tests/qemuxml2xmloutdata/qemuxml2xmlout-disk-mirror.xml: Likewise.
* tests/qemuxml2xmltest.c (testInfo): Alter members.
(testCompareXMLToXMLHelper): Allow more test control.
(mymain): Run new test.
2012-03-29 04:10:18 +04:00
copying. For now, this element only valid in output; it is
2014-06-16 23:34:36 +04:00
ignored on input. The < code > source< / code > sub-element exists
for all two-phase jobs < span class = "since" > since 1.2.6< / span > .
Older libvirt supported only block copy to a
file, < span class = "since" > since 0.9.12< / span > ; for
compatibility with older clients, such jobs include redundant
information in the attributes < code > file< / code >
and < code > format< / code > in the < code > mirror< / code > element.
blockjob: enhance xml to track mirrors across libvirtd restart
In order to track a block copy job across libvirtd restarts, we
need to save internal XML that tracks the name of the file
holding the mirror. Displaying this name in dumpxml might also
be useful to the user, even if we don't yet have a way to (re-)
start a domain with mirroring enabled up front. This is done
with a new <mirror> sub-element to <disk>, as in:
<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/var/lib/libvirt/images/original.img'/>
<mirror file='/var/lib/libvirt/images/copy.img' format='qcow2' ready='yes'/>
...
</disk>
For now, the element is output-only, in live domains; it is ignored
when defining a domain or hot-plugging a disk (since those contexts
use VIR_DOMAIN_XML_INACTIVE in parsing). The 'ready' attribute appears
when libvirt knows that the job has changed from the initial pulling
phase over to the mirroring phase, although absence of the attribute
is not a sure indicator of the current phase. If we come up with a way
to make qemu start with mirroring enabled, we can relax the xml
restriction, and allow <mirror> (but not attribute 'ready') on input.
Testing active-only XML meant tweaking the testsuite slightly, but it
was worth it.
* docs/schemas/domaincommon.rng (diskspec): Add diskMirror.
* docs/formatdomain.html.in (elementsDisks): Document it.
* src/conf/domain_conf.h (_virDomainDiskDef): New members.
* src/conf/domain_conf.c (virDomainDiskDefFree): Clean them.
(virDomainDiskDefParseXML): Parse them, but only internally.
(virDomainDiskDefFormat): Output them.
* tests/qemuxml2argvdata/qemuxml2argv-disk-mirror.xml: New test file.
* tests/qemuxml2xmloutdata/qemuxml2xmlout-disk-mirror.xml: Likewise.
* tests/qemuxml2xmltest.c (testInfo): Alter members.
(testCompareXMLToXMLHelper): Allow more test control.
(mymain): Run new test.
2012-03-29 04:10:18 +04:00
< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > target< / code > < / dt >
2011-07-06 23:49:28 +04:00
< dd > The < code > target< / code > element controls the bus / device
under which the disk is exposed to the guest
OS. The < code > dev< / code > attribute indicates the "logical"
device name. The actual device name specified is not
guaranteed to map to the device name in the guest OS. Treat it
as a device ordering hint. The optional < code > bus< / code >
attribute specifies the type of disk device to emulate;
possible values are driver specific, with typical values being
2013-07-31 17:00:26 +04:00
"ide", "scsi", "virtio", "xen", "usb", "sata", or
"sd" < span class = "since" > "sd" since 1.1.2< / span > . If omitted, the bus
2012-12-17 19:03:23 +04:00
type is inferred from the style of the device name (e.g. a device named
'sda' will typically be exported using a SCSI bus). The optional
2012-03-14 19:26:46 +04:00
attribute < code > tray< / code > indicates the tray status of the
removable disks (i.e. CDROM or Floppy disk), the value can be either
"open" or "closed", defaults to "closed". NB, the value of
< code > tray< / code > could be updated while the domain is running.
2013-08-23 14:38:11 +04:00
The optional attribute < code > removable< / code > sets the
removable flag for USB disks, and its value can be either "on"
or "off", defaulting to "off". < span class = "since" > Since
0.0.3; < code > bus< / code > attribute since 0.4.3;
2012-03-14 19:26:46 +04:00
< code > tray< / code > attribute since 0.9.11; "usb" attribute value since
2013-08-23 14:38:11 +04:00
after 0.4.4; "sata" attribute value since 0.9.7; "removable" attribute
value since 1.1.3< / span >
2012-03-14 19:26:46 +04:00
< / dd >
2011-11-15 13:02:46 +04:00
< dt > < code > iotune< / code > < / dt >
< dd > The optional < code > iotune< / code > element provides the
ability to provide additional per-device I/O tuning, with
values that can vary for each device (contrast this to
the < a href = "#elementsBlockTuning" > < code > < blkiotune> < / code > < / a >
element, which applies globally to the domain). Currently,
the only tuning available is Block I/O throttling for qemu.
This element has optional sub-elements; any sub-element not
specified or given with a value of 0 implies no
limit. < span class = "since" > Since 0.9.8< / span >
< dl >
< dt > < code > total_bytes_sec< / code > < / dt >
< dd > The optional < code > total_bytes_sec< / code > element is the
total throughput limit in bytes per second. This cannot
appear with < code > read_bytes_sec< / code >
or < code > write_bytes_sec< / code > .< / dd >
< dt > < code > read_bytes_sec< / code > < / dt >
< dd > The optional < code > read_bytes_sec< / code > element is the
read throughput limit in bytes per second.< / dd >
< dt > < code > write_bytes_sec< / code > < / dt >
< dd > The optional < code > write_bytes_sec< / code > element is the
write throughput limit in bytes per second.< / dd >
< dt > < code > total_iops_sec< / code > < / dt >
< dd > The optional < code > total_iops_sec< / code > element is the
total I/O operations per second. This cannot
appear with < code > read_iops_sec< / code >
or < code > write_iops_sec< / code > .< / dd >
< dt > < code > read_iops_sec< / code > < / dt >
< dd > The optional < code > read_iops_sec< / code > element is the
read I/O operations per second.< / dd >
< dt > < code > write_iops_sec< / code > < / dt >
< dd > The optional < code > write_iops_sec< / code > element is the
write I/O operations per second.< / dd >
< / dl >
2013-05-03 18:25:37 +04:00
< / dd >
2008-05-08 18:20:07 +04:00
< dt > < code > driver< / code > < / dt >
2010-04-21 18:28:21 +04:00
< dd >
The optional driver element allows specifying further details
related to the hypervisor driver used to provide the disk.
2011-03-08 21:02:43 +03:00
< span class = "since" > Since 0.1.8< / span >
2010-04-21 18:28:21 +04:00
< ul >
< li >
If the hypervisor supports multiple backend drivers, then
the < code > name< / code > attribute selects the primary
backend driver name, while the optional < code > type< / code >
attribute provides the sub-type. For example, xen
supports a name of "tap", "tap2", "phy", or "file", with a
type of "aio", while qemu only supports a name of "qemu",
but multiple types including "raw", "bochs", "qcow2", and
"qed".
< / li >
< li >
The optional < code > cache< / code > attribute controls the
cache mechanism, possible values are "default", "none",
2011-09-22 23:33:47 +04:00
"writethrough", "writeback", "directsync" (like
"writethrough", but it bypasses the host page cache) and
"unsafe" (host may cache all disk io, and sync requests from
guest are ignored).
< span class = "since" >
Since 0.6.0,
"directsync" since 0.9.5,
"unsafe" since 0.9.7
< / span >
2010-04-21 18:28:21 +04:00
< / li >
< li >
The optional < code > error_policy< / code > attribute controls
2011-10-04 22:17:06 +04:00
how the hypervisor will behave on a disk read or write
error, possible values are "stop", "report", "ignore", and
"enospace".< span class = "since" > Since 0.8.0, "report" since
0.9.7< / span > The default setting of error_policy is "report".
There is also an
optional < code > rerror_policy< / code > that controls behavior
for read errors only. < span class = "since" > Since
2011-10-11 02:32:45 +04:00
0.9.7< / span > . If no rerror_policy is given, error_policy
2011-10-04 22:17:06 +04:00
is used for both read and write errors. If rerror_policy
is given, it overrides the < code > error_policy< / code > for
read errors. Also note that "enospace" is not a valid
policy for read errors, so if < code > error_policy< / code > is
set to "enospace" and no < code > rerror_policy< / code > is
given, the read error policy will be left at its default,
which is "report".
2010-04-21 18:28:21 +04:00
< / li >
< li >
The optional < code > io< / code > attribute controls specific
policies on I/O; qemu guests support "threads" and
2011-03-08 21:02:43 +03:00
"native". < span class = "since" > Since 0.8.8< / span >
2010-04-21 18:28:21 +04:00
< / li >
2011-06-20 12:26:47 +04:00
< li >
The optional < code > ioeventfd< / code > attribute allows users to
set < a href = 'https://patchwork.kernel.org/patch/43390/' >
domain I/O asynchronous handling< / a > for disk device.
The default is left to the discretion of the hypervisor.
Accepted values are "on" and "off". Enabling this allows
qemu to execute VM while a separate thread handles I/O.
Typically guests experiencing high system CPU utilization
during I/O will benefit from this. On the other hand,
on overloaded host it could increase guest I/O latency.
< span class = "since" > Since 0.9.3 (QEMU and KVM only)< / span >
< b > In general you should leave this option alone, unless you
are very certain you know what you are doing.< / b >
< / li >
2011-08-13 10:32:45 +04:00
< li >
The optional < code > event_idx< / code > attribute controls
some aspects of device event processing. The value can be
either 'on' or 'off' - if it is on, it will reduce the
2012-08-22 22:29:18 +04:00
number of interrupts and exits for the guest. The default
2011-08-13 10:32:45 +04:00
is determined by QEMU; usually if the feature is
supported, default is on. In case there is a situation
where this behavior is suboptimal, this attribute provides
a way to force the feature off.
< span class = "since" > Since 0.9.5 (QEMU and KVM only)< / span >
< b > In general you should leave this option alone, unless you
are very certain you know what you are doing.< / b >
< / li >
2012-01-12 13:31:14 +04:00
< li >
The optional < code > copy_on_read< / code > attribute controls
2012-08-22 22:29:18 +04:00
whether to copy read backing file into the image file. The
2012-01-12 13:31:14 +04:00
value can be either "on" or "off".
Copy-on-read avoids accessing the same backing file sectors
repeatedly and is useful when the backing file is over a slow
network. By default copy-on-read is off.
< span class = 'since' > Since 0.9.10 (QEMU and KVM only)< / span >
< / li >
2013-05-14 16:44:54 +04:00
< li >
The optional < code > discard< / code > attribute controls whether
to discard (also known as "trim" or "unmap") requests are
ignored or passed to the filesystem. The value can be either
2013-05-17 06:35:02 +04:00
"unmap" (allow the discard request to be passed) or "ignore"
(ignore the discard request).
2013-05-14 16:44:54 +04:00
< span class = 'since' > Since 1.0.6 (QEMU and KVM only)< / span >
< / li >
2010-04-21 18:28:21 +04:00
< / ul >
2008-05-08 18:20:07 +04:00
< / dd >
2011-01-12 17:19:34 +03:00
< dt > < code > boot< / code > < / dt >
< dd > Specifies that the disk is bootable. The < code > order< / code >
attribute determines the order in which devices will be tried during
boot sequence. The per-device < code > boot< / code > elements cannot be
used together with general boot elements in
< a href = "#elementsOSBIOS" > BIOS bootloader< / a > section.
< span class = "since" > Since 0.8.8< / span >
< / dd >
2009-07-21 09:23:03 +04:00
< dt > < code > encryption< / code > < / dt >
< dd > If present, specifies how the volume is encrypted. See
the < a href = "formatstorageencryption.html" > Storage Encryption< / a > page
for more information.
< / dd >
2011-08-13 23:20:21 +04:00
< dt > < code > readonly< / code > < / dt >
< dd > If present, this indicates the device cannot be modified by
the guest. For now, this is the default for disks with
2012-12-18 17:06:16 +04:00
attribute < code > device='cdrom'< / code > .
2011-08-13 23:20:21 +04:00
< / dd >
2009-12-14 18:20:55 +03:00
< dt > < code > shareable< / code > < / dt >
< dd > If present, this indicates the device is expected to be shared
between domains (assuming the hypervisor and OS support this),
which means that caching should be deactivated for that device.
< / dd >
2011-08-13 23:20:21 +04:00
< dt > < code > transient< / code > < / dt >
< dd > If present, this indicates that changes to the device
contents should be reverted automatically when the guest
exits. With some hypervisors, marking a disk transient
prevents the domain from participating in migration or
snapshots. < span class = "since" > Since 0.9.5< / span >
< / dd >
2010-05-27 15:44:41 +04:00
< dt > < code > serial< / code > < / dt >
< dd > If present, this specify serial number of virtual hard drive.
2011-07-06 23:49:28 +04:00
For example, it may look
like < code > < serial> WD-WMAP9A966149< /serial> < / code > .
2010-05-27 15:44:41 +04:00
< span class = "since" > Since 0.7.1< / span >
< / dd >
2012-09-11 12:57:01 +04:00
< dt > < code > wwn< / code > < / dt >
< dd > If present, this element specifies the WWN (World Wide Name)
of a virtual hard disk or CD-ROM drive. It must be composed
of 16 hexadecimal digits.
< span class = 'since' > Since 0.10.1< / span >
< / dd >
2012-12-06 14:23:02 +04:00
< dt > < code > vendor< / code > < / dt >
< dd > If present, this element specifies the vendor of a virtual hard
disk or CD-ROM device. It must not be longer than 8 printable
characters.
< span class = 'since' > Since 1.0.1< / span >
< / dd >
< dt > < code > product< / code > < / dt >
< dd > If present, this element specifies the product of a virtual hard
disk or CD-ROM device. It must not be longer than 16 printable
characters.
< span class = 'since' > Since 1.0.1< / span >
< / dd >
2010-12-24 14:41:47 +03:00
< dt > < code > host< / code > < / dt >
2012-11-22 22:10:38 +04:00
< dd > The < code > host< / code > element supports 4 attributes, viz. "name",
"port", "transport" and "socket", which specify the hostname, the port
number, transport type and path to socket, respectively. The meaning
of this element and the number of the elements depend on the protocol
attribute.
2010-12-24 14:41:47 +03:00
< table class = "top_table" >
< tr >
< th > Protocol < / th >
< th > Meaning < / th >
< th > Number of hosts < / th >
2013-03-21 15:53:51 +04:00
< th > Default port < / th >
2010-12-24 14:41:47 +03:00
< / tr >
< tr >
< td > nbd < / td >
< td > a server running nbd-server < / td >
< td > only one < / td >
2013-03-21 15:53:51 +04:00
< td > 10809 < / td >
2010-12-24 14:41:47 +03:00
< / tr >
2013-02-25 21:44:26 +04:00
< tr >
< td > iscsi < / td >
< td > an iSCSI server < / td >
< td > only one < / td >
2013-03-21 15:53:51 +04:00
< td > 3260 < / td >
2013-02-25 21:44:26 +04:00
< / tr >
2010-12-24 14:41:47 +03:00
< tr >
< td > rbd < / td >
< td > monitor servers of RBD < / td >
< td > one or more < / td >
2013-03-21 15:53:51 +04:00
< td > 6789 < / td >
2010-12-24 14:41:47 +03:00
< / tr >
< tr >
< td > sheepdog < / td >
< td > one of the sheepdog servers (default is localhost:7000) < / td >
< td > zero or one < / td >
2013-03-21 15:53:51 +04:00
< td > 7000 < / td >
2010-12-24 14:41:47 +03:00
< / tr >
2012-11-22 22:10:38 +04:00
< tr >
< td > gluster < / td >
< td > a server running glusterd daemon < / td >
< td > only one < / td >
2013-03-21 15:53:51 +04:00
< td > 24007 < / td >
2012-11-22 22:10:38 +04:00
< / tr >
2010-12-24 14:41:47 +03:00
< / table >
2013-02-25 21:44:24 +04:00
gluster supports "tcp", "rdma", "unix" as valid values for the
transport attribute. nbd supports "tcp" and "unix". Others only
support "tcp". If nothing is specified, "tcp" is assumed. If the
transport is "unix", the socket attribute specifies the path to an
AF_UNIX socket.
2010-12-24 14:41:47 +03:00
< / dd >
2011-01-18 00:33:00 +03:00
< dt > < code > address< / code > < / dt >
< dd > If present, the < code > address< / code > element ties the disk
to a given slot of a controller (the
actual < code > < controller> < / code > device can often be
inferred by libvirt, although it can
be < a href = "#elementsControllers" > explicitly specified< / a > ).
The < code > type< / code > attribute is mandatory, and is typically
"pci" or "drive". For a "pci" controller, additional
attributes for < code > bus< / code > , < code > slot< / code > ,
qemu: make PCI multifunction support more manual
When support for was added for PCI multifunction cards (in commit
9f8baf, first included in libvirt 0.9.3), it was done by always
turning on the multifunction bit for all PCI devices. Since that time
it has been realized that this is not an ideal solution, and that the
multifunction bit must be selectively turned on. For example, see
https://bugzilla.redhat.com/show_bug.cgi?id=728174
and the discussion before and after
https://www.redhat.com/archives/libvir-list/2011-September/msg01036.html
This patch modifies multifunction support so that the multifunction=on
option is only added to the qemu commandline for a device if its PCI
<address> definition has the attribute "multifunction='on'", e.g.:
<address type='pci' domain='0x0000' bus='0x00'
slot='0x04' function='0x0' multifunction='on'/>
In practice, the multifunction bit should only be turned on if
function='0' AND other functions will be used in the same slot - it
usually isn't needed for functions 1-7 (although there are apparently
some exceptions, e.g. the Intel X53 according to the QEMU source
code), and should never be set if only function 0 will be used in the
slot. The test cases have been changed accordingly to illustrate.
With this patch in place, if a user attempts to assign multiple
functions in a slot without setting the multifunction bit for function
0, libvirt will issue an error when the domain is defined, and the
define operation will fail. In the future, we may decide to detect
this situation and automatically add multifunction=on to avoid the
error; even then it will still be useful to have a manual method of
turning on multifunction since, as stated above, there are some
devices that excpect it to be turned on for all functions in a slot.
A side effect of this patch is that attempts to use the same PCI
address for two different devices will now log an error (previously
this would cause the domain define operation to fail, but there would
be no log message generated). Because the function doing this log was
almost completely rewritten, I didn't think it worthwhile to make a
separate patch for that fix (the entire patch would immediately be
obsoleted).
2011-09-29 21:00:32 +04:00
and < code > function< / code > must be present, as well as
optional < code > domain< / code > and < code > multifunction< / code > .
Multifunction defaults to 'off'; any other value requires
QEMU 0.1.3 and < span class = "since" > libvirt 0.9.7< / span > . For a
"drive" controller, additional attributes
2012-02-27 14:19:54 +04:00
< code > controller< / code > , < code > bus< / code > , < code > target< / code >
(< span class = "since" > libvirt 0.9.11< / span > ), and < code > unit< / code >
are available, each defaulting to 0.
2011-10-28 22:29:39 +04:00
< / dd >
< dt > < code > auth< / code > < / dt >
2014-06-25 20:16:54 +04:00
< dd > The < code > auth< / code > element is supported for a disk
< code > type< / code > "network" that is using a < code > source< / code >
element with the < code > protocol< / code > attributes "rbd" or "iscsi".
If present, the < code > auth< / code > element provides the
2011-10-28 22:29:39 +04:00
authentication credentials needed to access the source. It
includes a mandatory attribute < code > username< / code > , which
identifies the username to use during authentication, as well
as a sub-element < code > secret< / code > with mandatory
attribute < code > type< / code > , to tie back to
a < a href = "formatsecret.html" > libvirt secret object< / a > that
holds the actual password or other credentials (the domain XML
intentionally does not expose the password, only the reference
2014-06-25 20:16:54 +04:00
to the object that does manage the password).
Known secret types are "ceph" for Ceph RBD network sources and
"iscsi" for CHAP authentication of iSCSI targets.
Both will require either a < code > uuid< / code > attribute
with the UUID of the secret object or a < code > usage< / code >
2013-03-21 15:53:53 +04:00
attribute matching the key that was specified in the
secret object. < span class = "since" > libvirt 0.9.7< / span >
2011-01-18 00:33:00 +03:00
< / dd >
2012-08-20 17:58:50 +04:00
< dt > < code > geometry< / code > < / dt >
< dd > The optional < code > geometry< / code > element provides the
ability to override geometry settings. This mostly useful for
S390 DASD-disks or older DOS-disks. < span class = "since" > 0.10.0< / span >
< dl >
< dt > < code > cyls< / code > < / dt >
< dd > The < code > cyls< / code > attribute is the
number of cylinders. < / dd >
< dt > < code > heads< / code > < / dt >
< dd > The < code > heads< / code > attribute is the
number of heads. < / dd >
< dt > < code > secs< / code > < / dt >
< dd > The < code > secs< / code > attribute is the
number of sectors per track. < / dd >
< dt > < code > trans< / code > < / dt >
< dd > The optional < code > trans< / code > attribute is the
BIOS-Translation-Modus (none, lba or auto)< / dd >
< / dl >
< / dd >
2012-09-04 18:30:55 +04:00
< dt > < code > blockio< / code > < / dt >
< dd > If present, the < code > blockio< / code > element allows
2012-08-29 19:48:30 +04:00
to override any of the block device properties listed below.
< span class = "since" > Since 0.10.2 (QEMU and KVM)< / span >
< dl >
< dt > < code > logical_block_size< / code > < / dt >
< dd > The logical block size the disk will report to the guest
OS. For Linux this would be the value returned by the
BLKSSZGET ioctl and describes the smallest units for disk
I/O.
2013-05-03 18:25:37 +04:00
< / dd >
2012-08-29 19:48:30 +04:00
< dt > < code > physical_block_size< / code > < / dt >
< dd > The physical block size the disk will report to the guest
OS. For Linux this would be the value returned by the
BLKPBSZGET ioctl and describes the disk's hardware sector
size which can be relevant for the alignment of disk data.
2013-05-03 18:25:37 +04:00
< / dd >
2012-08-29 19:48:30 +04:00
< / dl >
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2011-04-29 21:20:28 +04:00
< h4 > < a name = "elementsFilesystems" > Filesystems< / a > < / h4 >
< p >
A directory on the host that can be accessed directly from the guest.
< span class = "since" > since 0.3.3, since 0.8.5 for QEMU/KVM< / span >
< / p >
< pre >
...
< devices>
< filesystem type='template'>
< source name='my-vm-template'/>
< target dir='/'/>
< /filesystem>
2011-05-05 22:56:59 +04:00
< filesystem type='mount' accessmode='passthrough'>
2012-01-17 16:44:18 +04:00
< driver type='path' wrpolicy='immediate'/>
2011-04-29 21:20:28 +04:00
< source dir='/export/to/guest'/>
< target dir='/import/from/host'/>
< readonly/>
< /filesystem>
2013-04-22 18:06:14 +04:00
< filesystem type='file' accessmode='passthrough'>
< driver name='loop' type='raw'/>
< driver type='path' wrpolicy='immediate'/>
< source file='/export/to/guest.img'/>
< target dir='/import/from/host'/>
< readonly/>
< /filesystem>
2011-04-29 21:20:28 +04:00
...
< /devices>
...< / pre >
< dl >
< dt > < code > filesystem< / code > < / dt >
< dd >
The filesystem attribute < code > type< / code > specifies the type of the
< code > source< / code > . The possible values are:
< dl >
< dt > < code > type='mount'< / code > < / dt >
< dd >
A host directory to mount in the guest. Used by LXC,
OpenVZ < span class = "since" > (since 0.6.2)< / span >
and QEMU/KVM < span class = "since" > (since 0.8.5)< / span > .
2011-05-05 22:56:59 +04:00
This is the default < code > type< / code > if one is not specified.
2011-10-11 15:30:40 +04:00
This mode also has an optional
sub-element < code > driver< / code > , with an
attribute < code > type='path'< / code >
or < code > type='handle'< / code > < span class = "since" > (since
2012-01-17 16:44:18 +04:00
0.9.7)< / span > . The driver block has an optional attribute
< code > wrpolicy< / code > that further controls interaction with
the host page cache; omitting the attribute gives default behavior,
while the value < code > immediate< / code > means that a host writeback
is immediately triggered for all pages touched during a guest file
write operation < span class = "since" > (since 0.9.10)< / span > .
2011-04-29 21:20:28 +04:00
< / dd >
< dt > < code > type='template'< / code > < / dt >
< dd >
OpenVZ filesystem template. Only used by OpenVZ driver.
< / dd >
< dt > < code > type='file'< / code > < / dt >
< dd >
2012-05-08 20:50:48 +04:00
A host file will be treated as an image and mounted in
the guest. The filesystem format will be autodetected.
Only used by LXC driver.
2011-04-29 21:20:28 +04:00
< / dd >
< dt > < code > type='block'< / code > < / dt >
< dd >
2011-10-21 18:26:29 +04:00
A host block device to mount in the guest. The filesystem
format will be autodetected. Only used by LXC driver
< span class = "since" > (since 0.9.5)< / span > .
2011-04-29 21:20:28 +04:00
< / dd >
2012-05-08 20:50:48 +04:00
< dt > < code > type='ram'< / code > < / dt >
< dd >
An in-memory filesystem, using memory from the host OS.
The source element has a single attribute < code > usage< / code >
LXC: Fix handling of RAM filesystem size units
Since 76b644c when the support for RAM filesystems was introduced,
libvirt accepted the following XML:
<source usage='1024' unit='KiB'/>
This was parsed correctly and internally stored in bytes, but it
was formatted as (with an extra 's'):
<source usage='1024' units='KiB'/>
When read again, this was treated as if the units were missing,
meaning libvirt was unable to parse its own XML correctly.
The usage attribute was documented as being in KiB, but it was not
scaled if the unit was missing. Transient domains still worked,
because this was balanced by an extra 'k' in the mount options.
This patch:
Changes the parser to use 'units' instead of 'unit', as the latter
was never documented (fixing persistent domains) and some programs
(libvirt-glib, libvirt-sandbox) already parse the 'units' attribute.
Removes the extra 'k' from the tmpfs mount options, which is needed
because now we parse our own XML correctly.
Changes the default input unit to KiB to match documentation, fixing:
https://bugzilla.redhat.com/show_bug.cgi?id=1015689
2013-10-09 16:17:13 +04:00
which gives the memory usage limit in KiB, unless units
are specified by the < code > units< / code > attribute. Only used
2012-05-08 20:50:48 +04:00
by LXC driver.
< span class = "since" > (since 0.9.13)< / span > < / dd >
2012-09-21 05:41:13 +04:00
< dt > < code > type='bind'< / code > < / dt >
2012-06-20 18:03:30 +04:00
< dd >
A directory inside the guest will be bound to another
directory inside the guest. Only used by LXC driver
< span class = "since" > (since 0.9.13)< / span > < / dd >
2011-04-29 21:20:28 +04:00
< / dl >
2011-05-05 22:56:59 +04:00
The filesystem block has an optional attribute < code > accessmode< / code >
2011-04-29 21:20:28 +04:00
which specifies the security mode for accessing the source
< span class = "since" > (since 0.8.5)< / span > . Currently this only works
with < code > type='mount'< / code > for the QEMU/KVM driver. The possible
values are:
< dl >
2011-05-05 22:56:59 +04:00
< dt > < code > accessmode='passthrough'< / code > < / dt >
2011-04-29 21:20:28 +04:00
< dd >
The < code > source< / code > is accessed with the permissions of the
2011-05-05 22:56:59 +04:00
user inside the guest. This is the default < code > accessmode< / code > if
2011-04-29 21:20:28 +04:00
one is not specified.
< a href = "http://lists.gnu.org/archive/html/qemu-devel/2010-05/msg02673.html" > More info< / a >
< / dd >
2011-05-05 22:56:59 +04:00
< dt > < code > accessmode='mapped'< / code > < / dt >
2011-04-29 21:20:28 +04:00
< dd >
The < code > source< / code > is accessed with the permissions of the
hypervisor (QEMU process).
< a href = "http://lists.gnu.org/archive/html/qemu-devel/2010-05/msg02673.html" > More info< / a >
< / dd >
2011-05-05 22:56:59 +04:00
< dt > < code > accessmode='squash'< / code > < / dt >
2011-04-29 21:20:28 +04:00
< dd >
Similar to 'passthrough', the exception is that failure of
privileged operations like 'chown' are ignored. This makes a
passthrough-like mode usable for people who run the hypervisor
as non-root.
< a href = "http://lists.gnu.org/archive/html/qemu-devel/2010-09/msg00121.html" > More info< / a >
< / dd >
< / dl >
< / dd >
2013-04-22 18:06:14 +04:00
< dt > < code > driver< / code > < / dt >
< dd >
The optional driver element allows specifying further details
related to the hypervisor driver used to provide the filesystem.
< span class = "since" > Since 1.0.6< / span >
< ul >
< li >
If the hypervisor supports multiple backend drivers, then
the < code > type< / code > attribute selects the primary
backend driver name, while the < code > format< / code >
attribute provides the format type. For example, LXC
2013-04-22 18:06:17 +04:00
supports a type of "loop", with a format of "raw" or
"nbd" with any format. QEMU supports a type of "path"
or "handle", but no formats.
2013-04-22 18:06:14 +04:00
< / li >
< / ul >
< / dd >
2011-04-29 21:20:28 +04:00
< dt > < code > source< / code > < / dt >
< dd >
The resource on the host that is being accessed in the guest. The
< code > name< / code > attribute must be used with
< code > type='template'< / code > , and the < code > dir< / code > attribute must
2012-05-08 20:50:48 +04:00
be used with < code > type='mount'< / code > . The < code > usage< / code > attribute
LXC: Fix handling of RAM filesystem size units
Since 76b644c when the support for RAM filesystems was introduced,
libvirt accepted the following XML:
<source usage='1024' unit='KiB'/>
This was parsed correctly and internally stored in bytes, but it
was formatted as (with an extra 's'):
<source usage='1024' units='KiB'/>
When read again, this was treated as if the units were missing,
meaning libvirt was unable to parse its own XML correctly.
The usage attribute was documented as being in KiB, but it was not
scaled if the unit was missing. Transient domains still worked,
because this was balanced by an extra 'k' in the mount options.
This patch:
Changes the parser to use 'units' instead of 'unit', as the latter
was never documented (fixing persistent domains) and some programs
(libvirt-glib, libvirt-sandbox) already parse the 'units' attribute.
Removes the extra 'k' from the tmpfs mount options, which is needed
because now we parse our own XML correctly.
Changes the default input unit to KiB to match documentation, fixing:
https://bugzilla.redhat.com/show_bug.cgi?id=1015689
2013-10-09 16:17:13 +04:00
is used with < code > type='ram'< / code > to set the memory limit in KiB,
unless units are specified by the < code > units< / code > attribute.
2011-04-29 21:20:28 +04:00
< / dd >
< dt > < code > target< / code > < / dt >
< dd >
Where the < code > source< / code > can be accessed in the guest. For
most drivers this is an automatic mount point, but for QEMU/KVM
this is merely an arbitrary string tag that is exported to the
guest as a hint for where to mount.
< / dd >
< dt > < code > readonly< / code > < / dt >
< dd >
2013-09-10 22:10:55 +04:00
Enables exporting filesystem as a readonly mount for guest, by
2011-12-21 19:51:29 +04:00
default read-write access is given (currently only works for
QEMU/KVM driver).
2011-04-29 21:20:28 +04:00
< / dd >
2012-05-23 16:38:55 +04:00
< dt > < code > space_hard_limit< / code > < / dt >
< dd >
Maximum space available to this guest's filesystem.
< span class = "since" > Since 0.9.13< / span >
< / dd >
< dt > < code > space_soft_limit< / code > < / dt >
< dd >
Maximum space available to this guest's filesystem. The container is
permitted to exceed its soft limits for a grace period of time. Afterwards the
hard limit is enforced.
< span class = "since" > Since 0.9.13< / span >
< / dd >
2011-04-29 21:20:28 +04:00
< / dl >
2011-12-10 03:33:51 +04:00
< h4 > < a name = "elementsAddress" > Device Addresses< / a > < / h4 >
< p >
Many devices have an optional < code > < address> < / code >
sub-element to describe where the device is placed on the
virtual bus presented to the guest. If an address (or any
optional attribute within an address) is omitted on
input, libvirt will generate an appropriate address; but an
explicit address is required if more control over layout is
required. See below for device examples including an address
element.
< / p >
< p >
Every address has a mandatory attribute < code > type< / code > that
describes which bus the device is on. The choice of which
address to use for a given device is constrained in part by the
device and the architecture of the guest. For example,
a < code > < disk> < / code > device
2013-12-16 20:04:15 +04:00
uses < code > type='drive'< / code > , while
2011-12-10 03:33:51 +04:00
a < code > < console> < / code > device would
use < code > type='pci'< / code > on i686 or x86_64 guests,
or < code > type='spapr-vio'< / code > on PowerPC64 pseries guests.
Each address type has further optional attributes that control
where on the bus the device will be placed:
< / p >
< dl >
< dt > < code > type='pci'< / code > < / dt >
< dd > PCI addresses have the following additional
attributes: < code > domain< / code > (a 2-byte hex integer, not
currently used by qemu), < code > bus< / code > (a hex value between
0 and 0xff, inclusive), < code > slot< / code > (a hex value between
0x0 and 0x1f, inclusive), and < code > function< / code > (a value
between 0 and 7, inclusive). Also available is
the < code > multifunction< / code > attribute, which controls
turning on the multifunction bit for a particular
slot/function in the PCI control register
(< span class = "since" > since 0.9.7, requires QEMU
0.13< / span > ). < code > multifunction< / code > defaults to 'off',
but should be set to 'on' for function 0 of a slot that will
have multiple functions used.
< / dd >
< dt > < code > type='drive'< / code > < / dt >
< dd > Drive addresses have the following additional
attributes: < code > controller< / code > (a 2-digit controller
number), < code > bus< / code > (a 2-digit bus number),
2012-02-27 14:19:54 +04:00
< code > target< / code > (a 2-digit bus number),
2011-12-10 03:33:51 +04:00
and < code > unit< / code > (a 2-digit unit number on the bus).
< / dd >
< dt > < code > type='virtio-serial'< / code > < / dt >
< dd > Each virtio-serial address has the following additional
attributes: < code > controller< / code > (a 2-digit controller
number), < code > bus< / code > (a 2-digit bus number),
and < code > slot< / code > (a 2-digit slot within the bus).
< / dd >
< dt > < code > type='ccid'< / code > < / dt >
< dd > A CCID address, for smart-cards, has the following
additional attributes: < code > bus< / code > (a 2-digit bus
number), and < code > slot< / code > attribute (a 2-digit slot
within the bus). < span class = "since" > Since 0.8.8.< / span >
2013-05-03 18:25:37 +04:00
< / dd >
2011-12-10 03:33:51 +04:00
< dt > < code > type='usb'< / code > < / dt >
< dd > USB addresses have the following additional
attributes: < code > bus< / code > (a hex value between 0 and 0xfff,
inclusive), and < code > port< / code > (a dotted notation of up to
four octets, such as 1.2 or 2.1.3.1).
< / dd >
< dt > < code > type='spapr-vio'< / code > < / dt >
< dd > On PowerPC pseries guests, devices can be assigned to the
SPAPR-VIO bus. It has a flat 64-bit address space; by
convention, devices are generally assigned at a non-zero
multiple of 0x1000, but other addresses are valid and
permitted by libvirt. Each address has the following
additional attribute: < code > reg< / code > (the hex value address
of the starting register). < span class = "since" > Since
0.9.9.< / span >
2013-03-05 19:44:19 +04:00
< / dd >
< dt > < code > type='ccw'< / code > < / dt >
< dd > s390 guests with a < code > machine< / code > value of
s390-ccw-virtio use the native CCW bus for I/O devices.
CCW bus addresses have the following additional attributes:
< code > cssid< / code > (a hex value between 0 and 0xfe, inclusive),
< code > ssid< / code > (a value between 0 and 3, inclusive) and
< code > devno< / code > (a hex value between 0 and 0xffff, inclusive).
Partially specified bus addresses are not allowed.
If omitted, libvirt will assign a free bus address with
cssid=0xfe and ssid=0. Virtio devices for s390 must have their
cssid set to 0xfe in order to be recognized by the guest
operating system.
< span class = "since" > Since 1.0.4< / span >
2011-12-10 03:33:51 +04:00
< / dd >
2013-12-09 13:11:13 +04:00
< dt > < code > type='isa'< / code > < / dt >
< dd > ISA addresses have the following additional
attributes: < code > iobase< / code > and < code > irq< / code > .
< span class = "since" > Since 1.2.1< / span >
< / dd >
2011-12-10 03:33:51 +04:00
< / dl >
2011-01-18 00:33:00 +03:00
< h4 > < a name = "elementsControllers" > Controllers< / a > < / h4 >
< p >
2013-09-10 22:10:55 +04:00
Depending on the guest architecture, some device buses can
2011-12-10 03:33:51 +04:00
appear more than once, with a group of virtual devices tied to a
virtual controller. Normally, libvirt can automatically infer such
2011-01-18 00:33:00 +03:00
controllers without requiring explicit XML markup, but sometimes
it is necessary to provide an explicit controller element.
< / p >
< pre >
...
< devices>
< controller type='ide' index='0'/>
< controller type='virtio-serial' index='0' ports='16' vectors='4'/>
< controller type='virtio-serial' index='1'>
< address type='pci' domain='0x0000' bus='0x00' slot='0x0a' function='0x0'/>
< /controller>
...
< /devices>
...< / pre >
< p >
Each controller has a mandatory attribute < code > type< / code > ,
2011-09-02 17:21:23 +04:00
which must be one of "ide", "fdc", "scsi", "sata", "usb",
2013-04-17 19:05:15 +04:00
"ccid", "virtio-serial" or "pci", and a mandatory
2011-09-02 17:21:23 +04:00
attribute < code > index< / code > which is the decimal integer
describing in which order the bus controller is encountered (for
use in < code > controller< / code > attributes
of < code > < address> < / code > elements). The "virtio-serial"
controller has two additional optional
2011-01-18 00:33:00 +03:00
attributes < code > ports< / code > and < code > vectors< / code > , which
control how many devices can be connected through the
controller. A "scsi" controller has an optional
2012-02-27 13:08:23 +04:00
attribute < code > model< / code > , which is one of "auto", "buslogic",
2013-03-21 18:11:39 +04:00
"ibmvscsi", "lsilogic", "lsisas1068", "lsisas1078", "virtio-scsi" or
2013-04-24 13:24:38 +04:00
"vmpvscsi". A "usb" controller has an optional attribute
< code > model< / code > , which is one of "piix3-uhci", "piix4-uhci", "ehci",
"ich9-ehci1", "ich9-uhci1", "ich9-uhci2", "ich9-uhci3", "vt82c686b-uhci",
"pci-ohci" or "nec-xhci". Additionally,
< span class = "since" > since 0.10.0< / span > , if the USB bus needs to be
explicitly disabled for the guest, < code > model='none'< / code > may be
2013-04-29 20:11:28 +04:00
used. < span class = "since" > Since 1.0.5< / span > , no default USB controller
will be built on s390. The PowerPC64 "spapr-vio" addresses do not have an
associated controller.
2011-01-18 00:33:00 +03:00
< / p >
< p >
For controllers that are themselves devices on a PCI or USB bus,
an optional sub-element < code > < address> < / code > can specify
the exact relationship of the controller to its master bus, with
2011-12-10 03:33:51 +04:00
semantics < a href = "#elementsAddress" > given above< / a > .
2011-01-18 00:33:00 +03:00
< / p >
2013-04-24 13:24:38 +04:00
< p >
An optional sub-element < code > driver< / code > can specify the driver
2014-05-22 22:22:52 +04:00
specific options:
2013-04-24 13:24:38 +04:00
< / p >
2014-05-22 22:22:52 +04:00
< dl >
< dt > < code > queues< / code > < / dt >
< dd >
The optional < code > queues< / code > attribute specifies the number of
queues for the controller. For best performance, it's recommended to
specify a value matching the number of vCPUs.
< span class = "since" > Since 1.0.5 (QEMU and KVM only)< / span >
< / dd >
< dt > < code > cmd_per_lun< / code > < / dt >
< dd >
The optional < code > cmd_per_lun< / code > attribute specifies the maximum
number of commands that can be queued on devices controlled by the
host.
< span class = "since" > Since 1.2.7 (QEMU and KVM only)< / span >
< / dd >
< dt > < code > max_sectors< / code > < / dt >
< dd >
The optional < code > max_sectors< / code > attribute specifies the maximum
amount of data in bytes that will be transferred to or from the device
in a single command. The transfer length is measured in sectors, where
a sector is 512 bytes.
< span class = "since" > Since 1.2.7 (QEMU and KVM only)< / span >
< / dd >
< / dl >
2011-09-02 18:03:51 +04:00
< p >
USB companion controllers have an optional
sub-element < code > < master> < / code > to specify the exact
relationship of the companion to its master controller.
A companion controller is on the same bus as its master, so
the companion < code > index< / code > value should be equal.
< / p >
< pre >
...
< devices>
< controller type='usb' index='0' model='ich9-ehci1'>
< address type='pci' domain='0' bus='0' slot='4' function='7'/>
< /controller>
< controller type='usb' index='0' model='ich9-uhci1'>
< master startport='0'/>
qemu: make PCI multifunction support more manual
When support for was added for PCI multifunction cards (in commit
9f8baf, first included in libvirt 0.9.3), it was done by always
turning on the multifunction bit for all PCI devices. Since that time
it has been realized that this is not an ideal solution, and that the
multifunction bit must be selectively turned on. For example, see
https://bugzilla.redhat.com/show_bug.cgi?id=728174
and the discussion before and after
https://www.redhat.com/archives/libvir-list/2011-September/msg01036.html
This patch modifies multifunction support so that the multifunction=on
option is only added to the qemu commandline for a device if its PCI
<address> definition has the attribute "multifunction='on'", e.g.:
<address type='pci' domain='0x0000' bus='0x00'
slot='0x04' function='0x0' multifunction='on'/>
In practice, the multifunction bit should only be turned on if
function='0' AND other functions will be used in the same slot - it
usually isn't needed for functions 1-7 (although there are apparently
some exceptions, e.g. the Intel X53 according to the QEMU source
code), and should never be set if only function 0 will be used in the
slot. The test cases have been changed accordingly to illustrate.
With this patch in place, if a user attempts to assign multiple
functions in a slot without setting the multifunction bit for function
0, libvirt will issue an error when the domain is defined, and the
define operation will fail. In the future, we may decide to detect
this situation and automatically add multifunction=on to avoid the
error; even then it will still be useful to have a manual method of
turning on multifunction since, as stated above, there are some
devices that excpect it to be turned on for all functions in a slot.
A side effect of this patch is that attempts to use the same PCI
address for two different devices will now log an error (previously
this would cause the domain define operation to fail, but there would
be no log message generated). Because the function doing this log was
almost completely rewritten, I didn't think it worthwhile to make a
separate patch for that fix (the entire patch would immediately be
obsoleted).
2011-09-29 21:00:32 +04:00
< address type='pci' domain='0' bus='0' slot='4' function='0' multifunction='on'/>
2011-09-02 18:03:51 +04:00
< /controller>
...
< /devices>
2013-04-17 19:05:15 +04:00
...< / pre >
< p >
PCI controllers have an optional < code > model< / code > attribute with
qemu: add dmi-to-pci-bridge controller
This PCI controller, named "dmi-to-pci-bridge" in the libvirt config,
and implemented with qemu's "i82801b11-bridge" device, connects to a
PCI Express slot (e.g. one of the slots provided by the pcie-root
controller, aka "pcie.0" on the qemu commandline), and provides 31
*non-hot-pluggable* PCI (*not* PCIe) slots, numbered 1-31.
Any time a machine is defined which has a pcie-root controller
(i.e. any q35-based machinetype), libvirt will automatically add a
dmi-to-pci-bridge controller if one doesn't exist, and also add a
pci-bridge controller. The reasoning here is that any useful domain
will have either an immediate (startup time) or eventual (subsequent
hot-plug) need for a standard PCI slot; since the pcie-root controller
only provides PCIe slots, we need to connect a dmi-to-pci-bridge
controller to it in order to get a non-hot-plug PCI slot that we can
then use to connect a pci-bridge - the slots provided by the
pci-bridge will be both standard PCI and hot-pluggable.
Since pci-bridge devices themselves can not be hot-plugged into a
running system (although you can hot-plug other devices into a
pci-bridge's slots), any new pci-bridge controller that is added can
(and will) be plugged into the dmi-to-pci-bridge as long as it has
empty slots available.
This patch is also changing the qemuxml2xml-pcie test from a "DO_TEST"
to a "DO_DIFFERENT_TEST". This is so that the "before" xml can omit
the automatically added dmi-to-pci-bridge and pci-bridge devices, and
the "after" xml can include it - this way we are testing if libvirt is
properly adding these devices.
2013-07-31 05:37:32 +04:00
possible values < code > pci-root< / code > , < code > pcie-root< / code > ,
< code > pci-bridge< / code > , or < code > dmi-to-pci-bridge< / code > .
2013-08-12 15:39:04 +04:00
The root controllers (< code > pci-root< / code > and < code > pcie-root< / code > )
have an optional < code > pcihole64< / code > element specifying how big
(in kilobytes, or in the unit specified by < code > pcihole64< / code > 's
< code > unit< / code > attribute) the 64-bit PCI hole should be. Some guests (like
Windows XP or Windows Server 2003) might crash when QEMU and Seabios
are recent enough to support 64-bit PCI holes, unless this is disabled
(set to 0). < span class = "since" > Since 1.1.2 (QEMU only)< / span >
< / p >
< p >
2013-07-10 23:19:32 +04:00
For machine types which provide an implicit PCI bus, the pci-root
2013-04-17 19:05:15 +04:00
controller with index=0 is auto-added and required to use PCI devices.
2013-07-10 23:19:32 +04:00
pci-root has no address.
qemu: add dmi-to-pci-bridge controller
This PCI controller, named "dmi-to-pci-bridge" in the libvirt config,
and implemented with qemu's "i82801b11-bridge" device, connects to a
PCI Express slot (e.g. one of the slots provided by the pcie-root
controller, aka "pcie.0" on the qemu commandline), and provides 31
*non-hot-pluggable* PCI (*not* PCIe) slots, numbered 1-31.
Any time a machine is defined which has a pcie-root controller
(i.e. any q35-based machinetype), libvirt will automatically add a
dmi-to-pci-bridge controller if one doesn't exist, and also add a
pci-bridge controller. The reasoning here is that any useful domain
will have either an immediate (startup time) or eventual (subsequent
hot-plug) need for a standard PCI slot; since the pcie-root controller
only provides PCIe slots, we need to connect a dmi-to-pci-bridge
controller to it in order to get a non-hot-plug PCI slot that we can
then use to connect a pci-bridge - the slots provided by the
pci-bridge will be both standard PCI and hot-pluggable.
Since pci-bridge devices themselves can not be hot-plugged into a
running system (although you can hot-plug other devices into a
pci-bridge's slots), any new pci-bridge controller that is added can
(and will) be plugged into the dmi-to-pci-bridge as long as it has
empty slots available.
This patch is also changing the qemuxml2xml-pcie test from a "DO_TEST"
to a "DO_DIFFERENT_TEST". This is so that the "before" xml can omit
the automatically added dmi-to-pci-bridge and pci-bridge devices, and
the "after" xml can include it - this way we are testing if libvirt is
properly adding these devices.
2013-07-31 05:37:32 +04:00
PCI bridges are auto-added if there are too many devices to fit on
the one bus provided by pci-root, or a PCI bus number greater than zero
was specified.
2013-04-17 19:05:15 +04:00
PCI bridges can also be specified manually, but their addresses should
only refer to PCI buses provided by already specified PCI controllers.
Leaving gaps in the PCI controller indexes might lead to an invalid
configuration.
2013-07-10 23:19:32 +04:00
(pci-root and pci-bridge < span class = "since" > since 1.0.5< / span > )
2013-04-17 19:05:15 +04:00
< / p >
< pre >
...
< devices>
< controller type='pci' index='0' model='pci-root'/>
< controller type='pci' index='1' model='pci-bridge'>
2013-07-10 23:19:32 +04:00
< address type='pci' domain='0' bus='0' slot='5' function='0' multifunction='off'/>
2013-04-17 19:05:15 +04:00
< /controller>
< /devices>
2013-07-10 23:19:32 +04:00
...< / pre >
< p >
For machine types which provide an implicit PCI Express (PCIe)
bus (for example, the machine types based on the Q35 chipset),
the pcie-root controller with index=0 is auto-added to the
domain's configuration. pcie-root has also no address, provides
31 slots (numbered 1-31) and can only be used to attach PCIe
qemu: add dmi-to-pci-bridge controller
This PCI controller, named "dmi-to-pci-bridge" in the libvirt config,
and implemented with qemu's "i82801b11-bridge" device, connects to a
PCI Express slot (e.g. one of the slots provided by the pcie-root
controller, aka "pcie.0" on the qemu commandline), and provides 31
*non-hot-pluggable* PCI (*not* PCIe) slots, numbered 1-31.
Any time a machine is defined which has a pcie-root controller
(i.e. any q35-based machinetype), libvirt will automatically add a
dmi-to-pci-bridge controller if one doesn't exist, and also add a
pci-bridge controller. The reasoning here is that any useful domain
will have either an immediate (startup time) or eventual (subsequent
hot-plug) need for a standard PCI slot; since the pcie-root controller
only provides PCIe slots, we need to connect a dmi-to-pci-bridge
controller to it in order to get a non-hot-plug PCI slot that we can
then use to connect a pci-bridge - the slots provided by the
pci-bridge will be both standard PCI and hot-pluggable.
Since pci-bridge devices themselves can not be hot-plugged into a
running system (although you can hot-plug other devices into a
pci-bridge's slots), any new pci-bridge controller that is added can
(and will) be plugged into the dmi-to-pci-bridge as long as it has
empty slots available.
This patch is also changing the qemuxml2xml-pcie test from a "DO_TEST"
to a "DO_DIFFERENT_TEST". This is so that the "before" xml can omit
the automatically added dmi-to-pci-bridge and pci-bridge devices, and
the "after" xml can include it - this way we are testing if libvirt is
properly adding these devices.
2013-07-31 05:37:32 +04:00
devices. In order to connect standard PCI devices on a system
which has a pcie-root controller, a pci controller
with < code > model='dmi-to-pci-bridge'< / code > is automatically
added. A dmi-to-pci-bridge controller plugs into a PCIe slot (as
provided by pcie-root), and itself provides 31 standard PCI
slots (which are not hot-pluggable). In order to have
hot-pluggable PCI slots in the guest system, a pci-bridge
controller will also be automatically created and connected to
one of the slots of the auto-created dmi-to-pci-bridge
controller; all guest devices with PCI addresses that are
auto-determined by libvirt will be placed on this pci-bridge
device. (< span class = "since" > since 1.1.2< / span > ).
2013-07-10 23:19:32 +04:00
< / p >
< pre >
...
< devices>
< controller type='pci' index='0' model='pcie-root'/>
qemu: add dmi-to-pci-bridge controller
This PCI controller, named "dmi-to-pci-bridge" in the libvirt config,
and implemented with qemu's "i82801b11-bridge" device, connects to a
PCI Express slot (e.g. one of the slots provided by the pcie-root
controller, aka "pcie.0" on the qemu commandline), and provides 31
*non-hot-pluggable* PCI (*not* PCIe) slots, numbered 1-31.
Any time a machine is defined which has a pcie-root controller
(i.e. any q35-based machinetype), libvirt will automatically add a
dmi-to-pci-bridge controller if one doesn't exist, and also add a
pci-bridge controller. The reasoning here is that any useful domain
will have either an immediate (startup time) or eventual (subsequent
hot-plug) need for a standard PCI slot; since the pcie-root controller
only provides PCIe slots, we need to connect a dmi-to-pci-bridge
controller to it in order to get a non-hot-plug PCI slot that we can
then use to connect a pci-bridge - the slots provided by the
pci-bridge will be both standard PCI and hot-pluggable.
Since pci-bridge devices themselves can not be hot-plugged into a
running system (although you can hot-plug other devices into a
pci-bridge's slots), any new pci-bridge controller that is added can
(and will) be plugged into the dmi-to-pci-bridge as long as it has
empty slots available.
This patch is also changing the qemuxml2xml-pcie test from a "DO_TEST"
to a "DO_DIFFERENT_TEST". This is so that the "before" xml can omit
the automatically added dmi-to-pci-bridge and pci-bridge devices, and
the "after" xml can include it - this way we are testing if libvirt is
properly adding these devices.
2013-07-31 05:37:32 +04:00
< controller type='pci' index='1' model='dmi-to-pci-bridge'>
< address type='pci' domain='0' bus='0' slot='0xe' function='0'/>
< /controller>
< controller type='pci' index='2' model='pci-bridge'>
< address type='pci' domain='0' bus='1' slot='1' function='0'/>
< /controller>
2013-07-10 23:19:32 +04:00
< /devices>
2011-09-02 18:03:51 +04:00
...< / pre >
2010-12-09 21:25:11 +03:00
< h4 > < a name = "elementsLease" > Device leases< / a > < / h4 >
< p >
When using a lock manager, it may be desirable to record device leases
against a VM. The lock manager will ensure the VM won't start unless
the leases can be acquired.
< / p >
< pre >
...
< devices>
...
< lease>
< lockspace> somearea< /lockspace>
< key> somekey< /key>
< target path='/some/lease/path' offset='1024'/>
< /lease>
...
< /devices>
...< / pre >
< dl >
< dt > lockspace< / dt >
< dd > This is an arbitrary string, identifying the lockspace
within which the key is held. Lock managers may impose
extra restrictions on the format, or length of the lockspace
name.< / dd >
< dt > key< / dt >
< dd > This is an arbitrary string, uniquely identifying the
lease to be acquired. Lock managers may impose extra
restrictions on the format, or length of the key.
< / dd >
< dt > target< / dt >
< dd > This is the fully qualified path of the file associated
with the lockspace. The offset specifies where the lease
is stored within the file. If the lock manager does not
require a offset, just pass 0.
< / dd >
< / dl >
2011-01-18 00:33:00 +03:00
2012-11-23 17:50:29 +04:00
< h4 > < a name = "elementsHostDev" > Host device assignment< / a > < / h4 >
2013-05-21 12:55:42 +04:00
< h5 > < a name = "elementsHostDevSubsys" > USB / PCI / SCSI devices< / a > < / h5 >
2008-08-12 11:28:28 +04:00
< p >
2013-05-03 22:07:20 +04:00
USB, PCI and SCSI devices attached to the host can be passed through
2012-11-23 17:50:29 +04:00
to the guest using the < code > hostdev< / code > element.
2013-05-03 22:07:20 +04:00
< span class = "since" > since after 0.4.4 for USB, 0.6.0 for PCI(KVM only)
and 1.0.6 for SCSI(KVM only)< / span > :
2008-08-12 11:28:28 +04:00
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< hostdev mode='subsystem' type='usb'>
2012-10-02 17:14:02 +04:00
< source startupPolicy='optional'>
2010-02-04 17:27:52 +03:00
< vendor id='0x1234'/>
< product id='0xbeef'/>
< /source>
2011-02-03 15:06:21 +03:00
< boot order='2'/>
2010-02-04 17:27:52 +03:00
< /hostdev>
< /devices>
...< / pre >
2009-01-12 18:09:19 +03:00
< p > or:< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
2011-03-01 13:23:20 +03:00
< hostdev mode='subsystem' type='pci' managed='yes'>
2010-02-04 17:27:52 +03:00
< source>
2014-07-18 11:59:22 +04:00
< address domain='0x0000' bus='0x06' slot='0x02' function='0x0'/>
2010-02-04 17:27:52 +03:00
< /source>
2011-02-03 15:06:21 +03:00
< boot order='1'/>
2012-01-25 20:20:49 +04:00
< rom bar='on' file='/etc/fake/boot.bin'/>
2010-02-04 17:27:52 +03:00
< /hostdev>
< /devices>
2013-05-03 22:07:20 +04:00
...< / pre >
< p > or:< / p >
< pre >
...
< devices>
< hostdev mode='subsystem' type='scsi'>
< source>
< adapter name='scsi_host0'/>
< address type='scsi' bus='0' target='0' unit='0'/>
< /source>
< readonly/>
< address type='drive' controller='0' bus='0' target='0' unit='0'/>
< /hostdev>
< /devices>
2010-02-04 17:27:52 +03:00
...< / pre >
2008-08-12 11:28:28 +04:00
2014-07-09 18:08:34 +04:00
< p > or:< / p >
< pre >
...
< devices>
< hostdev mode='subsystem' type='scsi'>
< source protocol='iscsi' name='iqn.2014-08.com.example:iscsi-nopool/1'>
< host name='example.com' port='3260'/>
< auth username='myuser'>
< secret type='iscsi' usage='libvirtiscsi'/>
< /auth>
< /source>
< address type='drive' controller='0' bus='0' target='0' unit='0'/>
< /hostdev>
< /devices>
...< / pre >
2008-08-12 11:28:28 +04:00
< dl >
< dt > < code > hostdev< / code > < / dt >
< dd > The < code > hostdev< / code > element is the main container for describing
2014-07-09 18:08:34 +04:00
host devices. For each device, the < code > mode< / code > is always
"subsystem" and the < code > type< / code > is one of the following values
with additional attributes noted.
< dl >
< dt > usb< / dt >
< dd > For USB devices, the user is responsible to call
< code > virNodeDeviceDettach< / code > (or
< code > virsh nodedev-detach< / code > ) before starting the guest
or hot-plugging the device and < code > virNodeDeviceReAttach< / code >
(or < code > virsh nodedev-reattach< / code > ) after hot-unplug or
stopping the guest.
< / dd >
< dt > pci< / dt >
< dd > For PCI devices, when < code > managed< / code > is "yes" it is
detached from the host before being passed on to the guest
and reattached to the host after the guest exits. If
< code > managed< / code > is omitted or "no", follow the steps
described for a USB device to detach before starting the
guest or hot-plugging and reattach after stopping the guest
or hot-unplug.
< / dd >
< dt > scsi< / dt >
< dd > For SCSI devices, user is responsible to make sure the device
is not used by host. The optional < code > sgio< / code >
(< span class = "since" > since 1.0.6< / span > ) attribute indicates
whether the kernel will filter unprivileged SG_IO commands for
the disk, valid settings are "filtered" or "unfiltered".
The default is "filtered".
< / dd >
< / dl >
2013-05-03 22:07:40 +04:00
< / dd >
2008-08-12 11:28:28 +04:00
< dt > < code > source< / code > < / dt >
2014-07-09 18:08:34 +04:00
< dd > The source element describes the device as seen from the host using
the following mechanism to describe:
< dl >
< dt > usb< / dt >
< dd > The USB device can either be addressed by vendor / product id
using the < code > vendor< / code > and < code > product< / code > elements
or by the device's address on the host using the
< code > address< / code > element.
< p >
< span class = "since" > Since 1.0.0< / span > , the < code > source< / code >
element of USB devices may contain < code > startupPolicy< / code >
attribute which can be used to define policy what to do if the
specified host USB device is not found. The attribute accepts
the following values:
< / p >
< table class = "top_table" >
< tr >
< td > mandatory < / td >
< td > fail if missing for any reason (the default) < / td >
< / tr >
< tr >
< td > requisite < / td >
< td > fail if missing on boot up,
drop if missing on migrate/restore/revert < / td >
< / tr >
< tr >
< td > optional < / td >
< td > drop if missing at any start attempt < / td >
< / tr >
< / table >
< / dd >
< dt > pci< / dt >
< dd > PCI devices can only be described by their < code > address< / code > .
< / dd >
< dt > scsi< / dt >
< dd > SCSI devices are described by both the < code > adapter< / code >
and < code > address< / code > elements.
< p >
< span class = "since" > Since 1.2.8< / span > , the < code > source< / code >
element of a SCSI device may contain the < code > protocol< / code >
attribute. When the attribute is set to "iscsi", the host
device XML follows the network < a href = "#elementsDisks" > disk< / a >
device using the same < code > name< / code > attribute and optionally
using the < code > auth< / code > element to provide the authentication
credentials to the iSCSI server.
< / p >
< / dd >
< / dl >
2012-10-02 17:14:02 +04:00
< / dd >
2008-08-12 11:28:28 +04:00
< dt > < code > vendor< / code > , < code > product< / code > < / dt >
< dd > The < code > vendor< / code > and < code > product< / code > elements each have an
< code > id< / code > attribute that specifies the USB vendor and product id.
The ids can be given in decimal, hexadecimal (starting with 0x) or
octal (starting with 0) form.< / dd >
2011-02-03 15:06:21 +03:00
< dt > < code > boot< / code > < / dt >
< dd > Specifies that the device is bootable. The < code > order< / code >
attribute determines the order in which devices will be tried during
boot sequence. The per-device < code > boot< / code > elements cannot be
used together with general boot elements in
< a href = "#elementsOSBIOS" > BIOS bootloader< / a > section.
2012-11-21 21:21:09 +04:00
< span class = "since" > Since 0.8.8< / span > for PCI devices,
< span class = "since" > Since 1.0.1< / span > for USB devices.
2013-05-03 18:25:37 +04:00
< / dd >
2011-09-20 21:31:52 +04:00
< dt > < code > rom< / code > < / dt >
< dd > The < code > rom< / code > element is used to change how a PCI
2012-01-25 20:20:49 +04:00
device's ROM is presented to the guest. The optional < code > bar< / code >
2011-09-20 21:31:52 +04:00
attribute can be set to "on" or "off", and determines whether
or not the device's ROM will be visible in the guest's memory
map. (In PCI documentation, the "rombar" setting controls the
presence of the Base Address Register for the ROM). If no rom
bar is specified, the qemu default will be used (older
versions of qemu used a default of "off", while newer qemus
have a default of "on"). < span class = "since" > Since
2012-01-25 20:20:49 +04:00
0.9.7 (QEMU and KVM only)< / span > . The optional
< code > file< / code > attribute is used to point to a binary file
to be presented to the guest as the device's ROM BIOS. This
can be useful, for example, to provide a PXE boot ROM for a
virtual function of an sr-iov capable ethernet device (which
has no boot ROMs for the VFs).
< span class = "since" > Since 0.9.10 (QEMU and KVM only)< / span > .
2011-09-20 21:31:52 +04:00
< / dd >
2008-08-12 11:28:28 +04:00
< dt > < code > address< / code > < / dt >
2009-01-12 18:09:19 +03:00
< dd > The < code > address< / code > element for USB devices has a
< code > bus< / code > and < code > device< / code > attribute to specify the
USB bus and device number the device appears at on the host.
The values of these attributes can be given in decimal, hexadecimal
(starting with 0x) or octal (starting with 0) form.
2014-07-18 11:59:22 +04:00
For PCI devices the element carries 4 attributes allowing to designate
2009-01-12 18:09:19 +03:00
the device as can be found with the < code > lspci< / code > or
2011-12-10 03:33:51 +04:00
with < code > virsh
nodedev-list< / code > . < a href = "#elementsAddress" > See above< / a > for
2013-03-15 23:15:14 +04:00
more details on the address element.< / dd >
< dt > < code > driver< / code > < / dt >
< dd >
PCI devices can have an optional < code > driver< / code >
subelement that specifies which backend driver to use for PCI
device assignment. Use the < code > name< / code > attribute to
select either "vfio" (for the new VFIO device assignment
backend, which is compatible with UEFI SecureBoot) or "kvm"
2014-04-16 13:23:02 +04:00
(the legacy device assignment handled directly by the KVM
2013-03-15 23:15:14 +04:00
kernel module)< span class = "since" > Since 1.0.5 (QEMU and KVM
2014-04-16 13:23:02 +04:00
only, requires kernel 3.6 or newer)< / span > . When specified,
device assignment will fail if the requested method of device
assignment isn't available on the host. When not specified,
the default is "vfio" on systems where the VFIO driver is
available and loaded, and "kvm" on older systems, or those
where the VFIO driver hasn't been
loaded < span class = "since" > Since 1.1.3< / span > (prior to that
the default was always "kvm").
2013-03-15 23:15:14 +04:00
< / dd >
2013-05-03 22:07:25 +04:00
< dt > < code > readonly< / code > < / dt >
< dd > Indicates that the device is readonly, only supported by SCSI host
device now. < span class = "since" > Since 1.0.6 (QEMU and KVM only)< / span >
< / dd >
2013-05-03 22:07:33 +04:00
< dt > < code > shareable< / code > < / dt >
< dd > If present, this indicates the device is expected to be shared
between domains (assuming the hypervisor and OS support this).
Only supported by SCSI host device.
< span class = "since" > Since 1.0.6< / span >
2014-01-29 21:22:42 +04:00
< p >
Note: Although < code > shareable< / code > was introduced
< span class = "since" > in 1.0.6< / span > , it did not work as
as expected until < span class = "since" > 1.2.2< / span > .
< / p >
2013-05-03 22:07:33 +04:00
< / dd >
2008-08-12 11:28:28 +04:00
< / dl >
2012-11-23 17:50:29 +04:00
2013-05-21 12:55:42 +04:00
< h5 > < a name = "elementsHostDevCaps" > Block / character devices< / a > < / h5 >
2012-11-23 17:50:29 +04:00
< p >
Block / character devices from the host can be passed through
to the guest using the < code > hostdev< / code > element. This is
only possible with container based virtualization.
< span class = "since" > since after 1.0.1 for LXC< / span > :
< / p >
< pre >
...
< hostdev mode='capabilities' type='storage'>
< source>
< block> /dev/sdf1< /block>
< /source>
< /hostdev>
...
< / pre >
< pre >
...
< hostdev mode='capabilities' type='misc'>
< source>
< char> /dev/input/event3< /char>
< /source>
< /hostdev>
2013-04-05 16:26:39 +04:00
...
< / pre >
2013-04-09 18:29:39 +04:00
< pre >
2013-04-05 16:26:39 +04:00
...
< hostdev mode='capabilities' type='net'>
< source>
< interface> eth0< /interface>
< /source>
< /hostdev>
2012-11-23 17:50:29 +04:00
...
< / pre >
< dl >
< dt > < code > hostdev< / code > < / dt >
< dd > The < code > hostdev< / code > element is the main container for describing
host devices. For block/character device passthrough < code > mode< / code > is
2014-06-19 13:45:13 +04:00
always "capabilities" and < code > type< / code > is "storage" for a block
device, "misc" for a character device and "net" for a host network
2013-04-05 16:26:39 +04:00
interface.
2012-11-23 17:50:29 +04:00
< / dd >
< dt > < code > source< / code > < / dt >
< dd > The source element describes the device as seen from the host.
For block devices, the path to the block device in the host
OS is provided in the nested "block" element, while for character
2013-04-05 16:26:39 +04:00
devices the "char" element is used. For network interfaces, the
name of the interface is provided in the "interface" element.
2012-11-23 17:50:29 +04:00
< / dd >
< / dl >
2011-09-02 19:09:14 +04:00
< h4 > < a name = "elementsRedir" > Redirected devices< / a > < / h4 >
< p >
USB device redirection through a character device is
supported < span class = "since" > since after 0.9.5 (KVM
only)< / span > :
< / p >
< pre >
...
< devices>
< redirdev bus='usb' type='tcp'>
< source mode='connect' host='localhost' service='4000'/>
2012-11-21 21:21:09 +04:00
< boot order='1'/>
2011-09-02 19:09:14 +04:00
< /redirdev>
2012-09-13 11:25:48 +04:00
< redirfilter>
< usbdev class='0x08' vendor='0x1234' product='0xbeef' version='2.00' allow='yes'/>
< usbdev allow='no'/>
< /redirfilter>
2011-09-02 19:09:14 +04:00
< /devices>
...< / pre >
< dl >
< dt > < code > redirdev< / code > < / dt >
< dd > The < code > redirdev< / code > element is the main container for
describing redirected devices. < code > bus< / code > must be "usb"
for a USB device.
An additional attribute < code > type< / code > is required,
matching one of the
supported < a href = "#elementsConsole" > serial device< / a > types,
to describe the host side of the
tunnel; < code > type='tcp'< / code >
or < code > type='spicevmc'< / code > (which uses the usbredir
channel of a < a href = "#elementsGraphics" > SPICE graphics
2012-11-21 21:22:37 +04:00
device< / a > ) are typical. The redirdev element has an optional
sub-element < code > < address> < / code > which can tie the
2012-09-13 11:25:48 +04:00
device to a particular controller. Further sub-elements,
such as < code > < source> < / code > , may be required according
to the given type, although a < code > < target> < / code > sub-element
is not required (since the consumer of the character device is
2012-11-21 21:21:09 +04:00
the hypervisor itself, rather than a device visible in the guest).
< / dd >
< dt > < code > boot< / code > < / dt >
< dd > Specifies that the device is bootable.
The < code > order< / code > attribute determines the order in which
devices will be tried during boot sequence. The per-device
< code > boot< / code > elements cannot be used together with general
boot elements in < a href = "#elementsOSBIOS" > BIOS bootloader< / a > section.
(< span class = "since" > Since 1.0.1< / span > )
2012-09-13 11:25:48 +04:00
< / dd >
< dt > < code > redirfilter< / code > < / dt >
< dd > The< code > redirfilter < / code > element is used for creating the
filter rule to filter out certain devices from redirection.
2012-11-21 21:22:37 +04:00
It uses sub-element < code > < usbdev> < / code > to define each filter rule.
< code > class< / code > attribute is the USB Class code, for example,
2012-09-13 11:25:48 +04:00
0x08 represents mass storage devices. The USB device can be addressed by
2012-11-21 21:22:37 +04:00
vendor / product id using the < code > vendor< / code > and < code > product< / code > attributes.
2012-09-13 11:25:48 +04:00
< code > version< / code > is the bcdDevice value of USB device, such as 1.00, 1.10 and 2.00.
These four attributes are optional and < code > -1< / code > can be used to allow
2012-11-21 21:22:37 +04:00
any value for them. < code > allow< / code > attribute is mandatory,
2012-09-13 11:25:48 +04:00
'yes' means allow, 'no' for deny.
< / dd >
2011-09-02 19:09:14 +04:00
< / dl >
2011-01-06 04:02:20 +03:00
< h4 > < a name = "elementsSmartcard" > Smartcard devices< / a > < / h4 >
< p >
A virtual smartcard device can be supplied to the guest via the
< code > smartcard< / code > element. A USB smartcard reader device on
the host cannot be used on a guest with simple device
passthrough, since it will then not be available on the host,
possibly locking the host computer when it is "removed".
Therefore, some hypervisors provide a specialized virtual device
that can present a smartcard interface to the guest, with
several modes for describing how credentials are obtained from
the host or even a from a channel created to a third-party
smartcard provider. < span class = "since" > Since 0.8.8< / span >
< / p >
< pre >
...
< devices>
< smartcard mode='host'/>
< smartcard mode='host-certificates'>
< certificate> cert1< /certificate>
< certificate> cert2< /certificate>
< certificate> cert3< /certificate>
< database> /etc/pki/nssdb/< /database>
< /smartcard>
< smartcard mode='passthrough' type='tcp'>
< source mode='bind' host='127.0.0.1' service='2001'/>
< protocol type='raw'/>
< address type='ccid' controller='0' slot='0'/>
< /smartcard>
2011-02-04 05:23:31 +03:00
< smartcard mode='passthrough' type='spicevmc'/>
2011-01-06 04:02:20 +03:00
< /devices>
...
< / pre >
< p >
The < code > < smartcard> < / code > element has a mandatory
attribute < code > mode< / code > . The following modes are supported;
in each mode, the guest sees a device on its USB bus that
behaves like a physical USB CCID (Chip/Smart Card Interface
Device) card.
< / p >
< dl >
< dt > < code > mode='host'< / code > < / dt >
< dd > The simplest operation, where the hypervisor relays all
requests from the guest into direct access to the host's
smartcard via NSS. No other attributes or sub-elements are
required. See below about the use of an
optional < code > < address> < / code > sub-element.< / dd >
< dt > < code > mode='host-certificates'< / code > < / dt >
< dd > Rather than requiring a smartcard to be plugged into the
host, it is possible to provide three NSS certificate names
residing in a database on the host. These certificates can be
generated via the command < code > certutil -d /etc/pki/nssdb -x -t
CT,CT,CT -S -s CN=cert1 -n cert1< / code > , and the resulting three
certificate names must be supplied as the content of each of
three < code > < certificate> < / code > sub-elements. An
additional sub-element < code > < database> < / code > can specify
the absolute path to an alternate directory (matching
the < code > -d< / code > option of the < code > certutil< / code > command
when creating the certificates); if not present, it defaults to
/etc/pki/nssdb.< / dd >
< dt > < code > mode='passthrough'< / code > < / dt >
< dd > Rather than having the hypervisor directly communicate with
the host, it is possible to tunnel all requests through a
secondary character device to a third-party provider (which may
in turn be talking to a smartcard or using three certificate
files). In this mode of operation, an additional
attribute < code > type< / code > is required, matching one of the
supported < a href = "#elementsConsole" > serial device< / a > types, to
2011-02-04 05:23:31 +03:00
describe the host side of the tunnel; < code > type='tcp'< / code >
or < code > type='spicevmc'< / code > (which uses the smartcard
channel of a < a href = "#elementsGraphics" > SPICE graphics
device< / a > ) are typical. Further sub-elements, such
as < code > < source> < / code > , may be required according to the
2011-01-06 04:02:20 +03:00
given type, although a < code > < target> < / code > sub-element
is not required (since the consumer of the character device is
the hypervisor itself, rather than a device visible in the
guest).< / dd >
< / dl >
< p >
Each mode supports an optional
sub-element < code > < address> < / code > , which fine-tunes the
2011-12-10 03:33:51 +04:00
correlation between the smartcard and a ccid bus
controller, < a href = "#elementsAddress" > documented above< / a > .
For now, qemu only supports at most one
2011-01-06 04:02:20 +03:00
smartcard, with an address of bus=0 slot=0.
< / p >
2008-05-08 18:20:07 +04:00
< h4 > < a name = "elementsNICS" > Network interfaces< / a > < / h4 >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='bridge'>
< source bridge='xenbr0'/>
< mac address='00:16:3e:5d:c7:9e'/>
< script path='vif-bridge'/>
2011-01-12 17:19:34 +03:00
< boot order='1'/>
2012-01-25 04:54:12 +04:00
< rom bar='off'/>
2010-02-04 17:27:52 +03:00
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2011-01-18 00:33:00 +03:00
< p >
There are several possibilities for specifying a network
interface visible to the guest. Each subsection below provides
more details about common setup options. Additionally,
each < code > < interface> < / code > element has an
optional < code > < address> < / code > sub-element that can tie
the interface to a particular pci slot, with
2011-12-10 03:33:51 +04:00
attribute < code > type='pci'< / code >
as < a href = "#elementsAddress" > documented above< / a > .
2011-01-18 00:33:00 +03:00
< / p >
2008-05-08 18:20:07 +04:00
< h5 > < a name = "elementsNICSVirtual" > Virtual network< / a > < / h5 >
< p >
< strong > < em >
This is the recommended config for general guest connectivity on
2011-06-26 12:09:00 +04:00
hosts with dynamic / wireless networking configs (or multi-host
environments where the host hardware details are described
separately in a < code > < network> < / code >
definition < span class = "since" > Since 0.9.4< / span > ).
2008-05-08 18:20:07 +04:00
< / em > < / strong >
< / p >
< p >
2011-06-26 12:09:00 +04:00
Provides a connection whose details are described by the named
network definition. Depending on the virtual network's "forward
mode" configuration, the network may be totally isolated
(no < code > < forward> < / code > element given), NAT'ing to an
explicit network device or to the default route
(< code > < forward mode='nat'> < / code > ), routed with no NAT
(< code > < forward mode='route'/> < / code > ), or connected
directly to one of the host's network interfaces (via macvtap)
or bridge devices ((< code > < forward
mode='bridge|private|vepa|passthrough'/> < / code > < span class = "since" > Since
0.9.4< / span > )
< / p >
< p >
For networks with a forward mode of bridge, private, vepa, and
passthrough, it is assumed that the host has any necessary DNS
and DHCP services already setup outside the scope of libvirt. In
the case of isolated, nat, and routed networks, DHCP and DNS are
provided on the virtual network by libvirt, and the IP range can
be determined by examining the virtual network config with
'< code > virsh net-dumpxml [networkname]< / code > '. There is one
virtual network called 'default' setup out of the box which does
NAT'ing to the default route and has an IP range
of < code > 192.168.122.0/255.255.255.0< / code > . Each guest will
have an associated tun device created with a name of vnetN,
which can also be overridden with the < target> element
(see
2009-11-20 18:25:58 +03:00
< a href = "#elementsNICSTargetOverride" > overriding the target element< / a > ).
2008-05-08 18:20:07 +04:00
< / p >
2011-06-26 12:09:00 +04:00
< p >
When the source of an interface is a network,
a < code > portgroup< / code > can be specified along with the name of
the network; one network may have multiple portgroups defined,
with each portgroup containing slightly different configuration
information for different classes of network
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
connections. < span class = "since" > Since 0.9.4< / span > .
< / p >
< p >
Also, similar to < code > direct< / code > network connections
(described below), a connection of type < code > network< / code > may
specify a < code > virtualport< / code > element, with configuration
data to be forwarded to a vepa (802.1Qbg) or 802.1Qbh compliant
switch (< span class = "since" > Since 0.8.2< / span > ), or to an
Open vSwitch virtual switch (< span class = "since" > Since
0.9.11< / span > ).
< / p >
< p >
Since the actual type of switch may vary depending on the
configuration in the < code > < network> < / code > on the host,
it is acceptable to omit the virtualport < code > type< / code >
attribute, and specify attributes from multiple different
virtualport types (and also to leave out certain attributes); at
domain startup time, a complete < code > < virtualport> < / code >
element will be constructed by merging together the type and
2013-01-03 11:13:04 +04:00
attributes defined in the network and the portgroup referenced
by the interface. The newly-constructed virtualport is a combination
of them. The attributes from lower virtualport can't make change
on the ones defined in higher virtualport.
Interface takes the highest priority, portgroup is lowest priority.
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
(< span class = "since" > Since 0.10.0< / span > ). For example, in order
to work properly with both an 802.1Qbh switch and an Open vSwitch
switch, you may choose to specify no type, but both
2013-01-03 11:13:04 +04:00
an < code > profileid< / code > (in case the switch is 802.1Qbh) and
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
an < code > interfaceid< / code > (in case the switch is Open vSwitch)
(you may also omit the other attributes, such as managerid,
typeid, or profileid, to be filled in from the
network's < code > < virtualport> < / code > ). If you want to
limit a guest to connecting only to certain types of switches,
you can specify the virtualport type, but still omit some/all of
the parameters - in this case if the host's network has a
different type of virtualport, connection of the interface will
fail.
2011-06-26 12:09:00 +04:00
< / p >
2008-05-08 18:20:07 +04:00
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< /interface>
...
< interface type='network'>
2011-06-26 12:09:00 +04:00
< source network='default' portgroup='engineering'/>
2010-02-04 17:27:52 +03:00
< target dev='vnet7'/>
2010-04-09 16:38:12 +04:00
< mac address="00:11:22:33:44:55"/>
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
< virtualport>
< parameters instanceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
2011-06-26 12:09:00 +04:00
< /virtualport>
2010-02-04 17:27:52 +03:00
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-09-22 14:54:57 +04:00
< h5 > < a name = "elementsNICSBridge" > Bridge to LAN< / a > < / h5 >
2008-05-08 18:20:07 +04:00
< p >
< strong > < em >
This is the recommended config for general guest connectivity on
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
hosts with static wired networking configs.
2008-05-08 18:20:07 +04:00
< / em > < / strong >
< / p >
< p >
2013-04-20 00:18:14 +04:00
Provides a bridge from the VM directly to the LAN. This assumes
2008-05-08 18:20:07 +04:00
there is a bridge device on the host which has one or more of the hosts
physical NICs enslaved. The guest VM will have an associated tun device
created with a name of vnetN, which can also be overridden with the
2009-11-20 18:25:58 +03:00
< target> element (see
< a href = "#elementsNICSTargetOverride" > overriding the target element< / a > ).
The tun device will be enslaved to the bridge. The IP range / network
configuration is whatever is used on the LAN. This provides the guest VM
full incoming & outgoing net access just like a physical machine.
2008-05-08 18:20:07 +04:00
< / p >
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
< p >
On Linux systems, the bridge device is normally a standard Linux
host bridge. On hosts that support Open vSwitch, it is also
possible to connect to an open vSwitch bridge device by adding
a < code > < virtualport type='openvswitch'/> < / code > to the
interface definition. (< span class = "since" > Since
0.9.11< / span > ). The Open vSwitch type virtualport accepts two
parameters in its < code > < parameters> < / code > element -
an < code > interfaceid< / code > which is a standard uuid used to
uniquely identify this particular interface to Open vSwitch (if
2013-10-25 07:51:06 +04:00
you do not specify one, a random interfaceid will be generated
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
for you when you first define the interface), and an
optional < code > profileid< / code > which is sent to Open vSwitch as
the interfaces "port-profile".
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
...
2010-02-04 17:27:52 +03:00
< interface type='bridge'>
< source bridge='br0'/>
< /interface>
< interface type='bridge'>
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
< source bridge='br1'/>
2010-02-04 17:27:52 +03:00
< target dev='vnet7'/>
2010-04-09 16:38:12 +04:00
< mac address="00:11:22:33:44:55"/>
2010-02-04 17:27:52 +03:00
< /interface>
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
< interface type='bridge'>
< source bridge='ovsbr'/>
2012-12-14 19:28:57 +04:00
< virtualport type='openvswitch'>
network: merge relevant virtualports rather than choosing one
One of the original ideas behind allowing a <virtualport> in an
interface definition as well as in the <network> definition *and*one
or more <portgroup>s within the network, was that guest-specific
parameteres (like instanceid and interfaceid) could be given in the
interface's virtualport, and more general things (portid, managerid,
etc) could be given in the network and/or portgroup, with all the bits
brought together at guest startup time and combined into a single
virtualport to be used by the guest. This was somehow overlooked in
the implementation, though - it simply picks the "most specific"
virtualport, and uses the entire thing, with no attempt to merge in
details from the others.
This patch uses virNetDevVPortProfileMerge3() to combine the three
possible virtualports into one, then uses
virNetDevVPortProfileCheck*() to verify that the resulting virtualport
type is appropriate for the type of network, and that all the required
attributes for that type are present.
An example of usage is this: assuming a <network> definitions on host
ABC of:
<network>
<name>testA</name>
...
<virtualport type='openvswitch'/>
...
<portgroup name='engineering'>
<virtualport>
<parameters profileid='eng'/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters profileid='sales'/>
</virtualport>
</portgroup>
</network>
and the same <network> on host DEF of:
<network>
<name>testA</name>
...
<virtualport type='802.1Qbg'>
<parameters typeid="1193047" typeidversion="2"/>
</virtualport>
...
<portgroup name='engineering'>
<virtualport>
<parameters managerid="11"/>
</virtualport>
</portgroup>
<portgroup name='sales'>
<virtualport>
<parameters managerid="55"/>
</virtualport>
</portgroup>
</network>
and a guest <interface> definition of:
<interface type='network'>
<source network='testA' portgroup='sales'/>
<virtualport>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
interfaceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"\>
</virtualport>
...
</interface>
If the guest was started on host ABC, the <virtualport> used would be:
<virtualport type='openvswitch'>
<parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'
profileid='sales'/>
</virtualport>
but if that guest was started on host DEF, the <virtualport> would be:
<virtualport type='802.1Qbg'>
<parameters instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"
typeid="1193047" typeidversion="2"
managerid="55"/>
</virtualport>
Additionally, if none of the involved <virtualport>s had a specified type
(this includes cases where no virtualport is given at all),
2012-08-02 22:10:00 +04:00
< parameters profileid='menial' interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
< /virtualport>
< /interface>
...
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< h5 > < a name = "elementsNICSSlirp" > Userspace SLIRP stack< / a > < / h5 >
< p >
Provides a virtual LAN with NAT to the outside world. The virtual
network has DHCP & DNS services and will give the guest VM addresses
starting from < code > 10.0.2.15< / code > . The default router will be
< code > 10.0.2.2< / code > and the DNS server will be < code > 10.0.2.3< / code > .
This networking is the only option for unprivileged users who need their
VMs to have outgoing access.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='user'/>
...
< interface type='user'>
2010-04-09 16:38:12 +04:00
< mac address="00:11:22:33:44:55"/>
2010-02-04 17:27:52 +03:00
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< h5 > < a name = "elementsNICSEthernet" > Generic ethernet connection< / a > < / h5 >
< p >
Provides a means for the administrator to execute an arbitrary script
to connect the guest's network to the LAN. The guest will have a tun
device created with a name of vnetN, which can also be overridden with the
< target> element. After creating the tun device a shell script will
be run which is expected to do whatever host network integration is
required. By default this script is called /etc/qemu-ifup but can be
overridden.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='ethernet'/>
...
< interface type='ethernet'>
< target dev='vnet7'/>
< script path='/etc/qemu-ifup-mynet'/>
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2010-02-24 12:29:23 +03:00
< h5 > < a name = "elementsNICSDirect" > Direct attachment to physical interface< / a > < / h5 >
< p >
Provides direct attachment of the virtual machine's NIC to the given
2013-07-30 12:21:11 +04:00
physical interface of the host.
2011-04-02 02:02:10 +04:00
< span class = "since" > Since 0.7.7 (QEMU and KVM only)< / span > < br / >
2010-03-26 18:53:32 +03:00
This setup requires the Linux macvtap
driver to be available. < span class = "since" > (Since Linux 2.6.34.)< / span >
One of the modes 'vepa'
2010-03-05 17:41:38 +03:00
( < a href = "http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf" >
2011-03-09 02:15:47 +03:00
'Virtual Ethernet Port Aggregator'< / a > ), 'bridge' or 'private'
2010-02-24 12:29:23 +03:00
can be chosen for the operation mode of the macvtap device, 'vepa'
2010-03-05 17:41:38 +03:00
being the default mode. The individual modes cause the delivery of
packets to behave as follows:
2010-02-24 12:29:23 +03:00
< / p >
2010-03-05 17:41:38 +03:00
< dl >
< dt > < code > vepa< / code > < / dt >
< dd > All VMs' packets are sent to the external bridge. Packets
whose destination is a VM on the same host as where the
packet originates from are sent back to the host by the VEPA
capable bridge (today's bridges are typically not VEPA capable).< / dd >
< dt > < code > bridge< / code > < / dt >
< dd > Packets whose destination is on the same host as where they
originate from are directly delivered to the target macvtap device.
Both origin and destination devices need to be in bridge mode
for direct delivery. If either one of them is in < code > vepa< / code > mode,
2011-04-02 02:02:10 +04:00
a VEPA capable bridge is required.< / dd >
2010-03-05 17:41:38 +03:00
< dt > < code > private< / code > < / dt >
< dd > All packets are sent to the external bridge and will only be
delivered to a target VM on the same host if they are sent through an
external router or gateway and that device sends them back to the
host. This procedure is followed if either the source or destination
device is in < code > private< / code > mode.< / dd >
2011-05-17 15:26:09 +04:00
< dt > < code > passthrough< / code > < / dt >
< dd > This feature attaches a virtual function of a SRIOV capable
NIC directly to a VM without losing the migration capability.
All packets are sent to the VF/IF of the configured network device.
Depending on the capabilities of the device additional prerequisites or
limitations may apply; for example, on Linux this requires
kernel 2.6.38 or newer. < span class = "since" > Since 0.9.2< / span > < / dd >
2010-03-05 17:41:38 +03:00
< / dl >
2010-02-24 12:29:23 +03:00
< pre >
...
< devices>
...
< interface type='direct'>
< source dev='eth0' mode='vepa'/>
< /interface>
< /devices>
...< / pre >
2011-03-11 12:47:57 +03:00
< p >
The network access of direct attached virtual machines can be
managed by the hardware switch to which the physical interface
of the host machine is connected to.
2011-03-11 20:08:24 +03:00
< / p >
2011-03-11 12:47:57 +03:00
< p >
The interface can have additional parameters as shown below,
if the switch is conforming to the IEEE 802.1Qbg standard.
The parameters of the virtualport element are documented in more detail
in the IEEE 802.1Qbg standard. The values are network specific and
should be provided by the network administrator. In 802.1Qbg terms,
the Virtual Station Interface (VSI) represents the virtual interface
2011-06-23 20:35:30 +04:00
of a virtual machine. < span class = "since" > Since 0.8.2< / span >
2011-03-11 12:47:57 +03:00
< / p >
2011-05-02 18:49:03 +04:00
< p >
Please note that IEEE 802.1Qbg requires a non-zero value for the
VLAN ID.
< / p >
2011-03-11 12:47:57 +03:00
< dl >
< dt > < code > managerid< / code > < / dt >
< dd > The VSI Manager ID identifies the database containing the VSI type
and instance definitions. This is an integer value and the
value 0 is reserved.< / dd >
< dt > < code > typeid< / code > < / dt >
< dd > The VSI Type ID identifies a VSI type characterizing the network
access. VSI types are typically managed by network administrator.
This is an integer value.
< / dd >
< dt > < code > typeidversion< / code > < / dt >
< dd > The VSI Type Version allows multiple versions of a VSI Type.
This is an integer value.
< / dd >
< dt > < code > instanceid< / code > < / dt >
< dd > The VSI Instance ID Identifier is generated when a VSI instance
(i.e. a virtual interface of a virtual machine) is created.
This is a globally unique identifier.
< / dd >
< / dl >
< pre >
...
< devices>
...
< interface type='direct'>
2011-05-02 18:49:03 +04:00
< source dev='eth0.2' mode='vepa'/>
2011-03-11 12:47:57 +03:00
< virtualport type="802.1Qbg">
< parameters managerid="11" typeid="1193047" typeidversion="2" instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/>
< /virtualport>
< /interface>
< /devices>
...< / pre >
2010-02-24 12:29:23 +03:00
2011-06-23 20:35:30 +04:00
< p >
The interface can have additional parameters as shown below
if the switch is conforming to the IEEE 802.1Qbh standard.
The values are network specific and should be provided by the
network administrator. < span class = "since" > Since 0.8.2< / span >
< / p >
< dl >
< dt > < code > profileid< / code > < / dt >
< dd > The profile ID contains the name of the port profile that is to
2013-04-20 00:18:14 +04:00
be applied to this interface. This name is resolved by the port
2011-06-23 20:35:30 +04:00
profile database into the network parameters from the port profile,
and those network parameters will be applied to this interface.
< / dd >
< / dl >
< pre >
...
< devices>
...
< interface type='direct'>
< source dev='eth0' mode='private'/>
< virtualport type='802.1Qbh'>
< parameters profileid='finance'/>
< /virtualport>
< /interface>
< /devices>
...
< / pre >
2012-02-15 21:37:15 +04:00
< h5 > < a name = "elementsNICSHostdev" > PCI Passthrough< / a > < / h5 >
< p >
A PCI network device (specified by the < source> element)
is directly assigned to the guest using generic device
passthrough, after first optionally setting the device's MAC
address to the configured value, and associating the device with
2012-06-14 21:26:19 +04:00
an 802.1Qbh capable switch using an optionally specified
2012-06-12 01:16:17 +04:00
< virtualport> element (see the examples of virtualport
2012-02-15 21:37:15 +04:00
given above for type='direct' network devices). Note that - due
to limitations in standard single-port PCI ethernet card driver
design - only SR-IOV (Single Root I/O Virtualization) virtual
function (VF) devices can be assigned in this manner; to assign
a standard single-port PCI or PCIe ethernet card to a guest, use
the traditional < hostdev> device definition and
< span class = "since" > Since 0.9.11< / span >
< / p >
2013-03-15 23:15:14 +04:00
< p >
To use VFIO device assignment rather than traditional/legacy KVM
device assignment (VFIO is a new method of device assignment
that is compatible with UEFI Secure Boot), a type='hostdev'
interface can have an optional < code > driver< / code > sub-element
with a < code > name< / code > attribute set to "vfio". To use legacy
KVM device assignment you can set < code > name< / code > to "kvm" (or
simply omit the < code > < driver> < / code > element, since "kvm"
is currently the default).
< span class = "since" > Since 1.0.5 (QEMU and KVM only, requires kernel 3.6 or newer)< / span >
< / p >
2012-02-15 21:37:15 +04:00
< p >
Note that this "intelligent passthrough" of network devices is
very similar to the functionality of a standard < hostdev>
device, the difference being that this method allows specifying
a MAC address and < virtualport> for the passed-through
device. If these capabilities are not required, if you have a
standard single-port PCI, PCIe, or USB network card that doesn't
support SR-IOV (and hence would anyway lose the configured MAC
address during reset after being assigned to the guest domain),
or if you are using a version of libvirt older than 0.9.11, you
should use standard < hostdev> to assign the device to the
guest instead of < interface type='hostdev'/> .
< / p >
2014-05-08 10:44:05 +04:00
< p >
Similar to the functionality of a standard < hostdev> device,
when < code > managed< / code > is "yes", it is detached from the host
before being passed on to the guest, and reattached to the host
after the guest exits. If < code > managed< / code > is omitted or "no",
the user is responsible to call < code > virNodeDeviceDettach< / code >
2014-07-09 18:08:34 +04:00
(or < code > virsh nodedev-detach< / code > ) before starting the guest
2014-05-08 10:44:05 +04:00
or hot-plugging the device, and < code > virNodeDeviceReAttach< / code >
(or < code > virsh nodedev-reattach< / code > ) after hot-unplug or
stopping the guest.
< / p >
2012-02-15 21:37:15 +04:00
< pre >
...
< devices>
2014-05-08 10:44:05 +04:00
< interface type='hostdev' managed='yes'>
2013-03-15 23:15:14 +04:00
< driver name='vfio'/>
2012-02-15 21:37:15 +04:00
< source>
< address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
< /source>
< mac address='52:54:00:6d:90:02'>
< virtualport type='802.1Qbh'>
< parameters profileid='finance'/>
< /virtualport>
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< h5 > < a name = "elementsNICSMulticast" > Multicast tunnel< / a > < / h5 >
< p >
A multicast group is setup to represent a virtual network. Any VMs
whose network devices are in the same multicast group can talk to each
other even across hosts. This mode is also available to unprivileged
users. There is no default DNS or DHCP support and no outgoing network
access. To provide outgoing network access, one of the VMs should have a
2nd NIC which is connected to one of the first 4 network types and do the
appropriate routing. The multicast protocol is compatible with that used
by user mode linux guests too. The source address used must be from the
multicast address block.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='mcast'>
2012-01-25 05:09:20 +04:00
< mac address='52:54:00:6d:90:01'>
2010-02-04 17:27:52 +03:00
< source address='230.0.0.1' port='5558'/>
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< h5 > < a name = "elementsNICSTCP" > TCP tunnel< / a > < / h5 >
< p >
A TCP client/server architecture provides a virtual network. One VM
provides the server end of the network, all other VMS are configured as
clients. All network traffic is routed between the VMs via the server.
This mode is also available to unprivileged users. There is no default
DNS or DHCP support and no outgoing network access. To provide outgoing
network access, one of the VMs should have a 2nd NIC which is connected
to one of the first 4 network types and do the appropriate routing.< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='server'>
2012-01-25 05:09:20 +04:00
< mac address='52:54:00:22:c9:42'>
2008-05-08 18:20:07 +04:00
< source address='192.168.0.1' port='5558'/>
2010-02-04 17:27:52 +03:00
< /interface>
...
< interface type='client'>
2012-01-25 05:09:20 +04:00
< mac address='52:54:00:8b:c9:51'>
< source address='192.168.0.1' port='5558'/>
2010-02-04 17:27:52 +03:00
< /interface>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2008-10-13 19:25:38 +04:00
< h5 > < a name = "elementsNICSModel" > Setting the NIC model< / a > < / h5 >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet1'/>
< b > < model type='ne2k_pci'/> < / b >
< /interface>
< /devices>
...< / pre >
2008-10-13 19:25:38 +04:00
< p >
For hypervisors which support this, you can set the model of
emulated network interface card.
< / p >
< p >
The values for < code > type< / code > aren't defined specifically by
libvirt, but by what the underlying hypervisor supports (if
any). For QEMU and KVM you can get a list of supported models
with these commands:
< / p >
< pre >
qemu -net nic,model=? /dev/null
qemu-kvm -net nic,model=? /dev/null
< / pre >
< p >
Typical values for QEMU and KVM include:
ne2k_isa i82551 i82557b i82559er ne2k_pci pcnet rtl8139 e1000 virtio
< / p >
2008-05-08 18:20:07 +04:00
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
< h5 > < a name = "elementsDriverBackendOptions" > Setting NIC driver-specific options< / a > < / h5 >
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet1'/>
< model type='virtio'/>
2013-04-10 14:19:37 +04:00
< b > < driver name='vhost' txmode='iothread' ioeventfd='on' event_idx='off' queues='5'/> < / b >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
< /interface>
< /devices>
...< / pre >
< p >
Some NICs may have tunable driver-specific options. These are
set as attributes of the < code > driver< / code > sub-element of the
interface definition. Currently the following attributes are
available for the < code > "virtio"< / code > NIC driver:
< / p >
< dl >
2011-03-09 02:35:17 +03:00
< dt > < code > name< / code > < / dt >
< dd >
The optional < code > name< / code > attribute forces which type of
backend driver to use. The value can be either 'qemu' (a
user-space backend) or 'vhost' (a kernel backend, which
requires the vhost module to be provided by the kernel); an
attempt to require the vhost driver without kernel support
will be rejected. If this attribute is not present, then the
domain defaults to 'vhost' if present, but silently falls back
to 'qemu' without error.
< span class = "since" > Since 0.8.8 (QEMU and KVM only)< / span >
< / dd >
2013-03-15 23:15:14 +04:00
< dd >
For interfaces of type='hostdev' (PCI passthrough devices)
the < code > name< / code > attribute can optionally be set to
"vfio" or "kvm". "vfio" tells libvirt to use VFIO device
assignment rather than traditional KVM device assignment (VFIO
is a new method of device assignment that is compatible with
UEFI Secure Boot), and "kvm" tells libvirt to use the legacy
device assignment performed directly by the kvm kernel module
(the default is currently "kvm", but is subject to change).
< span class = "since" > Since 1.0.5 (QEMU and KVM only, requires
kernel 3.6 or newer)< / span >
< / dd >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
< dt > < code > txmode< / code > < / dt >
< dd >
The < code > txmode< / code > attribute specifies how to handle
transmission of packets when the transmit buffer is full. The
value can be either 'iothread' or 'timer'.
2011-04-02 02:02:10 +04:00
< span class = "since" > Since 0.8.8 (QEMU and KVM only)< / span > < br / > < br / >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
If set to 'iothread', packet tx is all done in an iothread in
the bottom half of the driver (this option translates into
adding "tx=bh" to the qemu commandline -device virtio-net-pci
2011-04-02 02:02:10 +04:00
option).< br / > < br / >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
If set to 'timer', tx work is done in qemu, and if there is
more tx data than can be sent at the present time, a timer is
set before qemu moves on to do other things; when the timer
2011-04-02 02:02:10 +04:00
fires, another attempt is made to send more data.< br / > < br / >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
The resulting difference, according to the qemu developer who
added the option is: "bh makes tx more asynchronous and reduces
latency, but potentially causes more processor bandwidth
contention since the cpu doing the tx isn't necessarily the
2011-04-02 02:02:10 +04:00
cpu where the guest generated the packets."< br / > < br / >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
2011-06-20 12:26:47 +04:00
< b > In general you should leave this option alone, unless you
are very certain you know what you are doing.< / b >
< / dd >
< dt > < code > ioeventfd< / code > < / dt >
< dd >
This optional attribute allows users to set
< a href = 'https://patchwork.kernel.org/patch/43390/' >
domain I/O asynchronous handling< / a > for interface device.
The default is left to the discretion of the hypervisor.
Accepted values are "on" and "off". Enabling this allows
qemu to execute VM while a separate thread handles I/O.
Typically guests experiencing high system CPU utilization
during I/O will benefit from this. On the other hand,
on overloaded host it could increase guest I/O latency.
< span class = "since" > Since 0.9.3 (QEMU and KVM only)< / span > < br / > < br / >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
< b > In general you should leave this option alone, unless you
2011-08-13 10:32:45 +04:00
are very certain you know what you are doing.< / b >
< / dd >
< dt > < code > event_idx< / code > < / dt >
< dd >
The < code > event_idx< / code > attribute controls some aspects of
device event processing. The value can be either 'on' or 'off'
2012-08-22 22:29:18 +04:00
- if it is on, it will reduce the number of interrupts and
2011-08-13 10:32:45 +04:00
exits for the guest. The default is determined by QEMU;
usually if the feature is supported, default is on. In case
there is a situation where this behavior is suboptimal, this
attribute provides a way to force the feature off.
< span class = "since" > Since 0.9.5 (QEMU and KVM only)< / span > < br / > < br / >
< b > In general you should leave this option alone, unless you
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
are very certain you know what you are doing.< / b >
< / dd >
2013-04-10 14:19:37 +04:00
< dt > < code > queues< / code > < / dt >
< dd >
The optional < code > queues< / code > attribute controls the number of
queues to be used for the< a href = "http://www.linux-kvm.org/page/Multiqueue" >
Multiqueue virtio-net< / a > feature. If the interface has < code > < model
type='virtio'/> < / code > , multiple packet processing queues can be
created; each queue will potentially be handled by a different
processor, resulting in much higher throughput.
< span class = "since" > Since 1.0.6 (QEMU and KVM only)< / span >
< / dd >
Add txmode attribute to interface XML for virtio backend
This is in response to:
https://bugzilla.redhat.com/show_bug.cgi?id=629662
Explanation
qemu's virtio-net-pci driver allows setting the algorithm used for tx
packets to either "bh" or "timer". This is done by adding ",tx=bh" or
",tx=timer" to the "-device virtio-net-pci" commandline option.
'bh' stands for 'bottom half'; when this is set, packet tx is all done
in an iothread in the bottom half of the driver. (In libvirt, this
option is called the more descriptive "iothread".)
'timer' means that tx work is done in qemu, and if there is more tx
data than can be sent at the present time, a timer is set before qemu
moves on to do other things; when the timer fires, another attempt is
made to send more data. (libvirt retains the name "timer" for this
option.)
The resulting difference, according to the qemu developer who added
the option is:
bh makes tx more asynchronous and reduces latency, but potentially
causes more processor bandwidth contention since the cpu doing the
tx isn't necessarily the cpu where the guest generated the
packets.
Solution
This patch provides a libvirt domain xml knob to change the option on
the qemu commandline, by adding a new attribute "txmode" to the
<driver> element that can be placed inside any <interface> element in
a domain definition. It's use would be something like this:
<interface ...>
...
<model type='virtio'/>
<driver txmode='iothread'/>
...
</interface>
I chose to put this setting as an attribute to <driver> rather than as
a sub-element to <tune> because it is specific to the virtio-net
driver, not something that is generally usable by all network drivers.
(note that this is the same placement as the "driver name=..."
attribute used to choose kernel vs. userland backend for the
virtio-net driver.)
Actually adding the tx=xxx option to the qemu commandline is only done
if the version of qemu being used advertises it in the output of
qemu -device virtio-net-pci,?
If a particular txmode is requested in the XML, and the option isn't
listed in that help output, an UNSUPPORTED_CONFIG error is logged, and
the domain fails to start.
2011-02-03 23:20:01 +03:00
< / dl >
2009-11-20 18:25:58 +03:00
< h5 > < a name = "elementsNICSTargetOverride" > Overriding the target element< / a > < / h5 >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< b > < target dev='vnet1'/> < / b >
< /interface>
< /devices>
...< / pre >
2009-11-20 18:25:58 +03:00
< p >
2011-07-06 23:49:28 +04:00
If no target is specified, certain hypervisors will
automatically generate a name for the created tun device. This
2013-07-30 12:21:11 +04:00
name can be manually specified, however the name < i > must not
2011-07-06 23:49:28 +04:00
start with either 'vnet' or 'vif'< / i > , which are prefixes
reserved by libvirt and certain hypervisors. Manually specified
targets using these prefixes will be ignored.
2009-11-20 18:25:58 +03:00
< / p >
2014-06-27 12:41:22 +04:00
< p >
Note that for LXC containers, this defines the name of the interface
on the host side. < span class = "since" > Since 1.2.7< / span > , to define
the name of the device on the guest side, the < code > guest< / code >
element should be used, as in the following snippet:
< / p >
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< b > < guest dev='myeth'/> < / b >
< /interface>
< /devices>
...< / pre >
2011-01-12 17:19:34 +03:00
< h5 > < a name = "elementsNICSBoot" > Specifying boot order< / a > < / h5 >
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet1'/>
< b > < boot order='1'/> < / b >
< /interface>
< /devices>
...< / pre >
< p >
2012-01-25 05:09:20 +04:00
For hypervisors which support this, you can set a specific NIC to
2011-01-12 17:19:34 +03:00
be used for network boot. The < code > order< / code > attribute determines
the order in which devices will be tried during boot sequence. The
per-device < code > boot< / code > elements cannot be used together with
general boot elements in
< a href = "#elementsOSBIOS" > BIOS bootloader< / a > section.
< span class = "since" > Since 0.8.8< / span >
< / p >
2012-01-25 04:54:12 +04:00
< h5 > < a name = "elementsNICSROM" > Interface ROM BIOS configuration< / a > < / h5 >
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet1'/>
2012-01-25 20:20:49 +04:00
< b > < rom bar='on' file='/etc/fake/boot.bin'/> < / b >
2012-01-25 04:54:12 +04:00
< /interface>
< /devices>
...< / pre >
< p >
For hypervisors which support this, you can change how a PCI Network
device's ROM is presented to the guest. The < code > bar< / code >
attribute can be set to "on" or "off", and determines whether
or not the device's ROM will be visible in the guest's memory
map. (In PCI documentation, the "rombar" setting controls the
presence of the Base Address Register for the ROM). If no rom
bar is specified, the qemu default will be used (older
versions of qemu used a default of "off", while newer qemus
2012-01-25 20:20:49 +04:00
have a default of "on").
The optional < code > file< / code > attribute is used to point to a
binary file to be presented to the guest as the device's ROM
BIOS. This can be useful to provide an alternative boot ROM for a
network device.
< span class = "since" > Since 0.9.10 (QEMU and KVM only)< / span > .
2012-01-25 04:54:12 +04:00
< / p >
2011-07-22 18:07:23 +04:00
< h5 > < a name = "elementQoS" > Quality of service< / a > < / h5 >
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet0'/>
< b > < bandwidth>
2012-11-16 13:37:15 +04:00
< inbound average='1000' peak='5000' floor='200' burst='1024'/>
2011-07-22 18:07:23 +04:00
< outbound average='128' peak='256' burst='256'/>
< /bandwidth> < / b >
< /interface>
2014-07-04 18:12:48 +04:00
< /devices>
2011-07-22 18:07:23 +04:00
...< / pre >
< p >
This part of interface XML provides setting quality of service. Incoming
2014-02-13 00:33:02 +04:00
and outgoing traffic can be shaped independently.
The < code > bandwidth< / code > element and its child elements are described
in the < a href = "formatnetwork.html#elementQoS" > QoS< / a > section of
the Network XML.
2011-07-22 18:07:23 +04:00
< / p >
2012-08-12 11:51:30 +04:00
< h5 > < a name = "elementVlanTag" > Setting VLAN tag (on supported network types only)< / a > < / h5 >
< pre >
...
< devices>
< interface type='bridge'>
< b > < vlan> < / b >
< b > < tag id='42'/> < / b >
< b > < /vlan> < / b >
< source bridge='ovsbr0'/>
< virtualport type='openvswitch'>
< parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
< /virtualport>
< /interface>
2013-05-23 21:12:10 +04:00
< interface type='bridge'>
< b > < vlan trunk='yes'> < / b >
< b > < tag id='42'/> < / b >
< b > < tag id='123' nativeMode='untagged'/> < / b >
< b > < /vlan> < / b >
...
< /interface>
2014-07-04 18:12:48 +04:00
< /devices>
2012-08-12 11:51:30 +04:00
...< / pre >
< p >
If (and only if) the network connection used by the guest
supports vlan tagging transparent to the guest, an
optional < code > < vlan> < / code > element can specify one or
more vlan tags to apply to the guest's network
traffic < span class = "since" > Since 0.10.0< / span > . (openvswitch
and type='hostdev' SR-IOV interfaces do support transparent vlan
tagging of guest traffic; everything else, including standard
linux bridges and libvirt's own virtual networks, < b > do not< / b >
support it. 802.1Qbh (vn-link) and 802.1Qbg (VEPA) switches
provide their own way (outside of libvirt) to tag guest traffic
onto specific vlans.) To allow for specification of multiple
tags (in the case of vlan trunking), a
2012-10-26 12:38:02 +04:00
subelement, < code > < tag> < / code > , specifies which vlan tag
2012-08-12 11:51:30 +04:00
to use (for example: < code > < tag id='42'/> < / code > . If an
interface has more than one < code > < vlan> < / code > element
defined, it is assumed that the user wants to do VLAN trunking
using all the specified tags. In the case that vlan trunking
with a single tag is desired, the optional
attribute < code > trunk='yes'< / code > can be added to the toplevel
vlan element.
< / p >
2013-05-23 21:12:10 +04:00
< p >
For network connections using openvswitch it is possible to
configure the 'native-tagged' and 'native-untagged' vlan modes
2013-06-25 17:25:29 +04:00
< span class = "since" > Since 1.1.0.< / span > This uses the optional
2013-05-23 21:12:10 +04:00
< code > nativeMode< / code > attribute on the < code > < tag> < / code >
element: < code > nativeMode< / code > may be set to 'tagged' or
2013-09-10 22:10:55 +04:00
'untagged'. The id attribute of the element sets the native vlan.
2013-05-23 21:12:10 +04:00
< / p >
2012-02-29 16:47:06 +04:00
< h5 > < a name = "elementLink" > Modifying virtual link state< / a > < / h5 >
2011-09-06 12:08:15 +04:00
< pre >
...
< devices>
< interface type='network'>
< source network='default'/>
< target dev='vnet0'/>
< b > < link state='down'/> < / b >
< /interface>
2014-07-04 18:12:48 +04:00
< /devices>
2011-09-06 12:08:15 +04:00
...< / pre >
< p >
This element provides means of setting state of the virtual network link.
Possible values for attribute < code > state< / code > are < code > up< / code > and
< code > down< / code > . If < code > down< / code > is specified as the value, the interface
behaves as if it had the network cable disconnected. Default behavior if this
element is unspecified is to have the link state < code > up< / code > .
< span class = "since" > Since 0.9.5< / span >
< / p >
2014-07-11 21:47:31 +04:00
< h5 > < a name = "elementVhostuser" > vhost-user interface< / a > < / h5 >
< p >
< span class = "since" > Since 1.2.7< / span > the vhost-user enables the
communication between a QEMU virtual machine and other userspace process
using the Virtio transport protocol. A char dev (e.g. Unix socket) is used
for the control plane, while the data plane is based on shared memory.
< / p >
< pre >
...
< devices>
< interface type='vhostuser'>
< mac address='52:54:00:3b:83:1a'/>
< source type='unix' path='/tmp/vhost.sock' mode='server'/>
< model type='virtio'/>
< /interface>
< /devices>
...< / pre >
< p >
The < code > < source> < / code > element has to be specified
along with the type of char device.
Currently, only type='unix' is supported, where the path (the
directory path of the socket) and mode attributes are required.
Both < code > mode='server'< / code > and < code > mode='client'< / code >
are supported.
vhost-user requires the virtio model type, thus the
< code > < model> < / code > element is mandatory.
< / p >
2008-05-08 18:20:07 +04:00
< h4 > < a name = "elementsInput" > Input devices< / a > < / h4 >
< p >
2011-07-06 23:49:28 +04:00
Input devices allow interaction with the graphical framebuffer
in the guest virtual machine. When enabling the framebuffer, an
input device is automatically provided. It may be possible to
add additional devices explicitly, for example,
2008-05-08 18:20:07 +04:00
to provide a graphics tablet for absolute cursor movement.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< input type='mouse' bus='usb'/>
2014-02-24 13:50:14 +04:00
< input type='keyboard' bus='usb'/>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > input< / code > < / dt >
2011-07-06 23:49:28 +04:00
< dd > The < code > input< / code > element has one mandatory attribute,
2014-02-24 13:50:14 +04:00
the < code > type< / code > whose value can be 'mouse', 'tablet' or
(< span class = "since" > since 1.2.2< / span > ) 'keyboard'.
The tablet provides absolute cursor movement,
while the mouse uses relative movement. The optional
2009-11-06 18:04:19 +03:00
< code > bus< / code > attribute can be used to refine the exact device type.
It takes values "xen" (paravirtualized), "ps2" and "usb".< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2011-01-18 00:33:00 +03:00
< p >
The < code > input< / code > element has an optional
sub-element < code > < address> < / code > which can tie the
2011-12-10 03:33:51 +04:00
device to a particular PCI
slot, < a href = "#elementsAddress" > documented above< / a > .
2011-01-18 00:33:00 +03:00
< / p >
2008-05-08 18:20:07 +04:00
2011-09-02 18:20:40 +04:00
< h4 > < a name = "elementsHub" > Hub devices< / a > < / h4 >
< p >
A hub is a device that expands a single port into several so
that there are more ports available to connect devices to a host
system.
< / p >
< pre >
...
< devices>
< hub type='usb'/>
< /devices>
...< / pre >
< dl >
< dt > < code > hub< / code > < / dt >
< dd > The < code > hub< / code > element has one mandatory attribute,
the < code > type< / code > whose value can only be 'usb'.< / dd >
< / dl >
< p >
The < code > hub< / code > element has an optional
2011-12-10 03:33:51 +04:00
sub-element < code > < address> < / code >
with < code > type='usb'< / code > which can tie the device to a
particular controller, < a href = "#elementsAddress" > documented
above< / a > .
2011-09-02 18:20:40 +04:00
< / p >
2008-05-08 18:20:07 +04:00
< h4 > < a name = "elementsGraphics" > Graphical framebuffers< / a > < / h4 >
< p >
A graphics device allows for graphical interaction with the
guest OS. A guest will typically have either a framebuffer
or a text console configured to allow interaction with the
admin.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< graphics type='sdl' display=':0.0'/>
2013-05-21 18:31:48 +04:00
< graphics type='vnc' port='5904' sharePolicy='allow-exclusive'>
conf: add <listen> subelement to domain <graphics> element
Once it's plugged in, the <listen> element will be an optional
replacement for the "listen" attribute that graphics elements already
have. If the <listen> element is type='address', it will have an
attribute called 'address' which will contain an IP address or dns
name that the guest's display server should listen on. If, however,
type='network', the <listen> element should have an attribute called
'network' that will be set to the name of a network configuration to
get the IP address from.
* docs/schemas/domain.rng: updated to allow the <listen> element
* docs/formatdomain.html.in: document the <listen> element and its
attributes.
* src/conf/domain_conf.[hc]:
1) The domain parser, formatter, and data structure are modified to
support 0 or more <listen> subelements to each <graphics>
element. The old style "legacy" listen attribute is also still
accepted, and will be stored internally just as if it were a
separate <listen> element. On output (i.e. format), the address
attribute of the first <listen> element of type 'address' will be
duplicated in the legacy "listen" attribute of the <graphic>
element.
2) The "listenAddr" attribute has been removed from the unions in
virDomainGRaphicsDef for graphics types vnc, rdp, and spice.
This attribute is now in the <listen> subelement (aka
virDomainGraphicsListenDef)
3) Helper functions were written to provide simple access
(both Get and Set) to the listen elements and their attributes.
* src/libvirt_private.syms: export the listen helper functions
* src/qemu/qemu_command.c, src/qemu/qemu_hotplug.c,
src/qemu/qemu_migration.c, src/vbox/vbox_tmpl.c,
src/vmx/vmx.c, src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c
Modify all these files to use the listen helper functions rather
than directly referencing the (now missing) listenAddr
attribute. There can be multiple <listen> elements to a single
<graphics>, but the drivers all currently only support one, so all
replacements of direct access with a helper function indicate index
"0".
* tests/* - only 3 of these are new files added explicitly to test the
new <listen> element. All the others have been modified to reflect
the fact that any legacy "listen" attributes passed in to the domain
parse will be saved in a <listen> element (i.e. one of the
virDomainGraphicsListenDefs), and during the domain format function,
both the <listen> element as well as the legacy attributes will be
output.
2011-07-07 08:20:28 +04:00
< listen type='address' address='1.2.3.4'/>
< /graphics>
2010-02-04 17:27:52 +03:00
< graphics type='rdp' autoport='yes' multiUser='yes' />
< graphics type='desktop' fullscreen='yes'/>
conf: add <listen> subelement to domain <graphics> element
Once it's plugged in, the <listen> element will be an optional
replacement for the "listen" attribute that graphics elements already
have. If the <listen> element is type='address', it will have an
attribute called 'address' which will contain an IP address or dns
name that the guest's display server should listen on. If, however,
type='network', the <listen> element should have an attribute called
'network' that will be set to the name of a network configuration to
get the IP address from.
* docs/schemas/domain.rng: updated to allow the <listen> element
* docs/formatdomain.html.in: document the <listen> element and its
attributes.
* src/conf/domain_conf.[hc]:
1) The domain parser, formatter, and data structure are modified to
support 0 or more <listen> subelements to each <graphics>
element. The old style "legacy" listen attribute is also still
accepted, and will be stored internally just as if it were a
separate <listen> element. On output (i.e. format), the address
attribute of the first <listen> element of type 'address' will be
duplicated in the legacy "listen" attribute of the <graphic>
element.
2) The "listenAddr" attribute has been removed from the unions in
virDomainGRaphicsDef for graphics types vnc, rdp, and spice.
This attribute is now in the <listen> subelement (aka
virDomainGraphicsListenDef)
3) Helper functions were written to provide simple access
(both Get and Set) to the listen elements and their attributes.
* src/libvirt_private.syms: export the listen helper functions
* src/qemu/qemu_command.c, src/qemu/qemu_hotplug.c,
src/qemu/qemu_migration.c, src/vbox/vbox_tmpl.c,
src/vmx/vmx.c, src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c
Modify all these files to use the listen helper functions rather
than directly referencing the (now missing) listenAddr
attribute. There can be multiple <listen> elements to a single
<graphics>, but the drivers all currently only support one, so all
replacements of direct access with a helper function indicate index
"0".
* tests/* - only 3 of these are new files added explicitly to test the
new <listen> element. All the others have been modified to reflect
the fact that any legacy "listen" attributes passed in to the domain
parse will be saved in a <listen> element (i.e. one of the
virDomainGraphicsListenDefs), and during the domain format function,
both the <listen> element as well as the legacy attributes will be
output.
2011-07-07 08:20:28 +04:00
< graphics type='spice'>
< listen type='network' network='rednet'/>
< /graphics>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< dl >
< dt > < code > graphics< / code > < / dt >
< dd > The < code > graphics< / code > element has a mandatory < code > type< / code >
2011-07-06 23:49:28 +04:00
attribute which takes the value "sdl", "vnc", "rdp" or "desktop":
2009-09-22 12:32:14 +04:00
< dl >
< dt > < code > "sdl"< / code > < / dt >
< dd >
2011-07-06 23:49:28 +04:00
This displays a window on the host desktop, it can take 3
optional arguments: a < code > display< / code > attribute for
the display to use, an < code > xauth< / code > attribute for
the authentication identifier, and an
optional < code > fullscreen< / code > attribute accepting
values 'yes' or 'no'.
2009-09-22 12:32:14 +04:00
< / dd >
< dt > < code > "vnc"< / code > < / dt >
< dd >
2011-07-06 23:49:28 +04:00
Starts a VNC server. The < code > port< / code > attribute
specifies the TCP port number (with -1 as legacy syntax
indicating that it should be
auto-allocated). The < code > autoport< / code > attribute is
the new preferred syntax for indicating autoallocation of
the TCP port to use. The < code > listen< / code > attribute is
an IP address for the server to listen
on. The < code > passwd< / code > attribute provides a VNC
password in clear text. The < code > keymap< / code > attribute
specifies the keymap to use. It is possible to set a limit
on the validity of the password be giving an
timestamp < code > passwdValidTo='2010-04-09T15:51:00'< / code >
2011-05-26 18:15:54 +04:00
assumed to be in UTC. The < code > connected< / code > attribute
allows control of connected client during password changes.
VNC accepts < code > keep< / code > value only.
< span class = "since" > since 0.9.3< / span >
2013-05-21 18:31:48 +04:00
NB, this may not be supported by all hypervisors.< br / >
The optional < code > sharePolicy< / code > attribute specifies vnc server
display sharing policy. "allow-exclusive" allows clients to ask
for exclusive access by dropping other connections. Connecting
multiple clients in parallel requires all clients asking for a
shared session (vncviewer: -Shared switch). This is the default
value. "force-shared" disables exclusive client access, every
connection has to specify -Shared switch for vncviewer. "ignore"
welcomes every connection unconditionally
< span class = "since" > since 1.0.6< / span > . < br / > < br / >
2011-05-26 18:15:54 +04:00
Rather than using listen/port, QEMU supports a
< code > socket< / code > attribute for listening on a unix
domain socket path.< span class = "since" > Since 0.8.8< / span >
2013-04-29 16:34:01 +04:00
For VNC WebSocket functionality, < code > websocket< / code >
attribute may be used to specify port to listen on (with
-1 meaning auto-allocation and < code > autoport< / code >
having no effect due to security reasons).
< span class = "since" > Since 1.0.6< / span >
2009-08-14 13:54:14 +04:00
< / dd >
< dt > < code > "spice"< / code > < / dt >
< dd >
2011-02-04 21:16:35 +03:00
< p >
2011-07-06 23:49:28 +04:00
Starts a SPICE server. The < code > port< / code > attribute
specifies the TCP port number (with -1 as legacy syntax
indicating that it should be auto-allocated),
while < code > tlsPort< / code > gives an alternative secure
port number. The < code > autoport< / code > attribute is the
new preferred syntax for indicating autoallocation of
2013-04-23 09:01:38 +04:00
needed port numbers. The < code > listen< / code > attribute is
2011-07-06 23:49:28 +04:00
an IP address for the server to listen
on. The < code > passwd< / code > attribute provides a SPICE
password in clear text. The < code > keymap< / code >
attribute specifies the keymap to use. It is possible to
set a limit on the validity of the password be giving an
timestamp < code > passwdValidTo='2010-04-09T15:51:00'< / code >
2011-05-26 18:15:54 +04:00
assumed to be in UTC. The < code > connected< / code > attribute
allows control of connected client during password changes.
SPICE accepts < code > keep< / code > to keep client connected,
< code > disconnect< / code > to disconnect client and
< code > fail< / code > to fail changing password.
< span class = "since" > Since 0.9.3< / span >
NB, this may not be supported by all hypervisors.
< span class = "since" > "spice" since 0.8.6< / span > .
2012-05-08 21:42:44 +04:00
The < code > defaultMode< / code > attribute sets the default channel
security policy, valid values are < code > secure< / code > ,
< code > insecure< / code > and the default < code > any< / code >
(which is secure if possible, but falls back to insecure
rather than erroring out if no secure path is
available). < span class = "since" > "defaultMode" since
0.9.12< / span > .
2011-02-04 21:16:35 +03:00
< / p >
< p >
2011-07-06 23:49:28 +04:00
When SPICE has both a normal and TLS secured TCP port
configured, it can be desirable to restrict what
channels can be run on each port. This is achieved by
adding one or more < channel> elements inside the
2014-07-21 19:12:51 +04:00
main < graphics> element and setting the < code > mode< / code >
attribute to either < code > secure< / code > or < code > insecure< / code > .
Setting the mode attribute overrides the default value as set
by the < code > defaultMode< / code > attribute. (Note that specifying
< code > any< / code > as mode discards the entry as the channel would
inherit the default mode anyways)
Valid channel names
2011-07-06 23:49:28 +04:00
include < code > main< / code > , < code > display< / code > ,
< code > inputs< / code > , < code > cursor< / code > ,
2012-05-08 17:00:28 +04:00
< code > playback< / code > , < code > record< / code >
(all < span class = "since" > since 0.8.6< / span > );
< code > smartcard< / code > (< span class = "since" > since
0.8.8< / span > ); and < code > usbredir< / code >
(< span class = "since" > since 0.9.12< / span > ).
2011-02-04 21:16:35 +03:00
< / p >
< pre >
2010-04-09 20:56:00 +04:00
< graphics type='spice' port='-1' tlsPort='-1' autoport='yes'>
< channel name='main' mode='secure'/>
< channel name='record' mode='insecure'/>
2011-04-14 12:44:20 +04:00
< image compression='auto_glz'/>
2011-05-23 19:16:42 +04:00
< streaming mode='filter'/>
2011-06-14 15:35:48 +04:00
< clipboard copypaste='no'/>
2012-03-09 11:26:24 +04:00
< mouse mode='client'/>
2014-01-16 20:11:15 +04:00
< filetransfer enable='no'/>
2010-04-09 20:56:00 +04:00
< /graphics> < / pre >
2011-04-14 12:44:20 +04:00
< p >
Spice supports variable compression settings for audio,
images and streaming, < span class = "since" > since
0.9.1< / span > . These settings are accessible via
the < code > compression< / code > attribute in all following
elements: < code > image< / code > to set image compression
(accepts < code > auto_glz< / code > , < code > auto_lz< / code > ,
< code > quic< / code > , < code > glz< / code > , < code > lz< / code > ,
< code > off< / code > ), < code > jpeg< / code > for JPEG
compression for images over wan
(accepts < code > auto< / code > , < code > never< / code > ,
< code > always< / code > ), < code > zlib< / code > for configuring
wan image compression (accepts < code > auto< / code > ,
< code > never< / code > , < code > always< / code > )
and < code > playback< / code > for enabling audio stream
compression (accepts < code > on< / code > or < code > off< / code > ).
< / p >
2011-05-23 19:16:42 +04:00
< p >
Streaming mode is set by the < code > streaming< / code >
2012-03-23 06:40:09 +04:00
element, settings its < code > mode< / code > attribute to one
2011-05-23 19:16:42 +04:00
of < code > filter< / code > , < code > all< / code >
or < code > off< / code > , < span class = "since" > since 0.9.2< / span > .
< / p >
2011-06-14 15:35:48 +04:00
< p >
Copy & Paste functionality (via Spice agent) is set
by the < code > clipboard< / code > element. It is enabled by
default, and can be disabled by setting
the < code > copypaste< / code > property
to < code > no< / code > , < span class = "since" > since
0.9.3< / span > .
2011-07-18 13:28:54 +04:00
< / p >
2012-03-09 11:26:24 +04:00
< p >
2012-03-23 06:40:09 +04:00
Mouse mode is set by the < code > mouse< / code > element,
setting its < code > mode< / code > attribute to one of
2012-03-09 11:26:24 +04:00
< code > server< / code > or < code > client< / code > ,
< span class = "since" > since 0.9.11< / span > . If no mode is
specified, the qemu default will be used (client mode).
< / p >
2014-01-16 20:11:15 +04:00
< p >
File transfer functionality (via Spice agent) is set using the
< code > filetransfer< / code > element.
It is enabled by default, and can be disabled by setting the
< code > enable< / code > property to < code > no< / code > ,
since < span class = "since" > since 1.2.2< / span > .
< / p >
2009-09-22 12:32:14 +04:00
< / dd >
< dt > < code > "rdp"< / code > < / dt >
< dd >
2011-07-06 23:49:28 +04:00
Starts a RDP server. The < code > port< / code > attribute
specifies the TCP port number (with -1 as legacy syntax
indicating that it should be
auto-allocated). The < code > autoport< / code > attribute is
the new preferred syntax for indicating autoallocation of
the TCP port to use. The < code > replaceUser< / code >
attribute is a boolean deciding whether multiple
simultaneous connections to the VM are permitted.
2013-03-29 16:52:21 +04:00
The < code > multiUser< / code > attribute is a boolean deciding
whether the existing connection must be dropped and a new
connection must be established by the VRDP server, when a
new client connects in single connection mode.
2009-09-22 12:32:14 +04:00
< / dd >
< dt > < code > "desktop"< / code > < / dt >
< dd >
2011-07-06 23:49:28 +04:00
This value is reserved for VirtualBox domains for the
moment. It displays a window on the host desktop,
similarly to "sdl", but using the VirtualBox viewer. Just
like "sdl", it accepts the optional
attributes < code > display< / code >
and < code > fullscreen< / code > .
2009-09-22 12:32:14 +04:00
< / dd >
< / dl >
< / dd >
< / dl >
conf: add <listen> subelement to domain <graphics> element
Once it's plugged in, the <listen> element will be an optional
replacement for the "listen" attribute that graphics elements already
have. If the <listen> element is type='address', it will have an
attribute called 'address' which will contain an IP address or dns
name that the guest's display server should listen on. If, however,
type='network', the <listen> element should have an attribute called
'network' that will be set to the name of a network configuration to
get the IP address from.
* docs/schemas/domain.rng: updated to allow the <listen> element
* docs/formatdomain.html.in: document the <listen> element and its
attributes.
* src/conf/domain_conf.[hc]:
1) The domain parser, formatter, and data structure are modified to
support 0 or more <listen> subelements to each <graphics>
element. The old style "legacy" listen attribute is also still
accepted, and will be stored internally just as if it were a
separate <listen> element. On output (i.e. format), the address
attribute of the first <listen> element of type 'address' will be
duplicated in the legacy "listen" attribute of the <graphic>
element.
2) The "listenAddr" attribute has been removed from the unions in
virDomainGRaphicsDef for graphics types vnc, rdp, and spice.
This attribute is now in the <listen> subelement (aka
virDomainGraphicsListenDef)
3) Helper functions were written to provide simple access
(both Get and Set) to the listen elements and their attributes.
* src/libvirt_private.syms: export the listen helper functions
* src/qemu/qemu_command.c, src/qemu/qemu_hotplug.c,
src/qemu/qemu_migration.c, src/vbox/vbox_tmpl.c,
src/vmx/vmx.c, src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c
Modify all these files to use the listen helper functions rather
than directly referencing the (now missing) listenAddr
attribute. There can be multiple <listen> elements to a single
<graphics>, but the drivers all currently only support one, so all
replacements of direct access with a helper function indicate index
"0".
* tests/* - only 3 of these are new files added explicitly to test the
new <listen> element. All the others have been modified to reflect
the fact that any legacy "listen" attributes passed in to the domain
parse will be saved in a <listen> element (i.e. one of the
virDomainGraphicsListenDefs), and during the domain format function,
both the <listen> element as well as the legacy attributes will be
output.
2011-07-07 08:20:28 +04:00
< p >
Rather than putting the address information used to set up the
listening socket for graphics types < code > vnc< / code >
and < code > spice< / code > in
the < code > < graphics> < / code > < code > listen< / code > attribute,
a separate subelement of < code > < graphics> < / code > ,
called < code > < listen> < / code > can be specified (see the
examples above)< span class = "since" > since
0.9.4< / span > . < code > < listen> < / code > accepts the following
attributes:
< / p >
< dl >
< dt > < code > type< / code > < / dt >
< dd > Set to either < code > address< / code >
or < code > network< / code > . This tells whether this listen
element is specifying the address to be used directly, or by
naming a network (which will then be used to determine an
appropriate address for listening).
< / dd >
< / dl >
< dl >
< dt > < code > address< / code > < / dt >
< dd > if < code > type='address'< / code > , the < code > address< / code >
attribute will contain either an IP address or hostname (which
will be resolved to an IP address via a DNS query) to listen
on. In the "live" XML of a running domain, this attribute will
be set to the IP address used for listening, even
if < code > type='network'< / code > .
< / dd >
< / dl >
< dl >
< dt > < code > network< / code > < / dt >
< dd > if < code > type='network'< / code > , the < code > network< / code >
attribute will contain the name of a network in libvirt's list
of configured networks. The named network configuration will
be examined to determine an appropriate listen address. For
example, if the network has an IPv4 address in its
configuration (e.g. if it has a forward type
of < code > route< / code > , < code > nat< / code > , or no forward type
(isolated)), the first IPv4 address listed in the network's
configuration will be used. If the network is describing a
host bridge, the first IPv4 address associated with that
bridge device will be used, and if the network is describing
one of the 'direct' (macvtap) modes, the first IPv4 address of
the first forward dev will be used.
< / dd >
< / dl >
2009-09-22 12:32:14 +04:00
< h4 > < a name = "elementsVideo" > Video devices< / a > < / h4 >
< p >
A video device.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< video>
< model type='vga' vram='8192' heads='1'>
2012-05-28 14:44:32 +04:00
< acceleration accel3d='yes' accel2d='yes'/>
2010-02-04 17:27:52 +03:00
< /model>
< /video>
< /devices>
...< / pre >
2009-09-22 12:32:14 +04:00
< dl >
< dt > < code > video< / code > < / dt >
2009-12-13 20:25:17 +03:00
< dd >
2012-02-03 22:20:22 +04:00
The < code > video< / code > element is the container for describing
video devices. For backwards compatibility, if no < code > video< / code >
2011-06-07 12:56:06 +04:00
is set but there is a < code > graphics< / code > in domain xml, then libvirt
will add a default < code > video< / code > according to the guest type.
For a guest of type "kvm", the default < code > video< / code > for it is:
< code > type< / code > with value "cirrus", < code > vram< / code > with value
2012-12-17 10:01:20 +04:00
"9216", and < code > heads< / code > with value "1". By default, the first
video device in domain xml is the primary one, but the optional
attribute < code > primary< / code > (< span class = "since" > since 1.0.2< / span > )
2013-09-10 22:10:55 +04:00
with value 'yes' can be used to mark the primary in cases of multiple
2013-01-18 22:36:36 +04:00
video device. The non-primary must be type of "qxl". The optional
attribute < code > ram< / code > (< span class = "since" > since
1.0.2< / span > ) is allowed for "qxl" type only and specifies
the size of the primary bar, while < code > vram< / code > specifies the
2013-02-21 18:59:39 +04:00
secondary bar size. If "ram" or "vram" are not supplied a default
value is used.
2009-12-13 20:25:17 +03:00
< / dd >
2009-09-22 12:32:14 +04:00
2009-12-13 20:25:17 +03:00
< dt > < code > model< / code > < / dt >
< dd >
The < code > model< / code > element has a mandatory < code > type< / code >
2011-03-17 19:04:35 +03:00
attribute which takes the value "vga", "cirrus", "vmvga", "xen",
"vbox", or "qxl" (< span class = "since" > since 0.8.6< / span > )
depending on the hypervisor features available.
2012-03-02 19:23:07 +04:00
You can also provide the amount of video memory in kibibytes
(blocks of 1024 bytes) using
2009-12-13 20:25:17 +03:00
< code > vram< / code > and the number of screen with < code > heads< / code > .
< / dd >
< dt > < code > acceleration< / code > < / dt >
< dd >
If acceleration should be enabled (if supported) using the
< code > accel3d< / code > and < code > accel2d< / code > attributes in the
< code > acceleration< / code > element.
< / dd >
2011-01-18 00:33:00 +03:00
< dt > < code > address< / code > < / dt >
< dd >
The optional < code > address< / code > sub-element can be used to
tie the video device to a particular PCI slot.
< / dd >
2008-05-08 18:20:07 +04:00
< / dl >
2009-11-09 17:38:20 +03:00
< h4 > < a name = "elementsConsole" > Consoles, serial, parallel & channel devices< / a > < / h4 >
2008-05-08 18:20:07 +04:00
< p >
A character device provides a way to interact with the virtual machine.
2009-11-09 17:38:20 +03:00
Paravirtualized consoles, serial ports, parallel ports and channels are
all classed as character devices and so represented using the same syntax.
2008-05-08 18:20:07 +04:00
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< parallel type='pty'>
< source path='/dev/pts/2'/>
< target port='0'/>
< /parallel>
< serial type='pty'>
< source path='/dev/pts/3'/>
< target port='0'/>
< /serial>
2014-05-16 18:52:41 +04:00
< serial type='file>
< source path='/tmp/file'>
< seclabel model='dac' relabel='no'/>
< /source>
< target port='0'>
< /serial>
2010-02-04 17:27:52 +03:00
< console type='pty'>
< source path='/dev/pts/4'/>
< target port='0'/>
< /console>
< channel type='unix'>
< source mode='bind' path='/tmp/guestfwd'/>
< target type='guestfwd' address='10.0.2.1' port='4600'/>
< /channel>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< p >
In each of these directives, the top-level element name (parallel, serial,
console, channel) describes how the device is presented to the guest. The
guest interface is configured by the < code > target< / code > element.
< / p >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< p >
The interface presented to the host is given in the < code > type< / code >
attribute of the top-level element. The host interface is
configured by the < code > source< / code > element.
< / p >
2012-09-20 17:16:17 +04:00
< p >
The < code > source< / code > element may contain an optional
< code > seclabel< / code > to override the way that labelling
is done on the socket path. If this element is not present,
the < a href = "#seclabel" > security label is inherited from
the per-domain setting< / a > .
< / p >
2011-01-18 00:33:00 +03:00
< p >
Each character device element has an optional
sub-element < code > < address> < / code > which can tie the
device to a
particular < a href = "#elementsControllers" > controller< / a > or PCI
slot.
< / p >
2009-11-09 17:35:21 +03:00
< h5 > < a name = "elementsCharGuestInterface" > Guest interface< / a > < / h5 >
< p >
A character device presents itself to the guest as one of the following
types.
< / p >
< h6 > < a name = "elementCharParallel" > Parallel port< / a > < / h6 >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< parallel type='pty'>
< source path='/dev/pts/2'/>
< target port='0'/>
< /parallel>
< /devices>
...< / pre >
2009-11-09 17:35:21 +03:00
< p >
< code > target< / code > can have a < code > port< / code > attribute, which
2011-04-10 17:03:42 +04:00
specifies the port number. Ports are numbered starting from 0. There are
2009-11-09 17:35:21 +03:00
usually 0, 1 or 2 parallel ports.
< / p >
< h6 > < a name = "elementCharSerial" > Serial port< / a > < / h6 >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type='pty'>
< source path='/dev/pts/3'/>
< target port='0'/>
< /serial>
< /devices>
...< / pre >
2009-11-09 17:35:21 +03:00
< p >
< code > target< / code > can have a < code > port< / code > attribute, which
2011-04-10 17:03:42 +04:00
specifies the port number. Ports are numbered starting from 0. There are
2013-01-05 09:25:36 +04:00
usually 0, 1 or 2 serial ports. There is also an optional
< code > type< / code > attribute < span class = "since" > since 1.0.2< / span >
2013-01-10 23:26:11 +04:00
which has two choices for its value, one is < code > isa-serial< / code > ,
2013-01-05 09:25:36 +04:00
the other is < code > usb-serial< / code > . If < code > type< / code > is missing,
< code > isa-serial< / code > will be used by default. For < code > usb-serial< / code >
an optional sub-element < code > < address> < / code > with
< code > type='usb'< / code > can tie the device to a particular controller,
< a href = "#elementsAddress" > documented above< / a > .
2009-11-09 17:35:21 +03:00
< / p >
< h6 > < a name = "elementCharConsole" > Console< / a > < / h6 >
< p >
Allow multiple consoles per virtual guest
While Xen only has a single paravirt console, UML, and
QEMU both support multiple paravirt consoles. The LXC
driver can also be trivially made to support multiple
consoles. This patch extends the XML to allow multiple
<console> elements in the XML. It also makes the UML
and QEMU drivers support this config.
* src/conf/domain_conf.c, src/conf/domain_conf.h: Allow
multiple <console> devices
* src/lxc/lxc_driver.c, src/xen/xen_driver.c,
src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c: Update for
internal API changes
* src/security/security_selinux.c, src/security/virt-aa-helper.c:
Only label consoles that aren't a copy of the serial device
* src/qemu/qemu_command.c, src/qemu/qemu_driver.c,
src/qemu/qemu_process.c, src/uml/uml_conf.c,
src/uml/uml_driver.c: Support multiple console devices
* tests/qemuxml2xmltest.c, tests/qemuxml2argvtest.c: Extra
tests for multiple virtio consoles. Set QEMU_CAPS_CHARDEV
for all console /channel tests
* tests/qemuxml2argvdata/qemuxml2argv-channel-virtio-auto.args,
tests/qemuxml2argvdata/qemuxml2argv-channel-virtio.args
tests/qemuxml2argvdata/qemuxml2argv-console-virtio.args: Update
for correct chardev syntax
* tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.args,
tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.xml: New
test file
2011-02-23 21:27:23 +03:00
The console element is used to represent interactive consoles. Depending
on the type of guest in use, the consoles might be paravirtualized devices,
or they might be a clone of a serial device, according to the following
rules:
< / p >
< ul >
2013-01-07 21:17:14 +04:00
< li > If no < code > targetType< / code > attribute is set, then the default
Allow multiple consoles per virtual guest
While Xen only has a single paravirt console, UML, and
QEMU both support multiple paravirt consoles. The LXC
driver can also be trivially made to support multiple
consoles. This patch extends the XML to allow multiple
<console> elements in the XML. It also makes the UML
and QEMU drivers support this config.
* src/conf/domain_conf.c, src/conf/domain_conf.h: Allow
multiple <console> devices
* src/lxc/lxc_driver.c, src/xen/xen_driver.c,
src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c: Update for
internal API changes
* src/security/security_selinux.c, src/security/virt-aa-helper.c:
Only label consoles that aren't a copy of the serial device
* src/qemu/qemu_command.c, src/qemu/qemu_driver.c,
src/qemu/qemu_process.c, src/uml/uml_conf.c,
src/uml/uml_driver.c: Support multiple console devices
* tests/qemuxml2xmltest.c, tests/qemuxml2argvtest.c: Extra
tests for multiple virtio consoles. Set QEMU_CAPS_CHARDEV
for all console /channel tests
* tests/qemuxml2argvdata/qemuxml2argv-channel-virtio-auto.args,
tests/qemuxml2argvdata/qemuxml2argv-channel-virtio.args
tests/qemuxml2argvdata/qemuxml2argv-console-virtio.args: Update
for correct chardev syntax
* tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.args,
tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.xml: New
test file
2011-02-23 21:27:23 +03:00
device type is according to the hypervisor's rules. The default
type will be added when re-querying the XML fed into libvirt.
For fully virtualized guests, the default device type will usually
be a serial port.< / li >
< li > If the < code > targetType< / code > attribute is < code > serial< / code > ,
then if no < code > < serial> < / code > element exists, the console
element will be copied to the serial element. If a < code > < serial> < / code >
element does already exist, the console element will be ignored.< / li >
< li > If the < code > targetType< / code > attribute is not < code > serial< / code > ,
it will be treated normally.< / li >
< li > Only the first < code > console< / code > element may use a < code > targetType< / code >
of < code > serial< / code > . Secondary consoles must all be paravirtualized.
< / li >
2013-01-07 21:17:14 +04:00
< li > On s390, the < code > console< / code > element may use a
< code > targetType< / code > of < code > sclp< / code > or < code > sclplm< / code >
(line mode). SCLP is the native console type for s390. There's no
controller associated to SCLP consoles.
< span class = "since" > Since 1.0.2< / span >
< / li >
Allow multiple consoles per virtual guest
While Xen only has a single paravirt console, UML, and
QEMU both support multiple paravirt consoles. The LXC
driver can also be trivially made to support multiple
consoles. This patch extends the XML to allow multiple
<console> elements in the XML. It also makes the UML
and QEMU drivers support this config.
* src/conf/domain_conf.c, src/conf/domain_conf.h: Allow
multiple <console> devices
* src/lxc/lxc_driver.c, src/xen/xen_driver.c,
src/xenxs/xen_sxpr.c, src/xenxs/xen_xm.c: Update for
internal API changes
* src/security/security_selinux.c, src/security/virt-aa-helper.c:
Only label consoles that aren't a copy of the serial device
* src/qemu/qemu_command.c, src/qemu/qemu_driver.c,
src/qemu/qemu_process.c, src/uml/uml_conf.c,
src/uml/uml_driver.c: Support multiple console devices
* tests/qemuxml2xmltest.c, tests/qemuxml2argvtest.c: Extra
tests for multiple virtio consoles. Set QEMU_CAPS_CHARDEV
for all console /channel tests
* tests/qemuxml2argvdata/qemuxml2argv-channel-virtio-auto.args,
tests/qemuxml2argvdata/qemuxml2argv-channel-virtio.args
tests/qemuxml2argvdata/qemuxml2argv-console-virtio.args: Update
for correct chardev syntax
* tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.args,
tests/qemuxml2argvdata/qemuxml2argv-console-virtio-many.xml: New
test file
2011-02-23 21:27:23 +03:00
< / ul >
2010-07-14 21:02:04 +04:00
< p >
A virtio console device is exposed in the
guest as /dev/hvc[0-7] (for more information, see
< a href = "http://fedoraproject.org/wiki/Features/VirtioSerial" > http://fedoraproject.org/wiki/Features/VirtioSerial< / a > )
< span class = "since" > Since 0.8.3< / span >
2009-11-09 17:35:21 +03:00
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< console type='pty'>
< source path='/dev/pts/4'/>
< target port='0'/>
< /console>
2010-07-14 21:02:04 +04:00
< !-- KVM virtio console -->
< console type='pty'>
< source path='/dev/pts/5'/>
< target type='virtio' port='0'/>
< /console>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2009-11-09 17:35:21 +03:00
2013-01-07 21:17:14 +04:00
< pre >
...
< devices>
< !-- KVM s390 sclp console -->
< console type='pty'>
< source path='/dev/pts/1'/>
< target type='sclp' port='0'/>
< /console>
< /devices>
...< / pre >
2009-11-09 17:35:21 +03:00
< p >
If the console is presented as a serial port, the < code > target< / code >
element has the same attributes as for a serial port. There is usually
only 1 console.
< / p >
2009-11-09 17:38:20 +03:00
< h6 > < a name = "elementCharChannel" > Channel< / a > < / h6 >
< p >
This represents a private communication channel between the host and the
guest.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< channel type='unix'>
< source mode='bind' path='/tmp/guestfwd'/>
< target type='guestfwd' address='10.0.2.1' port='4600'/>
< /channel>
2010-07-14 23:07:59 +04:00
< !-- KVM virtio channel -->
< channel type='pty'>
< target type='virtio' name='arbitrary.virtio.serial.port.name'/>
< /channel>
2011-10-05 21:31:54 +04:00
< channel type='unix'>
< source mode='bind' path='/var/lib/libvirt/qemu/f16x86_64.agent'/>
< target type='virtio' name='org.qemu.guest_agent.0'/>
< /channel>
2011-02-03 07:09:44 +03:00
< channel type='spicevmc'>
< target type='virtio' name='com.redhat.spice.0'/>
< /channel>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2009-11-09 17:38:20 +03:00
< p >
This can be implemented in a variety of ways. The specific type of
channel is given in the < code > type< / code > attribute of the
< code > target< / code > element. Different channel types have different
< code > target< / code > attributes.
< / p >
< dl >
< dt > < code > guestfwd< / code > < / dt >
< dd > TCP traffic sent by the guest to a given IP address and port is
forwarded to the channel device on the host. The < code > target< / code >
element must have < code > address< / code > and < code > port< / code > attributes.
< span class = "since" > Since 0.7.3< / span > < / dd >
2010-07-14 23:07:59 +04:00
< dt > < code > virtio< / code > < / dt >
< dd > Paravirtualized virtio channel. Channel is exposed in the guest under
2011-01-18 00:33:00 +03:00
/dev/vport*, and if the optional element < code > name< / code > is specified,
2010-07-14 23:07:59 +04:00
/dev/virtio-ports/$name (for more info, please see
2011-01-18 00:33:00 +03:00
< a href = "http://fedoraproject.org/wiki/Features/VirtioSerial" > http://fedoraproject.org/wiki/Features/VirtioSerial< / a > ). The
optional element < code > address< / code > can tie the channel to a
2011-12-10 03:33:51 +04:00
particular < code > type='virtio-serial'< / code >
controller, < a href = "#elementsAddress" > documented above< / a > .
2011-10-05 21:31:54 +04:00
With qemu, if < code > name< / code > is "org.qemu.guest_agent.0",
then libvirt can interact with a guest agent installed in the
guest, for actions such as guest shutdown or file system quiescing.
< span class = "since" > Since 0.7.7, guest agent interaction
2013-05-03 11:24:00 +04:00
since 0.9.10< / span > Moreover, < span class = "since" > since 1.0.6< / span >
2013-04-09 21:04:00 +04:00
it is possible to have source path auto generated for virtio unix channels.
This is very useful in case of a qemu guest agent, where users don't
usually care about the source path since it's libvirt who talks to
the guest agent. In case users want to utilize this feature, they should
leave < code > < source> < / code > element out.
2013-05-03 18:25:37 +04:00
< / dd >
2011-02-03 07:09:44 +03:00
< dt > < code > spicevmc< / code > < / dt >
< dd > Paravirtualized SPICE channel. The domain must also have a
SPICE server as a < a href = "#elementsGraphics" > graphics
device< / a > , at which point the host piggy-backs messages
across the < code > main< / code > channel. The < code > target< / code >
element must be present, with
attribute < code > type='virtio'< / code > ; an optional
attribute < code > name< / code > controls how the guest will have
access to the channel, and defaults
to < code > name='com.redhat.spice.0'< / code > . The
optional < code > address< / code > element can tie the channel to a
particular < code > type='virtio-serial'< / code > controller.
< span class = "since" > Since 0.8.8< / span > < / dd >
2009-11-09 17:38:20 +03:00
< / dl >
2009-11-09 17:35:21 +03:00
< h5 > < a name = "elementsCharHostInterface" > Host interface< / a > < / h5 >
< p >
A character device presents itself to the host as one of the following
types.
< / p >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharSTDIO" > Domain logfile< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
This disables all input on the character device, and sends output
into the virtual machine's logfile
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< console type='stdio'>
2011-12-22 21:48:53 +04:00
< target port='1'/>
2010-02-04 17:27:52 +03:00
< /console>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharFle" > Device logfile< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
A file is opened and all data sent to the character
device is written to the file.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="file">
< source path="/var/log/vm/vm-serial.log"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharVC" > Virtual console< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
Connects the character device to the graphical framebuffer in
a virtual console. This is typically accessed via a special
hotkey sequence such as "ctrl+alt+3"
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type='vc'>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharNull" > Null device< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
Connects the character device to the void. No data is ever
provided to the input. All data written is discarded.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type='null'>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharPTY" > Pseudo TTY< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
A Pseudo TTY is allocated using /dev/ptmx. A suitable client
such as 'virsh console' can connect to interact with the
serial port locally.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="pty">
< source path="/dev/pts/3"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
< p >
NB special case if < console type='pty'> , then the TTY
2008-08-08 14:24:14 +04:00
path is also duplicated as an attribute tty='/dev/pts/3'
2008-05-08 18:20:07 +04:00
on the top level < console> tag. This provides compat
with existing syntax for < console> tags.
< / p >
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharHost" > Host device proxy< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
The character device is passed through to the underlying
physical character device. The device types must match,
eg the emulated serial port should only be connected to
2008-08-08 14:24:14 +04:00
a host serial port - don't connect a serial port to a parallel
2008-05-08 18:20:07 +04:00
port.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="dev">
< source path="/dev/ttyS0"/>
< target port="1"/>
2012-12-14 19:28:57 +04:00
< /serial>
2010-02-04 17:27:52 +03:00
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharPipe" > Named pipe< / a > < / h6 >
2009-07-09 01:59:23 +04:00
< p >
The character device writes output to a named pipe. See pipe(7) for
more info.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="pipe">
< source path="/tmp/mypipe"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2009-07-09 01:59:23 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharTCP" > TCP client/server< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
The character device acts as a TCP client connecting to a
2009-07-25 00:16:51 +04:00
remote server.
2008-05-08 18:20:07 +04:00
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="tcp">
< source mode="connect" host="0.0.0.0" service="2445"/>
< protocol type="raw"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2009-07-25 00:16:51 +04:00
< p >
Or as a TCP server waiting for a client connection.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="tcp">
< source mode="bind" host="127.0.0.1" service="2445"/>
< protocol type="raw"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2009-07-25 00:16:51 +04:00
< p >
2011-07-06 23:49:28 +04:00
Alternatively you can use < code > telnet< / code > instead
of < code > raw< / code > TCP. < span class = "since" > Since 0.8.5< / span >
you can also use < code > telnets< / code >
2010-09-30 01:04:19 +04:00
(secure telnet) and < code > tls< / code > .
2011-04-02 02:02:10 +04:00
< / p >
2009-07-25 00:16:51 +04:00
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="tcp">
< source mode="connect" host="0.0.0.0" service="2445"/>
< protocol type="telnet"/>
< target port="1"/>
< /serial>
...
< serial type="tcp">
< source mode="bind" host="127.0.0.1" service="2445"/>
< protocol type="telnet"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharUDP" > UDP network console< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
The character device acts as a UDP netconsole service,
sending and receiving packets. This is a lossy service.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="udp">
< source mode="bind" host="0.0.0.0" service="2445"/>
< source mode="connect" host="0.0.0.0" service="2445"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2009-11-09 17:35:21 +03:00
< h6 > < a name = "elementsCharUNIX" > UNIX domain socket client/server< / a > < / h6 >
2008-05-08 18:20:07 +04:00
< p >
The character device acts as a UNIX domain socket server,
accepting connections from local clients.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< serial type="unix">
< source mode="bind" path="/tmp/foo"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2008-05-08 18:20:07 +04:00
2014-02-10 14:18:16 +04:00
< h6 > < a name = "elementsCharSpiceport" > Spice channel< / a > < / h6 >
< p >
The character device is accessible through spice connection
under a channel name specified in the < code > channel< / code >
attribute. < span class = "since" > Since 1.2.2< / span >
< / p >
< pre >
...
< devices>
< serial type="spiceport">
< source channel="org.qemu.console.serial.0"/>
< target port="1"/>
< /serial>
< /devices>
...< / pre >
2014-04-21 17:16:58 +04:00
< h6 > < a name = "elementsNmdm" > Nmdm device< / a > < / h6 >
< p >
The nmdm device driver, available on FreeBSD, provides two
2014-05-06 07:13:23 +04:00
tty devices connected together by a virtual null modem cable.
2014-04-21 17:16:58 +04:00
< span class = "since" > Since 1.2.4< / span >
< / p >
< pre >
...
< devices>
< serial type="nmdm">
< source master="/dev/nmdm0A" slave="/dev/nmdm0B"/>
< /serial>
< /devices>
...< / pre >
< p >
The < code > source< / code > element has these attributes:
< / p >
< dl >
< dt > < code > master< / code > < / dt >
< dd > Master device of the pair, that is passed to the hypervisor.< / dd >
< dt > < code > slave< / code > < / dt >
< dd > Slave device of the pair, that is passed to the clients for connection
to the guest console.< / dd >
< / dl >
2009-05-19 17:18:00 +04:00
< h4 > < a name = "elementsSound" > Sound devices< / a > < / h4 >
< p >
A virtual sound card can be attached to the host via the
< code > sound< / code > element. < span class = "since" > Since 0.4.3< / span >
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< sound model='es1370'/>
< /devices>
...< / pre >
2009-05-19 17:18:00 +04:00
< dl >
< dt > < code > sound< / code > < / dt >
< dd >
The < code > sound< / code > element has one mandatory attribute,
< code > model< / code > , which specifies what real sound device is emulated.
Valid values are specific to the underlying hypervisor, though typical
2014-07-24 19:32:31 +04:00
choices are 'es1370', 'sb16', 'ac97', 'ich6' and 'usb'.
2011-01-13 17:15:11 +03:00
(< span class = "since" >
2014-07-24 19:32:31 +04:00
'ac97' only since 0.6.0, 'ich6' only since 0.8.8,
'usb' only since 1.2.7< / span > )
2009-05-19 17:18:00 +04:00
< / dd >
< / dl >
2012-05-16 02:55:09 +04:00
< p >
< span class = "since" > Since 0.9.13< / span > , a sound element
with < code > ich6< / code > model can have optional
sub-elements < code > < codec> < / code > to attach various audio
codecs to the audio device. If not specified, a default codec
will be attached to allow playback and recording. Valid values
are 'duplex' (advertise a line-in and a line-out) and 'micro'
(advertise a speaker and a microphone).
< / p >
< pre >
...
< devices>
< sound model='ich6'>
< codec type='micro'/>
2014-07-04 18:12:48 +04:00
< /sound>
2012-05-16 02:55:09 +04:00
< /devices>
...< / pre >
2011-01-18 00:33:00 +03:00
< p >
Each < code > sound< / code > element has an optional
sub-element < code > < address> < / code > which can tie the
2011-12-10 03:33:51 +04:00
device to a particular PCI
slot, < a href = "#elementsAddress" > documented above< / a > .
2011-01-18 00:33:00 +03:00
< / p >
2009-10-21 16:26:38 +04:00
< h4 > < a name = "elementsWatchdog" > Watchdog device< / a > < / h4 >
< p >
A virtual hardware watchdog device can be added to the guest via
the < code > watchdog< / code > element.
< span class = "since" > Since 0.7.3, QEMU and KVM only< / span >
< / p >
< p >
The watchdog device requires an additional driver and management
daemon in the guest. Just enabling the watchdog in the libvirt
configuration does not do anything useful on its own.
< / p >
< p >
Currently libvirt does not support notification when the
watchdog fires. This feature is planned for a future version of
libvirt.
< / p >
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< watchdog model='i6300esb'/>
< /devices>
...< / pre >
2009-10-21 16:26:38 +04:00
2010-02-04 17:27:52 +03:00
< pre >
...
< devices>
< watchdog model='i6300esb' action='poweroff'/>
< /devices>
< /domain> < / pre >
2009-10-21 16:26:38 +04:00
< dl >
< dt > < code > model< / code > < / dt >
< dd >
2009-11-06 18:04:19 +03:00
< p >
2009-10-21 16:26:38 +04:00
The required < code > model< / code > attribute specifies what real
2009-11-06 18:04:19 +03:00
watchdog device is emulated. Valid values are specific to the
underlying hypervisor.
< / p >
< p >
QEMU and KVM support:
< / p >
< ul >
< li > 'i6300esb' — the recommended device,
emulating a PCI Intel 6300ESB < / li >
< li > 'ib700' — emulating an ISA iBase IB700 < / li >
< / ul >
2009-10-21 16:26:38 +04:00
< / dd >
< dt > < code > action< / code > < / dt >
< dd >
2009-11-06 18:04:19 +03:00
< p >
2009-10-21 16:26:38 +04:00
The optional < code > action< / code > attribute describes what
2009-11-06 18:04:19 +03:00
action to take when the watchdog expires. Valid values are
specific to the underlying hypervisor.
< / p >
< p >
QEMU and KVM support:
< / p >
< ul >
< li > 'reset' — default, forcefully reset the guest< / li >
< li > 'shutdown' — gracefully shutdown the guest
(not recommended) < / li >
< li > 'poweroff' — forcefully power off the guest< / li >
< li > 'pause' — pause the guest< / li >
< li > 'none' — do nothing< / li >
2010-12-10 08:52:11 +03:00
< li > 'dump' — automatically dump the guest
< span class = "since" > Since 0.8.7< / span > < / li >
2009-11-06 18:04:19 +03:00
< / ul >
< p >
2010-12-10 08:52:11 +03:00
Note 1: the 'shutdown' action requires that the guest
2009-11-06 18:04:19 +03:00
is responsive to ACPI signals. In the sort of situations
where the watchdog has expired, guests are usually unable
to respond to ACPI signals. Therefore using 'shutdown'
is not recommended.
< / p >
2010-12-10 08:52:11 +03:00
< p >
Note 2: the directory to save dump files can be configured
by < code > auto_dump_path< / code > in file /etc/libvirt/qemu.conf.
< / p >
2009-10-21 16:26:38 +04:00
< / dd >
< / dl >
2010-07-21 14:53:56 +04:00
< h4 > < a name = "elementsMemBalloon" > Memory balloon device< / a > < / h4 >
< p >
A virtual memory balloon device is added to all Xen and KVM/QEMU
guests. It will be seen as < code > memballoon< / code > element.
It will be automatically added when appropriate, so there is no
need to explicitly add this element in the guest XML unless a
specific PCI slot needs to be assigned.
< span class = "since" > Since 0.8.3, Xen, QEMU and KVM only< / span >
2010-10-15 23:34:24 +04:00
Additionally, < span class = "since" > since 0.8.4< / span > , if the
memballoon device needs to be explicitly disabled,
< code > model='none'< / code > may be used.
2010-07-21 14:53:56 +04:00
< / p >
< p >
2013-04-25 20:53:07 +04:00
Example: automatically added device with KVM
2010-07-21 14:53:56 +04:00
< / p >
< pre >
...
< devices>
< memballoon model='virtio'/>
< /devices>
...< / pre >
< p >
2013-04-25 20:53:07 +04:00
Example: manually added device with static PCI slot 2 requested
2010-07-21 14:53:56 +04:00
< / p >
< pre >
...
< devices>
2013-04-25 20:53:07 +04:00
< memballoon model='virtio'>
< address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
2013-06-26 15:00:00 +04:00
< stats period='10'/>
2013-04-25 20:53:07 +04:00
< /memballoon>
2010-07-21 14:53:56 +04:00
< /devices>
< /domain> < / pre >
< dl >
< dt > < code > model< / code > < / dt >
< dd >
< p >
The required < code > model< / code > attribute specifies what type
2011-02-04 21:16:35 +03:00
of balloon device is provided. Valid values are specific to
the virtualization platform
2010-07-21 14:53:56 +04:00
< / p >
< ul >
< li > 'virtio' — default with QEMU/KVM< / li >
< li > 'xen' — default with Xen< / li >
< / ul >
< / dd >
2013-06-26 15:00:00 +04:00
< dt > < code > period< / code > < / dt >
< dd >
< p >
The optional < code > period< / code > allows the QEMU virtio memory
balloon driver to provide statistics through the < code > virsh
2013-07-08 21:19:43 +04:00
dommemstat [domain]< / code > command. By default, collection is
not enabled. In order to enable, use the < code > virsh dommemstat
[domain] --period [number]< / code > command or < code > virsh edit< / code >
command to add the option to the XML definition.
The < code > virsh dommemstat< / code > will accept the options
< code > --live< / code > , < code > --current< / code > , or < code > --config< / code > .
If an option is not provided, the change for a running domain will
only be made to the active guest.
If the QEMU driver is not at the right
revision, the attempt to set the period will fail.
2013-06-26 15:00:00 +04:00
< span class = 'since' > Since 1.1.1, requires QEMU 1.5< / span >
< / p >
< / dd >
2010-07-21 14:53:56 +04:00
< / dl >
2012-12-20 15:06:52 +04:00
< h4 > < a name = "elementsRng" > Random number generator device< / a > < / h4 >
< p >
The virtual random number generator device allows the host to pass
through entropy to guest operating systems.
< span class = "since" > Since 1.0.3< / span >
< / p >
< p >
Example: usage of the RNG device:
< / p >
< pre >
...
< devices>
< rng model='virtio'>
2013-02-13 18:37:39 +04:00
< rate period="2000" bytes="1234"/>
2012-12-20 15:06:52 +04:00
< backend model='random'> /dev/random< /backend>
< !-- OR -->
< backend model='egd' type='udp'>
2013-09-18 19:12:18 +04:00
< source mode='bind' service='1234'/>
< source mode='connect' host='1.2.3.4' service='1234'/>
2012-12-20 15:06:52 +04:00
< /backend>
< /rng>
< /devices>
...
< / pre >
< dl >
< dt > < code > model< / code > < / dt >
< dd >
< p >
The required < code > model< / code > attribute specifies what type
of RNG device is provided. Valid values are specific to
the virtualization platform:
< / p >
< ul >
< li > 'virtio' — supported by qemu and virtio-rng kernel module< / li >
< / ul >
< / dd >
2013-02-13 18:37:39 +04:00
< dt > < code > rate< / code > < / dt >
< dd >
< p >
The optional < code > rate< / code > element allows limiting the rate at
which entropy can be consumed from the source. The mandatory
attribute < code > bytes< / code > specifies how many bytes are permitted
to be consumed per period. An optional < code > period< / code > attribute
specifies the duration of a period in milliseconds; if omitted, the
period is taken as 1000 milliseconds (1 second).
< span class = 'since' > Since 1.0.4< / span >
< / p >
< / dd >
2012-12-20 15:06:52 +04:00
< dt > < code > backend< / code > < / dt >
< dd >
< p >
The < code > backend< / code > element specifies the source of entropy
to be used for the domain. The source model is configured using the
< code > model< / code > attribute. Supported source models are:
< / p >
< ul >
2013-03-05 02:42:07 +04:00
< li > 'random' — /dev/random (default) or /dev/hwrng
device as source (for now, no other sources are permitted)< / li >
2012-12-20 15:06:52 +04:00
< li > 'egd' — a EGD protocol backend< / li >
< / ul >
< / dd >
2013-02-26 02:03:21 +04:00
< dt > < code > backend model='random'< / code > < / dt >
2012-12-20 15:06:52 +04:00
< dd >
< p >
This backend type expects a non-blocking character device as input.
2013-05-23 22:37:08 +04:00
The only accepted paths are /dev/random and /dev/hwrng. The file
2012-12-20 15:06:52 +04:00
name is specified as contents of the < code > backend< / code > element.
When no file name is specified the hypervisor default is used.
< / p >
< / dd >
2013-02-26 02:03:21 +04:00
< dt > < code > backend model='egd'< / code > < / dt >
2012-12-20 15:06:52 +04:00
< dd >
< p >
This backend connects to a source using the EGD protocol.
The source is specified as a character device. Refer to
< a href = '#elementsCharHostInterface' > character device host interface< / a >
for more information.
< / p >
< / dd >
< / dl >
2010-07-21 14:53:56 +04:00
2013-04-13 00:55:45 +04:00
< h4 > < a name = "elementsTpm" > TPM device< / a > < / h4 >
< p >
The TPM device enables a QEMU guest to have access to TPM
functionality.
< / p >
< p >
The TPM passthrough device type provides access to the host's TPM
for one QEMU guest. No other software may be is using the TPM device,
typically /dev/tpm0, at the time the QEMU guest is started.
< span class = "since" > 'passthrough' since 1.0.5< / span >
< / p >
< p >
Example: usage of the TPM passthrough device
< / p >
< pre >
...
< devices>
< tpm model='tpm-tis'>
< backend type='passthrough'>
2013-06-26 16:29:08 +04:00
< device path='/dev/tpm0'/>
2013-04-13 00:55:45 +04:00
< /backend>
< /tpm>
< /devices>
...
< / pre >
< dl >
< dt > < code > model< / code > < / dt >
< dd >
< p >
The < code > model< / code > attribute specifies what device
model QEMU provides to the guest. If no model name is provided,
< code > tpm-tis< / code > will automatically be chosen.
< / p >
< / dd >
< dt > < code > backend< / code > < / dt >
< dd >
< p >
The < code > backend< / code > element specifies the type of
TPM device. The following types are supported:
< / p >
< ul >
2013-05-03 18:25:37 +04:00
< li > 'passthrough' — use the host's TPM device.< / li >
2013-04-13 00:55:45 +04:00
< / ul >
< / dd >
< dt > < code > backend type='passthrough'< / code > < / dt >
< dd >
< p >
This backend type requires exclusive access to a TPM device on
the host.
An example for such a device is /dev/tpm0. The filename is
specified as path attribute of the < code > source< / code > element.
If no file name is specified then /dev/tpm0 is automatically used.
< / p >
< / dd >
< / dl >
2013-04-19 12:37:51 +04:00
< h4 > < a name = "elementsNVRAM" > NVRAM device< / a > < / h4 >
< p >
nvram device is always added to pSeries guest on PPC64, and its address
is allowed to be changed. Element < code > nvram< / code > (only valid for
pSeries guest, < span class = "since" > since 1.0.5< / span > ) is provided to
enable the address setting.
< / p >
< p >
Example: usage of NVRAM configuration
< / p >
< pre >
...
< devices>
< nvram>
< address type='spapr-vio' reg='0x3000'/>
< /nvram>
< /devices>
...
< / pre >
< dl >
< dt > < code > spapr-vio< / code > < / dt >
< dd >
< p >
VIO device address type, only valid for PPC64.
< / p >
< / dd >
< dt > < code > reg< / code > < / dt >
< dd >
< p >
Device address
< / p >
< / dd >
< / dl >
2013-12-09 13:11:14 +04:00
< h4 > < a name = "elementsPanic" > panic device< / a > < / h4 >
< p >
panic device enables libvirt to receive panic notification from a QEMU
guest.
< span class = "since" > Since 1.2.1, QEMU and KVM only< / span >
< / p >
< p >
Example: usage of panic configuration
< / p >
< pre >
...
< devices>
< panic>
< address type='isa' iobase='0x505'/>
< /panic>
< /devices>
...
< / pre >
< dl >
< dt > < code > address< / code > < / dt >
< dd >
< p >
address of panic. The default ioport is 0x505. Most users
don't need to specify an address.
< / p >
< / dd >
< / dl >
2011-06-27 15:31:36 +04:00
< h3 > < a name = "seclabel" > Security label< / a > < / h3 >
< p >
The < code > seclabel< / code > element allows control over the
Add two new security label types
Curently security labels can be of type 'dynamic' or 'static'.
If no security label is given, then 'dynamic' is assumed. The
current code takes advantage of this default, and avoids even
saving <seclabel> elements with type='dynamic' to disk. This
means if you temporarily change security driver, the guests
can all still start.
With the introduction of sVirt to LXC though, there needs to be
a new default of 'none' to allow unconfined LXC containers.
This patch introduces two new security label types
- default: the host configuration decides whether to run the
guest with type 'none' or 'dynamic' at guest start
- none: the guest will run unconfined by security policy
The 'none' label type will obviously be undesirable for some
deployments, so a new qemu.conf option allows a host admin to
mandate confined guests. It is also possible to turn off default
confinement
security_default_confined = 1|0 (default == 1)
security_require_confined = 1|0 (default == 0)
* src/conf/domain_conf.c, src/conf/domain_conf.h: Add new
seclabel types
* src/security/security_manager.c, src/security/security_manager.h:
Set default sec label types
* src/security/security_selinux.c: Handle 'none' seclabel type
* src/qemu/qemu.conf, src/qemu/qemu_conf.c, src/qemu/qemu_conf.h,
src/qemu/libvirtd_qemu.aug: New security config options
* src/qemu/qemu_driver.c: Tell security driver about default
config
2012-01-25 18:12:52 +04:00
operation of the security drivers. There are three basic
modes of operation, 'dynamic' where libvirt automatically
generates a unique security label, 'static' where the
application/administrator chooses the labels, or 'none'
where confinement is disabled. With dynamic
2011-06-27 15:31:36 +04:00
label generation, libvirt will always automatically
relabel any resources associated with the virtual machine.
With static label assignment, by default, the administrator
or application must ensure labels are set correctly on any
resources, however, automatic relabeling can be enabled
Add two new security label types
Curently security labels can be of type 'dynamic' or 'static'.
If no security label is given, then 'dynamic' is assumed. The
current code takes advantage of this default, and avoids even
saving <seclabel> elements with type='dynamic' to disk. This
means if you temporarily change security driver, the guests
can all still start.
With the introduction of sVirt to LXC though, there needs to be
a new default of 'none' to allow unconfined LXC containers.
This patch introduces two new security label types
- default: the host configuration decides whether to run the
guest with type 'none' or 'dynamic' at guest start
- none: the guest will run unconfined by security policy
The 'none' label type will obviously be undesirable for some
deployments, so a new qemu.conf option allows a host admin to
mandate confined guests. It is also possible to turn off default
confinement
security_default_confined = 1|0 (default == 1)
security_require_confined = 1|0 (default == 0)
* src/conf/domain_conf.c, src/conf/domain_conf.h: Add new
seclabel types
* src/security/security_manager.c, src/security/security_manager.h:
Set default sec label types
* src/security/security_selinux.c: Handle 'none' seclabel type
* src/qemu/qemu.conf, src/qemu/qemu_conf.c, src/qemu/qemu_conf.h,
src/qemu/libvirtd_qemu.aug: New security config options
* src/qemu/qemu_driver.c: Tell security driver about default
config
2012-01-25 18:12:52 +04:00
if desired. < span class = "since" > 'dynamic' since 0.6.1, 'static'
since 0.6.2, and 'none' since 0.9.10.< / span >
2011-06-27 15:31:36 +04:00
< / p >
2012-08-16 02:10:36 +04:00
< p >
If more than one security driver is used by libvirt, multiple
< code > seclabel< / code > tags can be used, one for each driver and
the security driver referenced by each tag can be defined using
the attribute < code > model< / code >
< / p >
2011-06-27 15:31:36 +04:00
< p >
seclabel: extend XML to allow per-disk label overrides
When doing security relabeling, there are cases where a per-file
override might be appropriate. For example, with a static label
and relabeling, it might be appropriate to skip relabeling on a
particular disk, where the backing file lives on NFS that lacks
the ability to track labeling. Or with dynamic labeling, it might
be appropriate to use a custom (non-dynamic) label for a disk
specifically intended to be shared across domains.
The new XML resembles the top-level <seclabel>, but with fewer
options (basically relabel='no', or <label>text</label>):
<domain ...>
...
<devices>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='no'/> <!-- override for just this disk -->
</source>
...
</disk>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='yes'> <!-- override for just this disk -->
<label>system_u:object_r:shared_content_t:s0</label>
</seclabel>
</source>
...
</disk>
...
</devices>
<seclabel type='dynamic' model='selinux'>
<baselabel>text</baselabel> <!-- used for all devices without override -->
</seclabel>
</domain>
This patch only introduces the XML and documentation; future patches
will actually parse and make use of it. The intent is that we can
further extend things as needed, adding a per-device <seclabel> in
more places (such as the source of a console device), and possibly
allowing a <baselabel> instead of <label> for labeling where we want
to reuse the cNNN,cNNN pair of a dynamically labeled domain but a
different base label.
First suggested by Daniel P. Berrange here:
https://www.redhat.com/archives/libvir-list/2011-December/msg00258.html
* docs/schemas/domaincommon.rng (devSeclabel): New define.
(disk): Use it.
* docs/formatdomain.html.in (elementsDisks, seclabel): Document
the new XML.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-dynamic-override.xml:
New test, to validate RNG.
2011-12-23 04:47:49 +04:00
Valid input XML configurations for the top-level security label
2011-06-27 15:31:36 +04:00
are:
< / p >
< pre >
< seclabel type='dynamic' model='selinux'/>
< seclabel type='dynamic' model='selinux'>
< baselabel> system_u:system_r:my_svirt_t:s0< /baselabel>
< /seclabel>
< seclabel type='static' model='selinux' relabel='no'>
< label> system_u:system_r:svirt_t:s0:c392,c662< /label>
< /seclabel>
< seclabel type='static' model='selinux' relabel='yes'>
< label> system_u:system_r:svirt_t:s0:c392,c662< /label>
< /seclabel>
Add two new security label types
Curently security labels can be of type 'dynamic' or 'static'.
If no security label is given, then 'dynamic' is assumed. The
current code takes advantage of this default, and avoids even
saving <seclabel> elements with type='dynamic' to disk. This
means if you temporarily change security driver, the guests
can all still start.
With the introduction of sVirt to LXC though, there needs to be
a new default of 'none' to allow unconfined LXC containers.
This patch introduces two new security label types
- default: the host configuration decides whether to run the
guest with type 'none' or 'dynamic' at guest start
- none: the guest will run unconfined by security policy
The 'none' label type will obviously be undesirable for some
deployments, so a new qemu.conf option allows a host admin to
mandate confined guests. It is also possible to turn off default
confinement
security_default_confined = 1|0 (default == 1)
security_require_confined = 1|0 (default == 0)
* src/conf/domain_conf.c, src/conf/domain_conf.h: Add new
seclabel types
* src/security/security_manager.c, src/security/security_manager.h:
Set default sec label types
* src/security/security_selinux.c: Handle 'none' seclabel type
* src/qemu/qemu.conf, src/qemu/qemu_conf.c, src/qemu/qemu_conf.h,
src/qemu/libvirtd_qemu.aug: New security config options
* src/qemu/qemu_driver.c: Tell security driver about default
config
2012-01-25 18:12:52 +04:00
< seclabel type='none'/>
2011-06-27 15:31:36 +04:00
< / pre >
Add two new security label types
Curently security labels can be of type 'dynamic' or 'static'.
If no security label is given, then 'dynamic' is assumed. The
current code takes advantage of this default, and avoids even
saving <seclabel> elements with type='dynamic' to disk. This
means if you temporarily change security driver, the guests
can all still start.
With the introduction of sVirt to LXC though, there needs to be
a new default of 'none' to allow unconfined LXC containers.
This patch introduces two new security label types
- default: the host configuration decides whether to run the
guest with type 'none' or 'dynamic' at guest start
- none: the guest will run unconfined by security policy
The 'none' label type will obviously be undesirable for some
deployments, so a new qemu.conf option allows a host admin to
mandate confined guests. It is also possible to turn off default
confinement
security_default_confined = 1|0 (default == 1)
security_require_confined = 1|0 (default == 0)
* src/conf/domain_conf.c, src/conf/domain_conf.h: Add new
seclabel types
* src/security/security_manager.c, src/security/security_manager.h:
Set default sec label types
* src/security/security_selinux.c: Handle 'none' seclabel type
* src/qemu/qemu.conf, src/qemu/qemu_conf.c, src/qemu/qemu_conf.h,
src/qemu/libvirtd_qemu.aug: New security config options
* src/qemu/qemu_driver.c: Tell security driver about default
config
2012-01-25 18:12:52 +04:00
< p >
If no 'type' attribute is provided in the input XML, then
the security driver default setting will be used, which
may be either 'none' or 'dynamic'. If a 'baselabel' is set
but no 'type' is set, then the type is presumed to be 'dynamic'
< / p >
2011-06-27 15:31:36 +04:00
< p >
When viewing the XML for a running guest with automatic
resource relabeling active, an additional XML element,
< code > imagelabel< / code > , will be included. This is an
output-only element, so will be ignored in user supplied
XML documents
< / p >
< dl >
< dt > < code > type< / code > < / dt >
Add two new security label types
Curently security labels can be of type 'dynamic' or 'static'.
If no security label is given, then 'dynamic' is assumed. The
current code takes advantage of this default, and avoids even
saving <seclabel> elements with type='dynamic' to disk. This
means if you temporarily change security driver, the guests
can all still start.
With the introduction of sVirt to LXC though, there needs to be
a new default of 'none' to allow unconfined LXC containers.
This patch introduces two new security label types
- default: the host configuration decides whether to run the
guest with type 'none' or 'dynamic' at guest start
- none: the guest will run unconfined by security policy
The 'none' label type will obviously be undesirable for some
deployments, so a new qemu.conf option allows a host admin to
mandate confined guests. It is also possible to turn off default
confinement
security_default_confined = 1|0 (default == 1)
security_require_confined = 1|0 (default == 0)
* src/conf/domain_conf.c, src/conf/domain_conf.h: Add new
seclabel types
* src/security/security_manager.c, src/security/security_manager.h:
Set default sec label types
* src/security/security_selinux.c: Handle 'none' seclabel type
* src/qemu/qemu.conf, src/qemu/qemu_conf.c, src/qemu/qemu_conf.h,
src/qemu/libvirtd_qemu.aug: New security config options
* src/qemu/qemu_driver.c: Tell security driver about default
config
2012-01-25 18:12:52 +04:00
< dd > Either < code > static< / code > , < code > dynamic< / code > or < code > none< / code >
to determine whether libvirt automatically generates a unique security
label or not.
2011-06-27 15:31:36 +04:00
< / dd >
< dt > < code > model< / code > < / dt >
< dd > A valid security model name, matching the currently
activated security model
< / dd >
< dt > < code > relabel< / code > < / dt >
< dd > Either < code > yes< / code > or < code > no< / code > . This must always
be < code > yes< / code > if dynamic label assignment is used. With
static label assignment it will default to < code > no< / code > .
< / dd >
< dt > < code > label< / code > < / dt >
< dd > If static labelling is used, this must specify the full
security label to assign to the virtual domain. The format
2012-10-02 21:57:37 +04:00
of the content depends on the security driver in use:
< ul >
< li > SELinux: a SELinux context.< / li >
< li > AppArmor: an AppArmor profile.< / li >
< li >
DAC: owner and group separated by colon. They can be
defined both as user/group names or uid/gid. The driver will first
try to parse these values as names, but a leading plus sign can
used to force the driver to parse them as uid or gid.
< / li >
< / ul >
2011-06-27 15:31:36 +04:00
< / dd >
< dt > < code > baselabel< / code > < / dt >
< dd > If dynamic labelling is used, this can optionally be
2013-04-24 17:25:06 +04:00
used to specify the base security label that will be used to generate
the actual label. The format of the content depends on the security
driver in use.
The SELinux driver uses only the < code > type< / code > field of the
baselabel in the generated label. Other fields are inherited from
the parent process when using SELinux baselabels.
(The example above demonstrates the use of < code > my_svirt_t< / code >
as the value for the < code > type< / code > field.)
2011-06-27 15:31:36 +04:00
< / dd >
< dt > < code > imagelabel< / code > < / dt >
< dd > This is an output only element, which shows the
security label used on resources associated with the virtual domain.
The format of the content depends on the security driver in use
< / dd >
< / dl >
seclabel: extend XML to allow per-disk label overrides
When doing security relabeling, there are cases where a per-file
override might be appropriate. For example, with a static label
and relabeling, it might be appropriate to skip relabeling on a
particular disk, where the backing file lives on NFS that lacks
the ability to track labeling. Or with dynamic labeling, it might
be appropriate to use a custom (non-dynamic) label for a disk
specifically intended to be shared across domains.
The new XML resembles the top-level <seclabel>, but with fewer
options (basically relabel='no', or <label>text</label>):
<domain ...>
...
<devices>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='no'/> <!-- override for just this disk -->
</source>
...
</disk>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='yes'> <!-- override for just this disk -->
<label>system_u:object_r:shared_content_t:s0</label>
</seclabel>
</source>
...
</disk>
...
</devices>
<seclabel type='dynamic' model='selinux'>
<baselabel>text</baselabel> <!-- used for all devices without override -->
</seclabel>
</domain>
This patch only introduces the XML and documentation; future patches
will actually parse and make use of it. The intent is that we can
further extend things as needed, adding a per-device <seclabel> in
more places (such as the source of a console device), and possibly
allowing a <baselabel> instead of <label> for labeling where we want
to reuse the cNNN,cNNN pair of a dynamically labeled domain but a
different base label.
First suggested by Daniel P. Berrange here:
https://www.redhat.com/archives/libvir-list/2011-December/msg00258.html
* docs/schemas/domaincommon.rng (devSeclabel): New define.
(disk): Use it.
* docs/formatdomain.html.in (elementsDisks, seclabel): Document
the new XML.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-dynamic-override.xml:
New test, to validate RNG.
2011-12-23 04:47:49 +04:00
< p > When relabeling is in effect, it is also possible to fine-tune
the labeling done for specific source file names, by either
disabling the labeling (useful if the file lives on NFS or other
file system that lacks security labeling) or requesting an
alternate label (useful when a management application creates a
special label to allow sharing of some, but not all, resources
between domains), < span class = "since" > since 0.9.9< / span > . When
a < code > seclabel< / code > element is attached to a specific path
rather than the top-level domain assignment, only the
attribute < code > relabel< / code > or the
selinux: distinguish failure to label from request to avoid label
https://bugzilla.redhat.com/show_bug.cgi?id=924153
Commit 904e05a2 (v0.9.9) added a per-<disk> seclabel element with
an attribute relabel='no' in order to try and minimize the
impact of shutdown delays when an NFS server disappears. The idea
was that if a disk is on NFS and can't be labeled in the first
place, there is no need to attempt the (no-op) relabel on domain
shutdown. Unfortunately, the way this was implemented was by
modifying the domain XML so that the optimization would survive
libvirtd restart, but in a way that is indistinguishable from an
explicit user setting. Furthermore, once the setting is turned
on, libvirt avoids attempts at labeling, even for operations like
snapshot or blockcopy where the chain is being extended or pivoted
onto non-NFS, where SELinux labeling is once again possible. As
a result, it was impossible to do a blockcopy to pivot from an
NFS image file onto a local file.
The solution is to separate the semantics of a chain that must
not be labeled (which the user can set even on persistent domains)
vs. the optimization of not attempting a relabel on cleanup (a
live-only annotation), and using only the user's explicit notation
rather than the optimization as the decision on whether to skip
a label attempt in the first place. When upgrading an older
libvirtd to a newer, an NFS volume will still attempt the relabel;
but as the avoidance of a relabel was only an optimization, this
shouldn't cause any problems.
In the ideal future, libvirt will eventually have XML describing
EVERY file in the backing chain, with each file having a separate
<seclabel> element. At that point, libvirt will be able to track
more closely which files need a relabel attempt at shutdown. But
until we reach that point, the single <seclabel> for the entire
<disk> chain is treated as a hint - when a chain has only one
file, then we know it is accurate; but if the chain has more than
one file, we have to attempt relabel in spite of the attribute,
in case part of the chain is local and SELinux mattered for that
portion of the chain.
* src/conf/domain_conf.h (_virSecurityDeviceLabelDef): Add new
member.
* src/conf/domain_conf.c (virSecurityDeviceLabelDefParseXML):
Parse it, for live images only.
(virSecurityDeviceLabelDefFormat): Output it.
(virDomainDiskDefParseXML, virDomainChrSourceDefParseXML)
(virDomainDiskSourceDefFormat, virDomainChrDefFormat)
(virDomainDiskDefFormat): Pass flags on through.
* src/security/security_selinux.c
(virSecuritySELinuxRestoreSecurityImageLabelInt): Honor labelskip
when possible.
(virSecuritySELinuxSetSecurityFileLabel): Set labelskip, not
norelabel, if labeling fails.
(virSecuritySELinuxSetFileconHelper): Fix indentation.
* docs/formatdomain.html.in (seclabel): Document new xml.
* docs/schemas/domaincommon.rng (devSeclabel): Allow it in RNG.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-*-labelskip.xml:
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-*-labelskip.args:
* tests/qemuxml2xmloutdata/qemuxml2xmlout-seclabel-*-labelskip.xml:
New test files.
* tests/qemuxml2argvtest.c (mymain): Run the new tests.
* tests/qemuxml2xmltest.c (mymain): Likewise.
Signed-off-by: Eric Blake <eblake@redhat.com>
2013-08-12 19:15:42 +04:00
sub-element < code > label< / code > are supported. Additionally,
< span class = "since" > since 1.1.2< / span > , an output-only
element < code > labelskip< / code > will be present for active
domains on disks where labeling was skipped due to the image
being on a file system that lacks security labeling.
seclabel: extend XML to allow per-disk label overrides
When doing security relabeling, there are cases where a per-file
override might be appropriate. For example, with a static label
and relabeling, it might be appropriate to skip relabeling on a
particular disk, where the backing file lives on NFS that lacks
the ability to track labeling. Or with dynamic labeling, it might
be appropriate to use a custom (non-dynamic) label for a disk
specifically intended to be shared across domains.
The new XML resembles the top-level <seclabel>, but with fewer
options (basically relabel='no', or <label>text</label>):
<domain ...>
...
<devices>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='no'/> <!-- override for just this disk -->
</source>
...
</disk>
<disk type='file' device='disk'>
<source file='/path/to/image1'>
<seclabel relabel='yes'> <!-- override for just this disk -->
<label>system_u:object_r:shared_content_t:s0</label>
</seclabel>
</source>
...
</disk>
...
</devices>
<seclabel type='dynamic' model='selinux'>
<baselabel>text</baselabel> <!-- used for all devices without override -->
</seclabel>
</domain>
This patch only introduces the XML and documentation; future patches
will actually parse and make use of it. The intent is that we can
further extend things as needed, adding a per-device <seclabel> in
more places (such as the source of a console device), and possibly
allowing a <baselabel> instead of <label> for labeling where we want
to reuse the cNNN,cNNN pair of a dynamically labeled domain but a
different base label.
First suggested by Daniel P. Berrange here:
https://www.redhat.com/archives/libvir-list/2011-December/msg00258.html
* docs/schemas/domaincommon.rng (devSeclabel): New define.
(disk): Use it.
* docs/formatdomain.html.in (elementsDisks, seclabel): Document
the new XML.
* tests/qemuxml2argvdata/qemuxml2argv-seclabel-dynamic-override.xml:
New test, to validate RNG.
2011-12-23 04:47:49 +04:00
< / p >
2008-05-08 18:20:07 +04:00
< h2 > < a name = "examples" > Example configs< / a > < / h2 >
2008-04-23 21:08:31 +04:00
< p >
Example configurations for each driver are provide on the
driver specific pages listed below
< / p >
< ul >
< li > < a href = "drvxen.html#xmlconfig" > Xen examples< / a > < / li >
< li > < a href = "drvqemu.html#xmlconfig" > QEMU/KVM examples< / a > < / li >
< / ul >
< / body >
< / html >