1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-18 10:04:20 +03:00
lvm2/lib/metadata/merge.c

1022 lines
32 KiB
C
Raw Normal View History

/*
2004-03-30 19:35:44 +00:00
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2017 Red Hat, Inc. All rights reserved.
*
2004-03-30 19:35:44 +00:00
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
2004-03-30 19:35:44 +00:00
*
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 19:35:44 +00:00
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib/misc/lib.h"
#include "lib/config/defaults.h"
#include "lib/metadata/metadata.h"
#include "lib/metadata/lv_alloc.h"
#include "lib/metadata/pv_alloc.h"
#include "lib/datastruct/str_list.h"
#include "lib/metadata/segtype.h"
/*
* Attempt to merge two adjacent segments.
2004-05-04 21:25:57 +00:00
* Currently only supports striped segments on AREA_PV.
2008-01-30 14:00:02 +00:00
* Returns success if successful, in which case 'first'
* gets adjusted to contain both areas.
*/
static int _merge(struct lv_segment *first, struct lv_segment *second)
{
2004-05-04 21:25:57 +00:00
if (!first || !second || first->segtype != second->segtype ||
!first->segtype->ops->merge_segments)
return 0;
2004-05-04 21:25:57 +00:00
return first->segtype->ops->merge_segments(first, second);
}
int lv_merge_segments(struct logical_volume *lv)
{
struct dm_list *segh, *t;
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
struct lv_segment *seg, *current, *prev = NULL;
2014-06-20 11:41:20 +01:00
/*
* Don't interfere with pvmoves as they rely upon two LVs
* having a matching segment structure.
*/
if (lv_is_locked(lv) || lv_is_pvmove(lv))
return 1;
if (lv_is_mirror_image(lv) &&
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
(seg = get_only_segment_using_this_lv(lv)) &&
(lv_is_locked(seg->lv) || lv_is_pvmove(seg->lv)))
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
return 1;
dm_list_iterate_safe(segh, t, &lv->segments) {
current = dm_list_item(segh, struct lv_segment);
if (_merge(prev, current))
dm_list_del(&current->list);
else
prev = current;
}
return 1;
}
#define ERROR_MAX 100
#define inc_error_count \
if (error_count++ > ERROR_MAX) \
goto out
#define seg_error(msg) do { \
log_error("LV %s, segment %u invalid: %s for %s segment.", \
display_lvname(seg->lv), seg_count, (msg), lvseg_name(seg)); \
if ((*error_count)++ > ERROR_MAX) \
return; \
} while (0)
/*
* RAID segment property checks.
*
* Checks in here shall catch any
* bogus segment structure setup.
*/
#define raid_seg_error(msg) do { \
log_error("LV %s invalid: %s for %s segment", \
display_lvname(seg->lv), (msg), lvseg_name(seg)); \
if ((*error_count)++ > ERROR_MAX) \
return; \
} while (0)
#define raid_seg_error_val(msg, val) do { \
log_error("LV %s invalid: %s (is %u) for %s segment", \
display_lvname(seg->lv), (msg), (val), lvseg_name(seg)); \
if ((*error_count)++ > ERROR_MAX) \
return; \
} while(0)
/* Check segment LV for reshape flags. */
static int _check_raid_seg_reshape_flags(struct lv_segment *seg)
{
return ((seg->lv->status & LV_RESHAPE) ||
(seg->lv->status & LV_RESHAPE_DELTA_DISKS_MINUS) ||
(seg->lv->status & LV_RESHAPE_DELTA_DISKS_PLUS));
}
/* Check raid0 segment properties in @seg */
static void _check_raid0_seg(struct lv_segment *seg, int *error_count)
{
if (seg_is_raid0_meta(seg) &&
!seg->meta_areas)
raid_seg_error("no meta areas");
if (!seg_is_raid0_meta(seg) &&
seg->meta_areas)
raid_seg_error("meta areas");
if (!seg->stripe_size)
raid_seg_error("zero stripe size");
if (!is_power_of_2(seg->stripe_size))
raid_seg_error_val("non power of 2 stripe size", seg->stripe_size);
if (seg->region_size)
raid_seg_error_val("non-zero region_size", seg->region_size);
if (seg->writebehind)
raid_seg_error_val("non-zero write behind", seg->writebehind);
if (seg->min_recovery_rate)
raid_seg_error_val("non-zero min recovery rate", seg->min_recovery_rate);
if (seg->max_recovery_rate)
raid_seg_error_val("non-zero max recovery rate", seg->max_recovery_rate);
if ((seg->lv->status & LV_RESHAPE_DATA_OFFSET) || seg->data_offset > 1)
raid_seg_error_val("data_offset", seg->data_offset);
if (_check_raid_seg_reshape_flags(seg))
raid_seg_error("reshape");
}
/* Check RAID @seg for non-zero, power of 2 region size and min recovery rate <= max */
static void _check_raid_region_recovery(struct lv_segment *seg, int *error_count)
{
if (!seg->region_size)
raid_seg_error("zero region_size");
if (!is_power_of_2(seg->region_size))
raid_seg_error_val("non power of 2 region size", seg->region_size);
/* min/max recovery rate may be zero but min may not be larger than max if set */
if (seg->max_recovery_rate &&
seg->min_recovery_rate > seg->max_recovery_rate)
raid_seg_error_val("min recovery larger than max recovery", seg->min_recovery_rate);
}
/* Check raid1 segment properties in @seg */
static void _check_raid1_seg(struct lv_segment *seg, int *error_count)
{
if (!seg->meta_areas)
raid_seg_error("no meta areas");
if (seg->stripe_size)
raid_seg_error_val("non-zero stripe size", seg->stripe_size);
if ((seg->lv->status & LV_RESHAPE_DATA_OFFSET) || seg->data_offset > 1)
raid_seg_error_val("data_offset", seg->data_offset);
if (_check_raid_seg_reshape_flags(seg))
raid_seg_error("reshape");
_check_raid_region_recovery(seg, error_count);
}
/* Check raid4/5/6/10 segment properties in @seg */
static void _check_raid45610_seg(struct lv_segment *seg, int *error_count)
{
/* Checks applying to any raid4/5/6/10 */
/*
* Allow raid4 + raid5_n to get activated w/o metadata.
*
* This is mandatory during conversion between them,
* because switching the dedicated parity SubLVs
* beginning <-> end changes the roles of all SubLVs
* which the kernel would reject.
*/
if (!(seg_is_raid4(seg) || seg_is_raid5_n(seg)) && !seg->meta_areas)
raid_seg_error("no meta areas");
if (!seg->stripe_size)
raid_seg_error("zero stripe size");
if (!is_power_of_2(seg->stripe_size))
raid_seg_error_val("non power of 2 stripe size", seg->stripe_size);
_check_raid_region_recovery(seg, error_count);
/* END: checks applying to any raid4/5/6/10 */
if (seg->data_offset > 1) {
if (seg->lv->status & LV_RESHAPE_DATA_OFFSET) {
if (seg->data_offset & (seg->lv->vg->extent_size - 1))
raid_seg_error_val("data_offset", seg->data_offset);
} else
raid_seg_error_val("data_offset", seg->data_offset);
}
/* Specific checks per raid level */
if (seg_is_raid4(seg) ||
seg_is_any_raid5(seg)) {
/*
* To allow for takeover between the MD raid1 and
* raid4/5 personalities, exactly 2 areas (i.e. DataLVs)
* can be mirrored by all raid1, raid4 and raid5 personalities.
* Hence allow a minimum of 2 areas.
*/
if (seg->area_count < 2)
raid_seg_error_val("minimum 2 areas required", seg->area_count);
} else if (seg_is_any_raid6(seg)) {
/*
* FIXME: MD raid6 supports a minimum of 4 areas.
* LVM requests a minimum of 5 due to easier
* processing of SubLVs to replace.
*
* Once that obstacle got removed, allow for a minimum of 4.
*/
if (seg->area_count < 5)
raid_seg_error_val("minimum 5 areas required", seg->area_count);
} else if (seg_is_raid10(seg)) {
/*
* FIXME: raid10 area_count minimum has to change to 2 once we
* support data_copies and odd numbers of stripes
*/
if (seg->area_count < 4)
raid_seg_error_val("minimum 4 areas required", seg->area_count);
if (seg->writebehind)
raid_seg_error_val("non-zero writebehind", seg->writebehind);
}
}
/* Check any non-RAID segment struct members in @seg and increment @error_count for any bogus ones */
static void _check_non_raid_seg_members(struct lv_segment *seg, int *error_count)
{
if (seg->origin) /* snap and thin */
raid_seg_error("non-zero origin LV");
if (seg->cow) /* snap */
raid_seg_error("non-zero cow LV");
if (!dm_list_empty(&seg->origin_list)) /* snap */
raid_seg_error("non-zero origin_list");
/* .... more members? */
}
static void _check_raid_sublvs(struct lv_segment *seg, int *error_count)
{
unsigned s;
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
raid_seg_error("no raid image SubLV");
if ((seg_lv(seg, s)->status & LVM_WRITE) &&
!(seg->lv->status & LV_ACTIVATION_SKIP) &&
lv_is_visible(seg_lv(seg, s)))
raid_seg_error("visible raid image LV");
if (!seg_is_raid_with_meta(seg) || !seg->meta_areas)
continue;
if (seg_metatype(seg, s) != AREA_LV)
raid_seg_error("no raid meta SubLV");
else if (!(seg->lv->status & LV_ACTIVATION_SKIP) &&
lv_is_visible(seg_metalv(seg, s)))
raid_seg_error("visible raid meta LV");
}
}
/*
2017-05-24 13:47:45 +02:00
* Check RAID segment struct members of @seg for acceptable
* properties and increment @error_count for any bogus ones.
*/
static void _check_raid_seg(struct lv_segment *seg, int *error_count)
{
uint32_t area_len, s;
/* General checks applying to all RAIDs */
if (!seg->area_count)
raid_seg_error("zero area count");
if (!seg->areas)
raid_seg_error("zero areas");
lvconvert: add infrastructure for RaidLV reshaping support In order to support striped raid5/6/10 LV reshaping (change of LV type, stripesize or number of legs), this patch introduces infrastructure prerequisites to be used by raid_manip.c extensions in followup patches. This base is needed for allocation of out-of-place reshape space required by the MD raid personalities to avoid writing over data in-place when reading off the current RAID layout or number of legs and writing out the new layout or to a different number of legs (i.e. restripe) Changes: - add members reshape_len to 'struct lv_segment' to store out-of-place reshape length per component rimage - add member data_copies to struct lv_segment to support more than 2 raid10 data copies - make alloc_lv_segment() aware of both reshape_len and data_copies - adjust all alloc_lv_segment() callers to the new API - add functions to retrieve the current data offset (needed for out-of-place reshaping space allocation) and the devices count from the kernel - make libdm deptree code aware of reshape_len - add LV flags for disk add/remove reshaping - support import/export of the new 'struct lv_segment' members - enhance lv_extend/_lv_reduce to cope with reshape_len - add seg_is_*/segtype_is_* macros related to reshaping - add target version check for reshaping - grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal - enhance libdm deptree code to support data_offset (out-of-place reshaping) and delta_disk (legs add/remove reshaping) target arguments Related: rhbz834579 Related: rhbz1191935 Related: rhbz1191978
2017-02-24 00:50:00 +01:00
if (seg->extents_copied > seg->len)
raid_seg_error_val("extents_copied too large", seg->extents_copied);
/* Default < 10, change once raid1 split shift and rename SubLVs works! */
if (seg_is_raid1(seg)) {
if (seg->area_count > DEFAULT_RAID1_MAX_IMAGES) {
log_error("LV %s invalid: maximum supported areas %u (is %u) for %s segment",
seg->lv->name, DEFAULT_RAID1_MAX_IMAGES, seg->area_count, lvseg_name(seg));
if ((*error_count)++ > ERROR_MAX)
return;
}
} else if (seg->area_count > DEFAULT_RAID_MAX_IMAGES) {
log_error("LV %s invalid: maximum supported areas %u (is %u) for %s segment",
seg->lv->name, DEFAULT_RAID_MAX_IMAGES, seg->area_count, lvseg_name(seg));
if ((*error_count)++ > ERROR_MAX)
return;
}
/* FIXME: should we check any non-RAID segment struct members at all? */
_check_non_raid_seg_members(seg, error_count);
/* Check for any DataLV flaws like non-existing ones or size variations */
for (area_len = s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
raid_seg_error("no DataLV");
if (!lv_is_raid_image(seg_lv(seg, s)))
raid_seg_error("DataLV without RAID image flag");
if (area_len &&
area_len != seg_lv(seg, s)->le_count) {
raid_seg_error_val("DataLV size variations",
seg_lv(seg, s)->le_count);
} else
area_len = seg_lv(seg, s)->le_count;
}
/* Check for any MetaLV flaws like non-existing ones or size variations */
if (seg->meta_areas)
for (area_len = s = 0; s < seg->area_count; s++) {
if (seg_metatype(seg, s) == AREA_UNASSIGNED)
continue;
if (seg_metatype(seg, s) != AREA_LV) {
raid_seg_error("no MetaLV");
continue;
}
if (!lv_is_raid_metadata(seg_metalv(seg, s)))
raid_seg_error("MetaLV without RAID metadata flag");
if (area_len &&
area_len != seg_metalv(seg, s)->le_count) {
raid_seg_error_val("MetaLV size variations",
seg_metalv(seg, s)->le_count);
} else
area_len = seg_metalv(seg, s)->le_count;
}
/* END: general checks applying to all RAIDs */
/* Specific segment type checks from here on */
if (seg_is_any_raid0(seg))
_check_raid0_seg(seg, error_count);
else if (seg_is_raid1(seg))
_check_raid1_seg(seg, error_count);
else if (seg_is_raid4(seg) ||
seg_is_any_raid5(seg) ||
seg_is_any_raid6(seg) ||
seg_is_raid10(seg))
_check_raid45610_seg(seg, error_count);
else
raid_seg_error("bogus RAID segment type");
_check_raid_sublvs(seg, error_count);
}
/* END: RAID segment property checks. */
static void _check_lv_segment(struct logical_volume *lv, struct lv_segment *seg,
unsigned seg_count, int *error_count)
{
struct lv_segment *seg2;
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
struct lv_segment *cache_setting_seg = NULL;
int no_metadata_format = 0;
if (lv_is_mirror_image(lv) &&
(!(seg2 = find_mirror_seg(seg)) || !seg_is_mirrored(seg2)))
seg_error("mirror image is not mirrored");
if (seg_is_cache(seg)) {
if (!lv_is_cache(lv))
seg_error("is not flagged as cache LV");
if (!seg->pool_lv) {
seg_error("is missing cache pool LV");
} else if (!lv_is_cache_pool(seg->pool_lv) && !lv_is_cache_vol(seg->pool_lv))
seg_error("is not referencing cache pool LV");
} else { /* !cache */
if (seg->cleaner_policy)
seg_error("sets cleaner_policy");
}
if (lv_is_cache(lv) && seg->pool_lv && lv_is_cache_vol(seg->pool_lv)) {
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
cache_setting_seg = seg;
no_metadata_format = 1;
}
else if (lv_is_cache_pool(lv))
cache_setting_seg = seg;
if (cache_setting_seg) {
if (!dm_list_empty(&cache_setting_seg->lv->segs_using_this_lv)) {
switch (cache_setting_seg->cache_metadata_format) {
case CACHE_METADATA_FORMAT_2:
case CACHE_METADATA_FORMAT_1:
break;
default:
seg_error("has invalid cache metadata format");
}
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
switch (cache_setting_seg->cache_mode) {
case CACHE_MODE_WRITETHROUGH:
case CACHE_MODE_WRITEBACK:
case CACHE_MODE_PASSTHROUGH:
break;
default:
seg_error("has invalid cache's feature flag");
}
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
if (!cache_setting_seg->policy_name)
seg_error("is missing cache policy name");
}
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
if (!validate_cache_chunk_size(lv->vg->cmd, cache_setting_seg->chunk_size))
seg_error("has invalid chunk size.");
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
if (cache_setting_seg->lv->status & LV_METADATA_FORMAT) {
if (cache_setting_seg->cache_metadata_format != CACHE_METADATA_FORMAT_2)
seg_error("sets METADATA_FORMAT flag");
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
}
if (!no_metadata_format &&
(cache_setting_seg->cache_metadata_format == CACHE_METADATA_FORMAT_2) &&
!(cache_setting_seg->lv->status & LV_METADATA_FORMAT))
seg_error("is missing METADATA_FORMAT flag");
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
} else {
if (seg->cache_metadata_format)
seg_error("sets cache metadata format");
if (seg->cache_mode)
seg_error("sets cache mode");
if (seg->policy_name)
seg_error("sets policy name");
if (seg->policy_settings)
seg_error("sets policy settings");
if (seg->lv->status & LV_METADATA_FORMAT)
seg_error("sets METADATA_FORMAT flag");
}
if (!seg_can_error_when_full(seg) && lv_is_error_when_full(lv))
seg_error("does not support flag ERROR_WHEN_FULL.");
if (seg_is_mirrored(seg)) {
/* Check mirror log - which is attached to the mirrored seg */
if (seg->log_lv) {
if (!lv_is_mirror_log(seg->log_lv))
seg_error("log LV is not a mirror log");
if (!(seg2 = first_seg(seg->log_lv)) || (find_mirror_seg(seg2) != seg))
seg_error("log LV does not point back to mirror segment");
}
if (seg_is_mirror(seg)) {
if (!seg->region_size)
seg_error("region size is zero");
/* Avoid regionsize check in case of 'mirrored' mirror log or larger than mlog regionsize will fail */
else if (!strstr(seg->lv->name, "_mlog") && (seg->region_size > seg->lv->size))
seg_error("region size is bigger then LV itself");
else if (!is_power_of_2(seg->region_size))
seg_error("region size is non power of 2");
}
} else { /* !mirrored */
if (seg->log_lv) {
if (lv_is_raid_image(lv))
seg_error("log LV is not a mirror log or a RAID image");
}
}
if (seg_is_raid(seg))
_check_raid_seg(seg, error_count);
else if (!lv_is_raid_type(lv) &&
_check_raid_seg_reshape_flags(seg))
seg_error("reshape");
if (seg_is_pool(seg)) {
if ((seg->area_count != 1) || (seg_type(seg, 0) != AREA_LV)) {
seg_error("is missing a pool data LV");
} else if (!(seg2 = first_seg(seg_lv(seg, 0))) || (find_pool_seg(seg2) != seg))
seg_error("data LV does not refer back to pool LV");
if (!seg->metadata_lv) {
seg_error("is missing a pool metadata LV");
} else if (!(seg2 = first_seg(seg->metadata_lv)) || (find_pool_seg(seg2) != seg))
seg_error("metadata LV does not refer back to pool LV");
} else { /* !thin_pool && !cache_pool */
if (seg->metadata_lv)
seg_error("must not have pool metadata LV set");
}
if (seg_is_thin_pool(seg)) {
if (!lv_is_thin_pool(lv))
seg_error("is not flagged as thin pool LV");
if (lv_is_thin_volume(lv))
seg_error("is a thin volume that must not contain thin pool segment");
if (!validate_thin_pool_chunk_size(lv->vg->cmd, seg->chunk_size))
seg_error("has invalid chunk size.");
if (seg->zero_new_blocks != THIN_ZERO_YES &&
seg->zero_new_blocks != THIN_ZERO_NO)
seg_error("zero_new_blocks is invalid");
} else { /* !thin_pool */
if (seg->zero_new_blocks != THIN_ZERO_UNSELECTED)
seg_error("sets zero_new_blocks");
if (seg->discards != THIN_DISCARDS_UNSELECTED)
seg_error("sets discards");
if (!dm_list_empty(&seg->thin_messages))
seg_error("sets thin_messages list");
}
if (seg_is_thin_volume(seg)) {
if (!lv_is_thin_volume(lv))
seg_error("is not flagged as thin volume LV");
if (lv_is_thin_pool(lv))
seg_error("is a thin pool that must not contain thin volume segment");
if (!seg->pool_lv) {
seg_error("is missing thin pool LV");
} else if (!lv_is_thin_pool(seg->pool_lv))
seg_error("is not referencing thin pool LV");
if (seg->device_id > DM_THIN_MAX_DEVICE_ID)
seg_error("has too large device id");
if (seg->external_lv &&
!lv_is_external_origin(seg->external_lv))
seg_error("external LV is not flagged as a external origin LV");
if (seg->merge_lv) {
if (!lv_is_thin_volume(seg->merge_lv))
seg_error("merge LV is not flagged as a thin LV");
if (!lv_is_merging_origin(seg->merge_lv))
seg_error("merge LV is not flagged as merging");
}
} else { /* !thin */
if (seg->device_id)
seg_error("sets device_id");
if (seg->external_lv)
seg_error("sets external LV");
if (seg->merge_lv)
seg_error("sets merge LV");
if (seg->indirect_origin)
seg_error("sets indirect_origin LV");
}
if (seg_is_vdo_pool(seg)) {
if (!lv_is_vdo_pool(lv))
seg_error("is not flagged as VDO pool LV");
if ((seg->area_count != 1) || (seg_type(seg, 0) != AREA_LV)) {
seg_error("is missing a VDO pool data LV");
} else if (!lv_is_vdo_pool_data(seg_lv(seg, 0)))
seg_error("is not VDO pool data LV");
if ((seg->vdo_params.minimum_io_size != (512 >> SECTOR_SHIFT)) &&
(seg->vdo_params.minimum_io_size != (4096 >> SECTOR_SHIFT)))
seg_error("sets unsupported VDO minimum io size");
if ((seg->vdo_params.block_map_cache_size_mb < DM_VDO_BLOCK_MAP_CACHE_SIZE_MINIMUM_MB) ||
(seg->vdo_params.block_map_cache_size_mb > DM_VDO_BLOCK_MAP_CACHE_SIZE_MAXIMUM_MB))
seg_error("sets unsupported VDO block map cache size");
if ((seg->vdo_params.block_map_era_length < DM_VDO_BLOCK_MAP_ERA_LENGTH_MINIMUM) ||
(seg->vdo_params.block_map_era_length > DM_VDO_BLOCK_MAP_ERA_LENGTH_MAXIMUM))
seg_error("sets unsupported VDO block map era length");
if ((seg->vdo_params.index_memory_size_mb < DM_VDO_INDEX_MEMORY_SIZE_MINIMUM_MB) ||
(seg->vdo_params.index_memory_size_mb > DM_VDO_INDEX_MEMORY_SIZE_MAXIMUM_MB))
seg_error("sets unsupported VDO index memory size");
if ((seg->vdo_params.slab_size_mb < DM_VDO_SLAB_SIZE_MINIMUM_MB) ||
(seg->vdo_params.slab_size_mb > DM_VDO_SLAB_SIZE_MAXIMUM_MB))
seg_error("sets unsupported VDO slab size");
if ((seg->vdo_params.max_discard < DM_VDO_MAX_DISCARD_MINIMUM) ||
(seg->vdo_params.max_discard > DM_VDO_MAX_DISCARD_MAXIMUM))
seg_error("sets unsupported VDO max discard");
if (seg->vdo_params.ack_threads > DM_VDO_ACK_THREADS_MAXIMUM)
seg_error("sets unsupported VDO ack threads");
if ((seg->vdo_params.bio_threads < DM_VDO_BIO_THREADS_MINIMUM) ||
(seg->vdo_params.bio_threads > DM_VDO_BIO_THREADS_MAXIMUM))
seg_error("sets unsupported VDO bio threads");
if ((seg->vdo_params.bio_rotation < DM_VDO_BIO_ROTATION_MINIMUM) ||
(seg->vdo_params.bio_rotation > DM_VDO_BIO_ROTATION_MAXIMUM))
seg_error("sets unsupported VDO bio rotation");
if ((seg->vdo_params.cpu_threads < DM_VDO_CPU_THREADS_MINIMUM) ||
(seg->vdo_params.cpu_threads > DM_VDO_CPU_THREADS_MAXIMUM))
seg_error("sets unsupported VDO cpu threads");
if (seg->vdo_params.hash_zone_threads > DM_VDO_HASH_ZONE_THREADS_MAXIMUM)
seg_error("sets unsupported VDO hash zone threads");
if (seg->vdo_params.logical_threads > DM_VDO_LOGICAL_THREADS_MAXIMUM)
seg_error("sets unsupported VDO logical threads");
if (seg->vdo_params.physical_threads > DM_VDO_PHYSICAL_THREADS_MAXIMUM)
seg_error("sets unsupported VDO physical threads");
} else { /* !VDO pool */
if (seg->vdo_pool_header_size)
seg_error("sets vdo_pool_header_size");
if (seg->vdo_pool_virtual_extents)
seg_error("sets vdo_pool_virtual_extents");
if (seg->vdo_params.minimum_io_size |
seg->vdo_params.block_map_cache_size_mb |
seg->vdo_params.block_map_era_length |
seg->vdo_params.check_point_frequency |
seg->vdo_params.index_memory_size_mb |
seg->vdo_params.slab_size_mb |
seg->vdo_params.max_discard |
seg->vdo_params.ack_threads |
seg->vdo_params.bio_threads |
seg->vdo_params.bio_rotation |
seg->vdo_params.cpu_threads |
seg->vdo_params.hash_zone_threads |
seg->vdo_params.logical_threads |
seg->vdo_params.physical_threads)
seg_error("sets vdo_params");
}
if (seg_is_vdo(seg)) {
if (!lv_is_vdo(lv))
seg_error("is not flagged as VDO LV");
if (!seg_lv(seg, 0))
seg_error("is missing VDO pool LV");
else if (!lv_is_vdo_pool(seg_lv(seg, 0)))
seg_error("is not referencing VDO pool LV");
}
/* Some multi-seg vars excluded here */
if (!seg_is_cache(seg) &&
!seg_is_thin_volume(seg)) {
if (seg->pool_lv)
seg_error("sets pool LV");
}
if (!seg_is_pool(seg) &&
/* FIXME: format_pool/import_export.c _add_linear_seg() sets chunk_size */
!seg_is_linear(seg) &&
Allow dm-cache cache device to be standard LV If a single, standard LV is specified as the cache, use it directly instead of converting it into a cache-pool object with two separate LVs (for data and metadata). With a single LV as the cache, lvm will use blocks at the beginning for metadata, and the rest for data. Separate dm linear devices are set up to point at the metadata and data areas of the LV. These dm devs are given to the dm-cache target to use. The single LV cache cannot be resized without recreating it. If the --poolmetadata option is used to specify an LV for metadata, then a cache pool will be created (with separate LVs for data and metadata.) Usage: $ lvcreate -n main -L 128M vg /dev/loop0 $ lvcreate -n fast -L 64M vg /dev/loop1 $ lvs -a vg LV VG Attr LSize Type Devices main vg -wi-a----- 128.00m linear /dev/loop0(0) fast vg -wi-a----- 64.00m linear /dev/loop1(0) $ lvconvert --type cache --cachepool fast vg/main $ lvs -a vg LV VG Attr LSize Origin Pool Type Devices [fast] vg Cwi---C--- 64.00m linear /dev/loop1(0) main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0) [main_corig] vg owi---C--- 128.00m linear /dev/loop0(0) $ lvchange -ay vg/main $ dmsetup ls vg-fast_cdata (253:4) vg-fast_cmeta (253:5) vg-main_corig (253:6) vg-main (253:24) vg-fast (253:3) $ dmsetup table vg-fast_cdata: 0 98304 linear 253:3 32768 vg-fast_cmeta: 0 32768 linear 253:3 0 vg-main_corig: 0 262144 linear 7:0 2048 vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0 vg-fast: 0 131072 linear 7:1 2048 $ lvchange -an vg/min $ lvconvert --splitcache vg/main $ lvs -a vg LV VG Attr LSize Type Devices fast vg -wi------- 64.00m linear /dev/loop1(0) main vg -wi------- 128.00m linear /dev/loop0(0)
2018-08-17 15:45:52 -05:00
!seg_is_snapshot(seg) &&
!seg_is_cache(seg)) {
if (seg->chunk_size)
seg_error("sets chunk_size");
}
if (!seg_is_thin_pool(seg) &&
!seg_is_thin_volume(seg)) {
if (seg->transaction_id)
seg_error("sets transaction_id");
}
if (!seg_unknown(seg)) {
if (seg->segtype_private)
seg_error("set segtype_private");
}
}
/*
* Verify that an LV's segments are consecutive, complete and don't overlap.
*/
2005-10-27 21:51:28 +00:00
int check_lv_segments(struct logical_volume *lv, int complete_vg)
{
2005-10-27 21:51:28 +00:00
struct lv_segment *seg, *seg2;
uint32_t le = 0;
unsigned seg_count = 0, seg_found, external_lv_found = 0;
lvconvert: add infrastructure for RaidLV reshaping support In order to support striped raid5/6/10 LV reshaping (change of LV type, stripesize or number of legs), this patch introduces infrastructure prerequisites to be used by raid_manip.c extensions in followup patches. This base is needed for allocation of out-of-place reshape space required by the MD raid personalities to avoid writing over data in-place when reading off the current RAID layout or number of legs and writing out the new layout or to a different number of legs (i.e. restripe) Changes: - add members reshape_len to 'struct lv_segment' to store out-of-place reshape length per component rimage - add member data_copies to struct lv_segment to support more than 2 raid10 data copies - make alloc_lv_segment() aware of both reshape_len and data_copies - adjust all alloc_lv_segment() callers to the new API - add functions to retrieve the current data offset (needed for out-of-place reshaping space allocation) and the devices count from the kernel - make libdm deptree code aware of reshape_len - add LV flags for disk add/remove reshaping - support import/export of the new 'struct lv_segment' members - enhance lv_extend/_lv_reduce to cope with reshape_len - add seg_is_*/segtype_is_* macros related to reshaping - add target version check for reshaping - grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal - enhance libdm deptree code to support data_offset (out-of-place reshaping) and delta_disk (legs add/remove reshaping) target arguments Related: rhbz834579 Related: rhbz1191935 Related: rhbz1191978
2017-02-24 00:50:00 +01:00
uint32_t data_rimage_count, s;
struct seg_list *sl;
struct glv_list *glvl;
int error_count = 0;
dm_list_iterate_items(seg, &lv->segments) {
seg_count++;
if (seg->lv != lv) {
log_error("LV %s invalid: segment %u is referencing different LV.",
lv->name, seg_count);
inc_error_count;
}
if (seg->le != le) {
log_error("LV %s invalid: segment %u should begin at "
"LE %" PRIu32 " (found %" PRIu32 ").",
lv->name, seg_count, le, seg->le);
inc_error_count;
2005-06-01 16:51:55 +00:00
}
lvconvert: add infrastructure for RaidLV reshaping support In order to support striped raid5/6/10 LV reshaping (change of LV type, stripesize or number of legs), this patch introduces infrastructure prerequisites to be used by raid_manip.c extensions in followup patches. This base is needed for allocation of out-of-place reshape space required by the MD raid personalities to avoid writing over data in-place when reading off the current RAID layout or number of legs and writing out the new layout or to a different number of legs (i.e. restripe) Changes: - add members reshape_len to 'struct lv_segment' to store out-of-place reshape length per component rimage - add member data_copies to struct lv_segment to support more than 2 raid10 data copies - make alloc_lv_segment() aware of both reshape_len and data_copies - adjust all alloc_lv_segment() callers to the new API - add functions to retrieve the current data offset (needed for out-of-place reshaping space allocation) and the devices count from the kernel - make libdm deptree code aware of reshape_len - add LV flags for disk add/remove reshaping - support import/export of the new 'struct lv_segment' members - enhance lv_extend/_lv_reduce to cope with reshape_len - add seg_is_*/segtype_is_* macros related to reshaping - add target version check for reshaping - grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal - enhance libdm deptree code to support data_offset (out-of-place reshaping) and delta_disk (legs add/remove reshaping) target arguments Related: rhbz834579 Related: rhbz1191935 Related: rhbz1191978
2017-02-24 00:50:00 +01:00
data_rimage_count = seg->area_count - seg->segtype->parity_devs;
/* FIXME: raid varies seg->area_len? */
if (seg->len != seg->area_len &&
seg->len != seg->area_len * data_rimage_count) {
log_error("LV %s: segment %u with len=%u "
" has inconsistent area_len %u",
lv->name, seg_count, seg->len, seg->area_len);
inc_error_count;
}
if (seg_is_snapshot(seg)) {
if (seg->cow && seg->cow == seg->origin) {
log_error("LV %s: segment %u has same LV %s for "
"both origin and snapshot",
lv->name, seg_count, seg->cow->name);
inc_error_count;
}
}
if (complete_vg)
_check_lv_segment(lv, seg, seg_count, &error_count);
2005-06-01 16:51:55 +00:00
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) == AREA_UNASSIGNED) {
log_error("LV %s: segment %u has unassigned "
"area %u.",
lv->name, seg_count, s);
inc_error_count;
} else if (seg_type(seg, s) == AREA_PV) {
2005-06-01 16:51:55 +00:00
if (!seg_pvseg(seg, s) ||
seg_pvseg(seg, s)->lvseg != seg ||
seg_pvseg(seg, s)->lv_area != s) {
log_error("LV %s: segment %u has "
"inconsistent PV area %u",
lv->name, seg_count, s);
inc_error_count;
2005-06-01 16:51:55 +00:00
}
} else {
if (!seg_lv(seg, s) ||
seg_lv(seg, s)->vg != lv->vg ||
seg_lv(seg, s) == lv) {
log_error("LV %s: segment %u has "
"inconsistent LV area %u",
lv->name, seg_count, s);
inc_error_count;
2005-06-01 16:51:55 +00:00
}
2005-10-27 21:51:28 +00:00
if (complete_vg && seg_lv(seg, s) &&
lv_is_mirror_image(seg_lv(seg, s)) &&
(!(seg2 = find_seg_by_le(seg_lv(seg, s),
seg_le(seg, s))) ||
find_mirror_seg(seg2) != seg)) {
log_error("LV %s: segment %u mirror "
"image %u missing mirror ptr",
lv->name, seg_count, s);
inc_error_count;
}
/* FIXME I don't think this ever holds?
2005-06-01 16:51:55 +00:00
if (seg_le(seg, s) != le) {
log_error("LV %s: segment %u has "
"inconsistent LV area %u "
"size",
lv->name, seg_count, s);
inc_error_count;
2005-06-01 16:51:55 +00:00
}
*/
seg_found = 0;
dm_list_iterate_items(sl, &seg_lv(seg, s)->segs_using_this_lv)
if (sl->seg == seg)
seg_found++;
if (!seg_found) {
log_error("LV %s segment %u uses LV %s,"
" but missing ptr from %s to %s",
lv->name, seg_count,
seg_lv(seg, s)->name,
seg_lv(seg, s)->name, lv->name);
inc_error_count;
} else if (seg_found > 1) {
log_error("LV %s has duplicated links "
"to LV %s segment %u",
seg_lv(seg, s)->name,
lv->name, seg_count);
inc_error_count;
}
2005-06-01 16:51:55 +00:00
}
if (complete_vg &&
seg_is_mirrored(seg) && !seg_is_raid(seg) &&
seg_type(seg, s) == AREA_LV &&
seg_lv(seg, s)->le_count != seg->area_len) {
log_error("LV %s: mirrored LV segment %u has "
"wrong size %u (should be %u).",
lv->name, s, seg_lv(seg, s)->le_count,
seg->area_len);
inc_error_count;
}
}
le += seg->len;
}
if (le != lv->le_count) {
log_error("LV %s: inconsistent LE count %u != %u",
lv->name, le, lv->le_count);
inc_error_count;
}
if (!le) {
log_error("LV %s: has no segment.", lv->name);
inc_error_count;
}
dm_list_iterate_items(sl, &lv->segs_using_this_lv) {
seg = sl->seg;
seg_found = 0;
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
continue;
if (lv == seg_lv(seg, s))
seg_found++;
if (seg->meta_areas && seg_is_raid_with_meta(seg) && (lv == seg_metalv(seg, s)))
seg_found++;
}
if (seg->log_lv == lv)
seg_found++;
if (seg->metadata_lv == lv || seg->pool_lv == lv || seg->writecache == lv)
seg_found++;
Allow dm-integrity to be used for raid images dm-integrity stores checksums of the data written to an LV, and returns an error if data read from the LV does not match the previously saved checksum. When used on raid images, dm-raid will correct the error by reading the block from another image, and the device user sees no error. The integrity metadata (checksums) are stored on an internal LV allocated by lvm for each linear image. The internal LV is allocated on the same PV as the image. Create a raid LV with an integrity layer over each raid image (for raid levels 1,4,5,6,10): lvcreate --type raidN --raidintegrity y [options] Add an integrity layer to images of an existing raid LV: lvconvert --raidintegrity y LV Remove the integrity layer from images of a raid LV: lvconvert --raidintegrity n LV Settings Use --raidintegritymode journal|bitmap (journal is default) to configure the method used by dm-integrity to ensure crash consistency. Initialization When integrity is added to an LV, the kernel needs to initialize the integrity metadata/checksums for all blocks in the LV. The data corruption checking performed by dm-integrity will only operate on areas of the LV that are already initialized. The progress of integrity initialization is reported by the "syncpercent" LV reporting field (and under the Cpy%Sync lvs column.) Example: create a raid1 LV with integrity: $ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB. Logical volume "rr_rimage_0_imeta" created. Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB. Logical volume "rr_rimage_1_imeta" created. Logical volume "rr" created. $ lvs -a foo LV VG Attr LSize Origin Cpy%Sync rr foo rwi-a-r--- 1.00g 4.93 [rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02 [rr_rimage_0_imeta] foo ewi-ao---- 12.00m [rr_rimage_0_iorig] foo -wi-ao---- 1.00g [rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45 [rr_rimage_1_imeta] foo ewi-ao---- 12.00m [rr_rimage_1_iorig] foo -wi-ao---- 1.00g [rr_rmeta_0] foo ewi-aor--- 4.00m [rr_rmeta_1] foo ewi-aor--- 4.00m
2019-11-20 16:07:27 -06:00
if (seg->integrity_meta_dev == lv)
seg_found++;
if (seg_is_thin_volume(seg) && (seg->origin == lv || seg->external_lv == lv))
seg_found++;
2016-05-24 00:57:48 +01:00
if (!seg_found) {
log_error("LV %s is used by LV %s:%" PRIu32 "-%" PRIu32
", but missing ptr from %s to %s",
lv->name, seg->lv->name, seg->le,
seg->le + seg->len - 1,
seg->lv->name, lv->name);
inc_error_count;
} else if (seg_found != sl->count) {
log_error("Reference count mismatch: LV %s has %u "
"links to LV %s:%" PRIu32 "-%" PRIu32
", which has %u links",
lv->name, sl->count, seg->lv->name, seg->le,
seg->le + seg->len - 1, seg_found);
inc_error_count;
}
seg_found = 0;
dm_list_iterate_items(seg2, &seg->lv->segments)
2016-05-24 00:57:48 +01:00
if (seg == seg2) {
seg_found++;
break;
}
2016-05-24 00:57:48 +01:00
if (!seg_found) {
log_error("LV segment %s:%" PRIu32 "-%" PRIu32
" is incorrectly listed as being used by LV %s",
seg->lv->name, seg->le, seg->le + seg->len - 1,
lv->name);
inc_error_count;
}
/* Validation of external origin counter */
if (seg->external_lv == lv)
external_lv_found++;
}
dm_list_iterate_items(glvl, &lv->indirect_glvs) {
if (glvl->glv->is_historical) {
if (glvl->glv->historical->indirect_origin != lv->this_glv) {
log_error("LV %s is indirectly used by historical LV %s"
"but that historical LV does not point back to LV %s",
lv->name, glvl->glv->historical->name, lv->name);
inc_error_count;
}
} else {
if (!(seg = first_seg(glvl->glv->live)) ||
seg->indirect_origin != lv->this_glv) {
log_error("LV %s is indirectly used by LV %s"
"but that LV does not point back to LV %s",
lv->name, glvl->glv->live->name, lv->name);
inc_error_count;
}
}
}
/* Check LV flags match first segment type */
if (complete_vg) {
if ((seg_count != 1) &&
(lv_is_cache(lv) ||
lv_is_cache_pool(lv) ||
lv_is_raid(lv) ||
lv_is_snapshot(lv) ||
lv_is_thin_pool(lv) ||
lv_is_thin_volume(lv))) {
log_error("LV %s must have exactly one segment.",
lv->name);
inc_error_count;
}
if (lv_is_pool_data(lv) &&
(!(seg2 = first_seg(lv)) || !(seg2 = find_pool_seg(seg2)) ||
seg2->area_count != 1 || seg_type(seg2, 0) != AREA_LV ||
seg_lv(seg2, 0) != lv)) {
log_error("LV %s: segment 1 pool data LV does not point back to same LV",
lv->name);
inc_error_count;
}
if (lv_is_thin_pool_metadata(lv) && !strstr(lv->name, "_tmeta")) {
log_error("LV %s: thin pool metadata LV does not use _tmeta.",
lv->name);
inc_error_count;
} else if (lv_is_cache_pool_metadata(lv) && !strstr(lv->name, "_cmeta")) {
log_error("LV %s: cache pool metadata LV does not use _cmeta.",
lv->name);
inc_error_count;
}
if (lv_is_external_origin(lv)) {
if (lv->external_count != external_lv_found) {
log_error("LV %s: external origin count does not match.",
lv->name);
inc_error_count;
}
if (lv->status & LVM_WRITE) {
log_error("LV %s: external origin cant't be writable.",
lv->name);
inc_error_count;
}
}
2005-06-01 16:51:55 +00:00
}
out:
return !error_count;
}
2003-09-15 18:22:50 +00:00
/*
* Split the supplied segment at the supplied logical extent
* NB Use LE numbering that works across stripes PV1: 0,2,4 PV2: 1,3,5 etc.
2003-09-15 18:22:50 +00:00
*/
static int _lv_split_segment(struct logical_volume *lv, struct lv_segment *seg,
uint32_t le)
{
struct lv_segment *split_seg;
uint32_t s;
uint32_t offset = le - seg->le;
uint32_t area_offset;
2003-09-15 18:22:50 +00:00
if (!seg_can_split(seg)) {
2004-05-04 21:25:57 +00:00
log_error("Unable to split the %s segment at LE %" PRIu32
" in LV %s", lvseg_name(seg), le, lv->name);
2003-09-15 18:22:50 +00:00
return 0;
}
/* Clone the existing segment */
if (!(split_seg = alloc_lv_segment(seg->segtype,
lvconvert: add infrastructure for RaidLV reshaping support In order to support striped raid5/6/10 LV reshaping (change of LV type, stripesize or number of legs), this patch introduces infrastructure prerequisites to be used by raid_manip.c extensions in followup patches. This base is needed for allocation of out-of-place reshape space required by the MD raid personalities to avoid writing over data in-place when reading off the current RAID layout or number of legs and writing out the new layout or to a different number of legs (i.e. restripe) Changes: - add members reshape_len to 'struct lv_segment' to store out-of-place reshape length per component rimage - add member data_copies to struct lv_segment to support more than 2 raid10 data copies - make alloc_lv_segment() aware of both reshape_len and data_copies - adjust all alloc_lv_segment() callers to the new API - add functions to retrieve the current data offset (needed for out-of-place reshaping space allocation) and the devices count from the kernel - make libdm deptree code aware of reshape_len - add LV flags for disk add/remove reshaping - support import/export of the new 'struct lv_segment' members - enhance lv_extend/_lv_reduce to cope with reshape_len - add seg_is_*/segtype_is_* macros related to reshaping - add target version check for reshaping - grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal - enhance libdm deptree code to support data_offset (out-of-place reshaping) and delta_disk (legs add/remove reshaping) target arguments Related: rhbz834579 Related: rhbz1191935 Related: rhbz1191978
2017-02-24 00:50:00 +01:00
seg->lv, seg->le, seg->len, seg->reshape_len,
2005-04-22 15:44:00 +00:00
seg->status, seg->stripe_size,
seg->log_lv,
lvconvert: add infrastructure for RaidLV reshaping support In order to support striped raid5/6/10 LV reshaping (change of LV type, stripesize or number of legs), this patch introduces infrastructure prerequisites to be used by raid_manip.c extensions in followup patches. This base is needed for allocation of out-of-place reshape space required by the MD raid personalities to avoid writing over data in-place when reading off the current RAID layout or number of legs and writing out the new layout or to a different number of legs (i.e. restripe) Changes: - add members reshape_len to 'struct lv_segment' to store out-of-place reshape length per component rimage - add member data_copies to struct lv_segment to support more than 2 raid10 data copies - make alloc_lv_segment() aware of both reshape_len and data_copies - adjust all alloc_lv_segment() callers to the new API - add functions to retrieve the current data offset (needed for out-of-place reshaping space allocation) and the devices count from the kernel - make libdm deptree code aware of reshape_len - add LV flags for disk add/remove reshaping - support import/export of the new 'struct lv_segment' members - enhance lv_extend/_lv_reduce to cope with reshape_len - add seg_is_*/segtype_is_* macros related to reshaping - add target version check for reshaping - grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal - enhance libdm deptree code to support data_offset (out-of-place reshaping) and delta_disk (legs add/remove reshaping) target arguments Related: rhbz834579 Related: rhbz1191935 Related: rhbz1191978
2017-02-24 00:50:00 +01:00
seg->area_count, seg->area_len, seg->data_copies,
2005-06-01 16:51:55 +00:00
seg->chunk_size, seg->region_size,
seg->extents_copied, seg->pvmove_source_seg))) {
2005-04-22 15:44:00 +00:00
log_error("Couldn't allocate cloned LV segment.");
2003-09-15 18:22:50 +00:00
return 0;
}
if (!str_list_dup(lv->vg->vgmem, &split_seg->tags, &seg->tags)) {
2004-03-08 17:19:15 +00:00
log_error("LV segment tags duplication failed");
return 0;
}
2003-09-15 18:22:50 +00:00
/* In case of a striped segment, the offset has to be / stripes */
area_offset = offset;
if (seg_is_striped(seg))
area_offset /= seg->area_count;
2003-09-15 18:22:50 +00:00
split_seg->area_len -= area_offset;
seg->area_len = area_offset;
split_seg->len -= offset;
seg->len = offset;
split_seg->le = seg->le + seg->len;
2003-09-15 18:22:50 +00:00
/* Adjust the PV mapping */
for (s = 0; s < seg->area_count; s++) {
2005-06-01 16:51:55 +00:00
seg_type(split_seg, s) = seg_type(seg, s);
2003-09-15 18:22:50 +00:00
/* Split area at the offset */
2005-06-01 16:51:55 +00:00
switch (seg_type(seg, s)) {
2003-09-15 18:22:50 +00:00
case AREA_LV:
if (!set_lv_segment_area_lv(split_seg, s, seg_lv(seg, s),
seg_le(seg, s) + seg->area_len, 0))
return_0;
log_debug_alloc("Split %s:%u[%u] at %u: %s LE %u", lv->name,
seg->le, s, le, seg_lv(seg, s)->name,
seg_le(split_seg, s));
2003-09-15 18:22:50 +00:00
break;
case AREA_PV:
if (!(seg_pvseg(split_seg, s) =
assign_peg_to_lvseg(seg_pv(seg, s),
2005-06-01 16:51:55 +00:00
seg_pe(seg, s) +
seg->area_len,
2005-06-01 16:51:55 +00:00
seg_pvseg(seg, s)->len -
seg->area_len,
2008-01-30 13:19:47 +00:00
split_seg, s)))
return_0;
log_debug_alloc("Split %s:%u[%u] at %u: %s PE %u", lv->name,
seg->le, s, le,
dev_name(seg_dev(seg, s)),
seg_pe(split_seg, s));
2003-09-15 18:22:50 +00:00
break;
case AREA_UNASSIGNED:
log_error("Unassigned area %u found in segment", s);
2003-09-15 18:22:50 +00:00
return 0;
}
}
/* Add split off segment to the list _after_ the original one */
dm_list_add_h(&seg->list, &split_seg->list);
2003-09-15 18:22:50 +00:00
return 1;
}
/*
* Ensure there's a segment boundary at the given logical extent
*/
int lv_split_segment(struct logical_volume *lv, uint32_t le)
{
struct lv_segment *seg;
if (!(seg = find_seg_by_le(lv, le))) {
log_error("Segment with extent %" PRIu32 " in LV %s not found",
le, lv->name);
return 0;
}
/* This is a segment start already */
if (le == seg->le)
return 1;
2008-01-30 13:19:47 +00:00
if (!_lv_split_segment(lv, seg, le))
return_0;
2003-09-15 18:22:50 +00:00
2008-01-30 13:19:47 +00:00
if (!vg_validate(lv->vg))
return_0;
2003-09-15 18:22:50 +00:00
return 1;
}