1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-06 17:18:29 +03:00
lvm2/tools/lvchange.c

1349 lines
36 KiB
C
Raw Normal View History

2001-10-30 17:32:48 +03:00
/*
2008-01-30 17:00:02 +03:00
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2016 Red Hat, Inc. All rights reserved.
2001-10-30 17:32:48 +03:00
*
2004-03-30 23:35:44 +04:00
* This file is part of LVM2.
2001-10-30 17:32:48 +03:00
*
2004-03-30 23:35:44 +04:00
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
2001-10-30 17:32:48 +03:00
*
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 23:35:44 +04:00
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
2001-10-30 17:32:48 +03:00
*/
#include "tools.h"
#include "memlock.h"
2001-10-30 17:32:48 +03:00
static int _lvchange_permission(struct cmd_context *cmd,
struct logical_volume *lv)
2001-10-30 17:32:48 +03:00
{
uint32_t lv_access;
struct lvinfo info;
2001-10-30 17:32:48 +03:00
lv_access = arg_uint_value(cmd, permission_ARG, 0);
2001-10-30 17:32:48 +03:00
if (lv_is_external_origin(lv)) {
log_error("Cannot change permissions of external origin %s.",
display_lvname(lv));
2001-10-30 17:32:48 +03:00
return 0;
}
if (!(lv_access & LVM_WRITE) && !(lv->status & LVM_WRITE)) {
/* Refresh if it's read-only in metadata but read-write in kernel */
if (lv_info(cmd, lv, 0, &info, 0, 0) && info.exists && !info.read_only) {
log_print_unless_silent("Logical volume %s is already read-only. Refreshing kernel state.",
display_lvname(lv));
return lv_refresh(cmd, lv);
}
log_error("Logical volume \"%s\" is already read only.",
display_lvname(lv));
2001-10-30 17:32:48 +03:00
return 0;
}
if ((lv_access & LVM_WRITE) && (lv->status & LVM_WRITE)) {
/* Refresh if it's read-write in metadata but read-only in kernel */
if (lv_info(cmd, lv, 0, &info, 0, 0) && info.exists && info.read_only) {
log_print_unless_silent("Logical volume %s is already writable. Refreshing kernel state.",
display_lvname(lv));
return lv_refresh(cmd, lv);
}
log_error("Logical volume %s is already writable.",
display_lvname(lv));
return 0;
}
if (lv_is_mirrored(lv) && vg_is_clustered(lv->vg) &&
lv_info(cmd, lv, 0, &info, 0, 0) && info.exists) {
log_error("Cannot change permissions of mirror %s while active.",
display_lvname(lv));
return 0;
}
/* Not allowed to change permissions on RAID sub-LVs directly */
if (lv_is_raid_metadata(lv) || lv_is_raid_image(lv)) {
log_error("Cannot change permissions of RAID %s %s.",
lv_is_raid_image(lv) ? "image" : "metadata area",
display_lvname(lv));
return 0;
}
if (!(lv_access & LVM_WRITE) && lv_is_thin_pool(lv)) {
log_error("Change permissions of thin pool %s not yet supported.",
display_lvname(lv));
return 0;
}
2001-10-30 17:32:48 +03:00
if (lv_access & LVM_WRITE) {
lv->status |= LVM_WRITE;
log_verbose("Setting logical volume %s read/write.",
display_lvname(lv));
2001-10-30 17:32:48 +03:00
} else {
lv->status &= ~LVM_WRITE;
log_verbose("Setting logical volume %s read-only.",
display_lvname(lv));
2001-10-30 17:32:48 +03:00
}
if (!lv_update_and_reload(lv))
2008-01-30 16:19:47 +03:00
return_0;
return 1;
2001-10-30 17:32:48 +03:00
}
static int _lvchange_pool_update(struct cmd_context *cmd,
struct logical_volume *lv)
{
int update = 0;
unsigned val;
thin_discards_t discards;
if (!lv_is_thin_pool(lv)) {
log_error("Logical volume %s is not a thin pool.",
display_lvname(lv));
return 0;
}
if (arg_is_set(cmd, discards_ARG)) {
2012-08-21 17:51:54 +04:00
discards = (thin_discards_t) arg_uint_value(cmd, discards_ARG, THIN_DISCARDS_IGNORE);
if (discards != first_seg(lv)->discards) {
if (((discards == THIN_DISCARDS_IGNORE) ||
(first_seg(lv)->discards == THIN_DISCARDS_IGNORE)) &&
pool_is_active(lv))
log_error("Cannot change support for discards while pool volume %s is active.",
display_lvname(lv));
else {
first_seg(lv)->discards = discards;
update++;
}
} else
log_error("Logical volume %s already uses --discards %s.",
display_lvname(lv), get_pool_discards_name(discards));
}
if (arg_is_set(cmd, zero_ARG)) {
val = arg_uint_value(cmd, zero_ARG, 1);
if (val != first_seg(lv)->zero_new_blocks) {
first_seg(lv)->zero_new_blocks = val;
update++;
} else
log_error("Logical volume %s already %szero new blocks.",
display_lvname(lv), val ? "" : "does not ");
}
if (!update)
return 0;
if (!lv_update_and_reload_origin(lv))
return_0;
return 1;
}
static int _lvchange_monitoring(struct cmd_context *cmd,
struct logical_volume *lv)
{
struct lvinfo info;
if (!lv_info(cmd, lv, lv_is_thin_pool(lv) ? 1 : 0,
&info, 0, 0) || !info.exists) {
log_error("Logical volume %s is not active.", display_lvname(lv));
return 0;
}
2007-01-20 01:21:45 +03:00
/* do not monitor pvmove lv's */
if (lv_is_pvmove(lv))
return 1;
if ((dmeventd_monitor_mode() != DMEVENTD_MONITOR_IGNORE) &&
!monitor_dev_for_events(cmd, lv, 0, dmeventd_monitor_mode()))
return_0;
2007-01-20 01:21:45 +03:00
return 1;
}
static int _lvchange_background_polling(struct cmd_context *cmd,
struct logical_volume *lv)
{
struct lvinfo info;
if (!lv_info(cmd, lv, 0, &info, 0, 0) || !info.exists) {
log_error("Logical volume %s is not active.", display_lvname(lv));
return 0;
}
if (background_polling())
lv_spawn_background_polling(cmd, lv);
return 1;
}
static int _lvchange_activate(struct cmd_context *cmd, struct logical_volume *lv)
2001-10-30 17:32:48 +03:00
{
activation_change_t activate;
2001-10-30 17:32:48 +03:00
activate = (activation_change_t) arg_uint_value(cmd, activate_ARG, CHANGE_AY);
2001-10-30 17:32:48 +03:00
/*
* We can get here in the odd case where an LV is already active in
* a foreign VG, which allows the VG to be accessed by lvchange -a
* so the LV can be deactivated.
*/
if (lv->vg->system_id && lv->vg->system_id[0] &&
cmd->system_id && cmd->system_id[0] &&
strcmp(lv->vg->system_id, cmd->system_id) &&
is_change_activating(activate)) {
log_error("Cannot activate LVs in a foreign VG.");
return ECMD_FAILED;
}
if (lv_activation_skip(lv, activate, arg_is_set(cmd, ignoreactivationskip_ARG)))
return 1;
if (lv_is_cow(lv) && !lv_is_virtual_origin(origin_from_cow(lv)))
lv = origin_from_cow(lv);
if ((activate == CHANGE_AAY) &&
!lv_passes_auto_activation_filter(cmd, lv))
return 1;
if (!lv_change_activate(cmd, lv, activate))
return_0;
/*
* FIXME: lvchange should defer background polling in a similar
* way as vgchange does. First activate all relevant LVs
* initate background polling later (for all actually
* activated LVs). So we can avoid duplicate background
* polling for pvmove (2 or more locked LVs on single pvmove
* LV)
*/
if (background_polling() && is_change_activating(activate) &&
(lv_is_pvmove(lv) || lv_is_locked(lv) || lv_is_converting(lv) ||
lv_is_merging(lv)))
lv_spawn_background_polling(cmd, lv);
2001-10-30 17:32:48 +03:00
return 1;
}
static int detach_metadata_devices(struct lv_segment *seg, struct dm_list *list)
{
uint32_t s;
uint32_t num_meta_lvs;
struct lv_list *lvl;
num_meta_lvs = seg_is_raid(seg) ? seg->area_count : !!seg->log_lv;
if (!num_meta_lvs)
return_0;
if (!(lvl = dm_pool_alloc(seg->lv->vg->vgmem, sizeof(*lvl) * num_meta_lvs)))
return_0;
if (seg_is_raid_with_meta(seg)) {
for (s = 0; s < seg->area_count; s++) {
if (!seg_metalv(seg, s))
return_0; /* Trap this future possibility */
lvl[s].lv = seg_metalv(seg, s);
lv_set_visible(lvl[s].lv);
dm_list_add(list, &lvl[s].list);
}
return 1;
}
lvl[0].lv = detach_mirror_log(seg);
dm_list_add(list, &lvl[0].list);
return 1;
}
static int attach_metadata_devices(struct lv_segment *seg, struct dm_list *list)
{
struct lv_list *lvl;
if (seg_is_raid(seg)) {
dm_list_iterate_items(lvl, list)
lv_set_hidden(lvl->lv);
return 1;
}
dm_list_iterate_items(lvl, list)
break; /* get first item */
if (!attach_mirror_log(seg, lvl->lv))
return_0;
return 1;
}
RAID: Add scrubbing support for RAID LVs New options to 'lvchange' allow users to scrub their RAID LVs. Synopsis: lvchange --syncaction {check|repair} vg/raid_lv RAID scrubbing is the process of reading all the data and parity blocks in an array and checking to see whether they are coherent. 'lvchange' can now initaite the two scrubbing operations: "check" and "repair". "check" will go over the array and recored the number of discrepancies but not repair them. "repair" will correct the discrepancies as it finds them. 'lvchange --syncaction repair vg/raid_lv' is not to be confused with 'lvconvert --repair vg/raid_lv'. The former initiates a background synchronization operation on the array, while the latter is designed to repair/replace failed devices in a mirror or RAID logical volume. Additional reporting has been added for 'lvs' to support the new operations. Two new printable fields (which are not printed by default) have been added: "syncaction" and "mismatches". These can be accessed using the '-o' option to 'lvs', like: lvs -o +syncaction,mismatches vg/lv "syncaction" will print the current synchronization operation that the RAID volume is performing. It can be one of the following: - idle: All sync operations complete (doing nothing) - resync: Initializing an array or recovering after a machine failure - recover: Replacing a device in the array - check: Looking for array inconsistencies - repair: Looking for and repairing inconsistencies The "mismatches" field with print the number of descrepancies found during a check or repair operation. The 'Cpy%Sync' field already available to 'lvs' will print the progress of any of the above syncactions, including check and repair. Finally, the lv_attr field has changed to accomadate the scrubbing operations as well. The role of the 'p'artial character in the lv_attr report field as expanded. "Partial" is really an indicator for the health of a logical volume and it makes sense to extend this include other health indicators as well, specifically: 'm'ismatches: Indicates that there are discrepancies in a RAID LV. This character is shown after a scrubbing operation has detected that portions of the RAID are not coherent. 'r'efresh : Indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed - even though LVM can read the device label and considers the device to be ok. The LV should be 'r'efreshed to notify the kernel that the device is now available, or the device should be 'r'eplaced if it is suspected of failing.
2013-04-12 00:33:59 +04:00
/*
* lvchange_refresh
* @cmd
* @lv
*
* Suspend and resume a logical volume.
*/
static int _lvchange_refresh(struct cmd_context *cmd, struct logical_volume *lv)
RAID: Add scrubbing support for RAID LVs New options to 'lvchange' allow users to scrub their RAID LVs. Synopsis: lvchange --syncaction {check|repair} vg/raid_lv RAID scrubbing is the process of reading all the data and parity blocks in an array and checking to see whether they are coherent. 'lvchange' can now initaite the two scrubbing operations: "check" and "repair". "check" will go over the array and recored the number of discrepancies but not repair them. "repair" will correct the discrepancies as it finds them. 'lvchange --syncaction repair vg/raid_lv' is not to be confused with 'lvconvert --repair vg/raid_lv'. The former initiates a background synchronization operation on the array, while the latter is designed to repair/replace failed devices in a mirror or RAID logical volume. Additional reporting has been added for 'lvs' to support the new operations. Two new printable fields (which are not printed by default) have been added: "syncaction" and "mismatches". These can be accessed using the '-o' option to 'lvs', like: lvs -o +syncaction,mismatches vg/lv "syncaction" will print the current synchronization operation that the RAID volume is performing. It can be one of the following: - idle: All sync operations complete (doing nothing) - resync: Initializing an array or recovering after a machine failure - recover: Replacing a device in the array - check: Looking for array inconsistencies - repair: Looking for and repairing inconsistencies The "mismatches" field with print the number of descrepancies found during a check or repair operation. The 'Cpy%Sync' field already available to 'lvs' will print the progress of any of the above syncactions, including check and repair. Finally, the lv_attr field has changed to accomadate the scrubbing operations as well. The role of the 'p'artial character in the lv_attr report field as expanded. "Partial" is really an indicator for the health of a logical volume and it makes sense to extend this include other health indicators as well, specifically: 'm'ismatches: Indicates that there are discrepancies in a RAID LV. This character is shown after a scrubbing operation has detected that portions of the RAID are not coherent. 'r'efresh : Indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed - even though LVM can read the device label and considers the device to be ok. The LV should be 'r'efreshed to notify the kernel that the device is now available, or the device should be 'r'eplaced if it is suspected of failing.
2013-04-12 00:33:59 +04:00
{
log_verbose("Refreshing logical volume %s (if active).", display_lvname(lv));
RAID: Add scrubbing support for RAID LVs New options to 'lvchange' allow users to scrub their RAID LVs. Synopsis: lvchange --syncaction {check|repair} vg/raid_lv RAID scrubbing is the process of reading all the data and parity blocks in an array and checking to see whether they are coherent. 'lvchange' can now initaite the two scrubbing operations: "check" and "repair". "check" will go over the array and recored the number of discrepancies but not repair them. "repair" will correct the discrepancies as it finds them. 'lvchange --syncaction repair vg/raid_lv' is not to be confused with 'lvconvert --repair vg/raid_lv'. The former initiates a background synchronization operation on the array, while the latter is designed to repair/replace failed devices in a mirror or RAID logical volume. Additional reporting has been added for 'lvs' to support the new operations. Two new printable fields (which are not printed by default) have been added: "syncaction" and "mismatches". These can be accessed using the '-o' option to 'lvs', like: lvs -o +syncaction,mismatches vg/lv "syncaction" will print the current synchronization operation that the RAID volume is performing. It can be one of the following: - idle: All sync operations complete (doing nothing) - resync: Initializing an array or recovering after a machine failure - recover: Replacing a device in the array - check: Looking for array inconsistencies - repair: Looking for and repairing inconsistencies The "mismatches" field with print the number of descrepancies found during a check or repair operation. The 'Cpy%Sync' field already available to 'lvs' will print the progress of any of the above syncactions, including check and repair. Finally, the lv_attr field has changed to accomadate the scrubbing operations as well. The role of the 'p'artial character in the lv_attr report field as expanded. "Partial" is really an indicator for the health of a logical volume and it makes sense to extend this include other health indicators as well, specifically: 'm'ismatches: Indicates that there are discrepancies in a RAID LV. This character is shown after a scrubbing operation has detected that portions of the RAID are not coherent. 'r'efresh : Indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed - even though LVM can read the device label and considers the device to be ok. The LV should be 'r'efreshed to notify the kernel that the device is now available, or the device should be 'r'eplaced if it is suspected of failing.
2013-04-12 00:33:59 +04:00
return lv_refresh(cmd, lv);
}
static int _reactivate_lv(struct logical_volume *lv,
int active, int exclusive)
{
struct cmd_context *cmd = lv->vg->cmd;
if (!active)
return 1;
if (exclusive)
return activate_lv_excl_local(cmd, lv);
return activate_lv(cmd, lv);
}
RAID: Add scrubbing support for RAID LVs New options to 'lvchange' allow users to scrub their RAID LVs. Synopsis: lvchange --syncaction {check|repair} vg/raid_lv RAID scrubbing is the process of reading all the data and parity blocks in an array and checking to see whether they are coherent. 'lvchange' can now initaite the two scrubbing operations: "check" and "repair". "check" will go over the array and recored the number of discrepancies but not repair them. "repair" will correct the discrepancies as it finds them. 'lvchange --syncaction repair vg/raid_lv' is not to be confused with 'lvconvert --repair vg/raid_lv'. The former initiates a background synchronization operation on the array, while the latter is designed to repair/replace failed devices in a mirror or RAID logical volume. Additional reporting has been added for 'lvs' to support the new operations. Two new printable fields (which are not printed by default) have been added: "syncaction" and "mismatches". These can be accessed using the '-o' option to 'lvs', like: lvs -o +syncaction,mismatches vg/lv "syncaction" will print the current synchronization operation that the RAID volume is performing. It can be one of the following: - idle: All sync operations complete (doing nothing) - resync: Initializing an array or recovering after a machine failure - recover: Replacing a device in the array - check: Looking for array inconsistencies - repair: Looking for and repairing inconsistencies The "mismatches" field with print the number of descrepancies found during a check or repair operation. The 'Cpy%Sync' field already available to 'lvs' will print the progress of any of the above syncactions, including check and repair. Finally, the lv_attr field has changed to accomadate the scrubbing operations as well. The role of the 'p'artial character in the lv_attr report field as expanded. "Partial" is really an indicator for the health of a logical volume and it makes sense to extend this include other health indicators as well, specifically: 'm'ismatches: Indicates that there are discrepancies in a RAID LV. This character is shown after a scrubbing operation has detected that portions of the RAID are not coherent. 'r'efresh : Indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed - even though LVM can read the device label and considers the device to be ok. The LV should be 'r'efreshed to notify the kernel that the device is now available, or the device should be 'r'eplaced if it is suspected of failing.
2013-04-12 00:33:59 +04:00
/*
* lvchange_resync
* @cmd
* @lv
*
* Force a mirror or RAID array to undergo a complete initializing resync.
*/
static int _lvchange_resync(struct cmd_context *cmd, struct logical_volume *lv)
2006-10-24 03:03:55 +04:00
{
int active = 0;
int exclusive = 0;
int monitored;
struct lv_segment *seg = first_seg(lv);
struct dm_list device_list;
struct lv_list *lvl;
dm_list_init(&device_list);
2006-10-24 03:03:55 +04:00
if (seg_is_any_raid0(seg) ||
(!seg_is_mirror(seg) && !seg_is_raid(seg))) {
log_error("Unable to resync %s. It is not RAID4/5/6/10 or mirrored.",
display_lvname(lv));
return 0;
2006-10-24 03:03:55 +04:00
}
if (lv_is_pvmove(lv)) {
log_error("Unable to resync pvmove volume %s.", display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
if (lv_is_locked(lv)) {
log_error("Unable to resync locked volume %s.", display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
if (lv_is_active_locally(lv)) {
if (!lv_check_not_in_use(lv, 1)) {
log_error("Can't resync open logical volume %s.",
display_lvname(lv));
return 0;
2006-10-24 03:03:55 +04:00
}
if (!arg_is_set(cmd, yes_ARG) &&
yes_no_prompt("Do you really want to deactivate "
"logical volume %s to resync it? [y/n]: ",
display_lvname(lv)) == 'n') {
log_error("Logical volume %s not resynced.",
display_lvname(lv));
return 0;
2006-10-24 19:30:33 +04:00
}
active = 1;
if (lv_is_active_exclusive_locally(lv))
exclusive = 1;
2006-10-24 03:03:55 +04:00
}
if (seg_is_raid(seg) && active && !exclusive) {
log_error("RAID logical volume %s cannot be active remotely.",
display_lvname(lv));
return 0;
}
/* Activate exclusively to ensure no nodes still have LV active */
monitored = dmeventd_monitor_mode();
if (monitored != DMEVENTD_MONITOR_IGNORE)
init_dmeventd_monitor(0);
2006-10-24 03:03:55 +04:00
if (!deactivate_lv(cmd, lv)) {
log_error("Unable to deactivate %s for resync.", display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
if (vg_is_clustered(lv->vg) && lv_is_active(lv)) {
log_error("Can't get exclusive access to clustered volume %s.",
display_lvname(lv));
return 0;
}
if (monitored != DMEVENTD_MONITOR_IGNORE)
init_dmeventd_monitor(monitored);
init_mirror_in_sync(0);
log_very_verbose("Starting resync of %s%s%s%s %s.",
2006-10-24 03:03:55 +04:00
(active) ? "active " : "",
vg_is_clustered(lv->vg) ? "clustered " : "",
(seg->log_lv) ? "disk-logged " :
seg_is_raid(seg) ? "" : "core-logged ",
lvseg_name(seg), display_lvname(lv));
2006-10-24 03:03:55 +04:00
/*
* If this mirror has a core log (i.e. !seg->log_lv),
2006-10-24 03:03:55 +04:00
* then simply deactivating/activating will cause
* it to reset the sync status. We only need to
* worry about persistent logs.
*/
if (!seg_is_raid(seg) && !seg->log_lv) {
if (lv->status & LV_NOTSYNCED) {
lv->status &= ~LV_NOTSYNCED;
log_very_verbose("Updating logical volume %s on disk(s).",
display_lvname(lv));
if (!vg_write(lv->vg) || !vg_commit(lv->vg)) {
log_error("Failed to update metadata on disk.");
return 0;
}
}
if (!_reactivate_lv(lv, active, exclusive)) {
log_error("Failed to reactivate %s to resynchronize mirror.",
display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
2006-10-24 03:03:55 +04:00
return 1;
}
/*
* Now we handle mirrors with log devices
*/
lv->status &= ~LV_NOTSYNCED;
2006-10-24 03:03:55 +04:00
/* Separate mirror log or metadata devices so we can clear them */
if (!detach_metadata_devices(seg, &device_list)) {
log_error("Failed to clear %s %s for %s.",
seg->segtype->name, seg_is_raid(seg) ?
"metadata area" : "mirror log", display_lvname(lv));
return 0;
}
2006-10-24 03:03:55 +04:00
if (!vg_write(lv->vg) || !vg_commit(lv->vg)) {
log_error("Failed to update intermediate VG metadata on disk.");
if (!_reactivate_lv(lv, active, exclusive))
stack;
return 0;
}
/* No backup for intermediate metadata, so just unlock memory */
memlock_unlock(lv->vg->cmd);
2006-10-24 03:03:55 +04:00
dm_list_iterate_items(lvl, &device_list) {
if (!activate_lv_excl_local(cmd, lvl->lv)) {
log_error("Unable to activate %s for %s clearing.",
display_lvname(lvl->lv), (seg_is_raid(seg)) ?
"metadata area" : "mirror log");
return 0;
}
2006-10-24 03:03:55 +04:00
if (!wipe_lv(lvl->lv, (struct wipe_params)
{ .do_zero = 1, .zero_sectors = lvl->lv->size })) {
log_error("Unable to reset sync status for %s.",
display_lvname(lv));
if (!deactivate_lv(cmd, lvl->lv))
log_error("Failed to deactivate log LV after "
"wiping failed");
return 0;
}
if (!deactivate_lv(cmd, lvl->lv)) {
log_error("Unable to deactivate %s LV %s "
"after wiping for resync.",
(seg_is_raid(seg)) ? "metadata" : "log",
display_lvname(lvl->lv));
return 0;
}
}
2006-10-24 03:03:55 +04:00
/* Wait until devices are away */
if (!sync_local_dev_names(lv->vg->cmd)) {
log_error("Failed to sync local devices after updating %s.",
display_lvname(lv));
return 0;
}
/* Put metadata sub-LVs back in place */
if (!attach_metadata_devices(seg, &device_list)) {
log_error("Failed to reattach %s device after clearing.",
(seg_is_raid(seg)) ? "metadata" : "log");
return 0;
2006-10-24 03:03:55 +04:00
}
if (!vg_write(lv->vg) || !vg_commit(lv->vg)) {
log_error("Failed to update metadata on disk for %s.",
display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
if (!_reactivate_lv(lv, active, exclusive)) {
backup(lv->vg);
log_error("Failed to reactivate %s after resync.",
display_lvname(lv));
2006-10-24 03:03:55 +04:00
return 0;
}
backup(lv->vg);
2006-10-24 03:03:55 +04:00
return 1;
}
static int _lvchange_alloc(struct cmd_context *cmd, struct logical_volume *lv)
2001-10-30 17:32:48 +03:00
{
int want_contiguous = arg_int_value(cmd, contiguous_ARG, 0);
alloc_policy_t alloc = (alloc_policy_t)
arg_uint_value(cmd, alloc_ARG, (want_contiguous)
? ALLOC_CONTIGUOUS : ALLOC_INHERIT);
2001-10-30 17:32:48 +03:00
if (alloc == lv->alloc) {
log_error("Allocation policy of logical volume %s is already %s.",
display_lvname(lv), get_alloc_string(alloc));
2001-10-30 17:32:48 +03:00
return 0;
}
lv->alloc = alloc;
2001-10-30 17:32:48 +03:00
/* FIXME If contiguous, check existing extents already are */
2001-10-30 17:32:48 +03:00
log_verbose("Setting contiguous allocation policy for %s to %s.",
display_lvname(lv), get_alloc_string(alloc));
2001-10-30 17:32:48 +03:00
log_very_verbose("Updating logical volume %s on disk(s).", display_lvname(lv));
/* No need to suspend LV for this change */
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
2008-01-30 16:19:47 +03:00
return_0;
backup(lv->vg);
2001-10-30 17:32:48 +03:00
return 1;
}
static int _lvchange_errorwhenfull(struct cmd_context *cmd,
struct logical_volume *lv)
{
unsigned ewf = arg_int_value(cmd, errorwhenfull_ARG, 0);
if (ewf == lv_is_error_when_full(lv)) {
log_error("Error when full is already %sset for %s.",
(ewf) ? "" : "un", display_lvname(lv));
return 0;
}
if (ewf)
lv->status |= LV_ERROR_WHEN_FULL;
else
lv->status &= ~LV_ERROR_WHEN_FULL;
if (!lv_update_and_reload(lv))
return_0;
return 1;
}
static int _lvchange_readahead(struct cmd_context *cmd,
struct logical_volume *lv)
2001-10-30 17:32:48 +03:00
{
unsigned read_ahead = 0;
unsigned pagesize = (unsigned) lvm_getpagesize() >> SECTOR_SHIFT;
2001-10-30 17:32:48 +03:00
read_ahead = arg_uint_value(cmd, readahead_ARG, 0);
2001-10-30 17:32:48 +03:00
if (read_ahead != DM_READ_AHEAD_AUTO &&
(lv->vg->fid->fmt->features & FMT_RESTRICTED_READAHEAD) &&
(read_ahead < 2 || read_ahead > 120)) {
log_error("Metadata only supports readahead values between 2 and 120.");
2001-10-30 17:32:48 +03:00
return 0;
}
if (read_ahead != DM_READ_AHEAD_AUTO &&
read_ahead != DM_READ_AHEAD_NONE && read_ahead % pagesize) {
if (read_ahead < pagesize)
read_ahead = pagesize;
else
read_ahead = (read_ahead / pagesize) * pagesize;
log_warn("WARNING: Overriding readahead to %u sectors, a multiple "
"of %uK page size.", read_ahead, pagesize >> 1);
}
2001-10-30 17:32:48 +03:00
if (lv->read_ahead == read_ahead) {
if (read_ahead == DM_READ_AHEAD_AUTO)
log_error("Read ahead is already auto for %s.",
display_lvname(lv));
else
log_error("Read ahead is already %u for %s.",
read_ahead, display_lvname(lv));
2001-10-30 17:32:48 +03:00
return 0;
}
lv->read_ahead = read_ahead;
log_verbose("Setting read ahead to %u for %s.",
read_ahead, display_lvname(lv));
2001-10-30 17:32:48 +03:00
if (!lv_update_and_reload(lv))
2008-01-30 16:19:47 +03:00
return_0;
return 1;
2001-10-30 17:32:48 +03:00
}
static int _lvchange_persistent(struct cmd_context *cmd,
struct logical_volume *lv)
{
enum activation_change activate = CHANGE_AN;
2015-03-05 23:00:44 +03:00
/* The LV lock in lvmlockd should remain as it is. */
cmd->lockd_lv_disable = 1;
if (!get_and_validate_major_minor(cmd, lv->vg->fid->fmt,
&lv->major, &lv->minor))
return_0;
if (lv->minor == -1) {
if (!(lv->status & FIXED_MINOR)) {
log_error("Minor number is already not persistent for %s.",
display_lvname(lv));
return 0;
}
lv->status &= ~FIXED_MINOR;
log_verbose("Disabling persistent device number for %s.",
display_lvname(lv));
} else {
if (lv_is_active(lv)) {
if (!arg_is_set(cmd, force_ARG) &&
!arg_is_set(cmd, yes_ARG) &&
yes_no_prompt("Logical volume %s will be "
"deactivated temporarily. "
"Continue? [y/n]: ",
display_lvname(lv)) == 'n') {
log_error("%s device number not changed.",
display_lvname(lv));
return 0;
}
activate = CHANGE_AEY;
if (vg_is_clustered(lv->vg) &&
locking_is_clustered() &&
locking_supports_remote_queries() &&
!lv_is_active_exclusive_locally(lv)) {
/* Reliable reactivate only locally */
log_print_unless_silent("Remotely active LV %s needs "
"individual reactivation.",
display_lvname(lv));
activate = CHANGE_ALY;
}
2003-07-11 21:10:19 +04:00
}
/* Ensuring LV is not active */
if (!deactivate_lv(cmd, lv)) {
log_error("Cannot deactivate %s.", display_lvname(lv));
2002-03-11 22:02:28 +03:00
return 0;
}
lv->status |= FIXED_MINOR;
log_verbose("Setting persistent device number to (%d, %d) for %s.",
lv->major, lv->minor, display_lvname(lv));
}
log_very_verbose("Updating logical volume %s on disk(s).",
display_lvname(lv));
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
2008-01-30 16:19:47 +03:00
return_0;
if (activate != CHANGE_AN) {
log_verbose("Re-activating logical volume %s.", display_lvname(lv));
if (!lv_active_change(cmd, lv, activate, 0)) {
log_error("%s: reactivation failed.", display_lvname(lv));
backup(lv->vg);
return 0;
}
}
backup(lv->vg);
return 1;
}
2002-11-18 17:04:08 +03:00
static int _lvchange_cache(struct cmd_context *cmd, struct logical_volume *lv)
2014-11-19 20:39:58 +03:00
{
cache_mode_t mode;
const char *name;
struct dm_config_tree *settings = NULL;
struct lv_segment *pool_seg = first_seg(lv);
int r = 0, is_clean;
if (lv_is_cache(lv))
pool_seg = first_seg(pool_seg->pool_lv);
else if (!lv_is_cache_pool(lv)) {
log_error("LV %s is not a cache LV.", display_lvname(lv));
(void) arg_from_list_is_set(cmd, "is supported only with cache or cache pool LVs",
cachemode_ARG,
cachepolicy_ARG,
cachesettings_ARG,
-1);
goto out;
2014-11-19 20:39:58 +03:00
}
if (!get_cache_params(cmd, &mode, &name, &settings))
goto_out;
if ((mode != CACHE_MODE_UNDEFINED) &&
(mode != pool_seg->cache_mode) &&
lv_is_cache(lv)) {
if (!lv_cache_wait_for_clean(lv, &is_clean))
return_0;
if (!is_clean) {
log_error("Cache %s is not clean, refusing to switch cache mode.",
display_lvname(lv));
return 0;
}
}
if (mode && !cache_set_cache_mode(first_seg(lv), mode))
2014-11-19 20:39:58 +03:00
goto_out;
if ((name || settings) &&
!cache_set_policy(first_seg(lv), name, settings))
2014-11-19 20:39:58 +03:00
goto_out;
2014-11-19 20:39:58 +03:00
if (!lv_update_and_reload(lv))
goto_out;
2014-11-19 20:39:58 +03:00
r = 1;
out:
if (settings)
dm_config_destroy(settings);
2014-11-19 20:39:58 +03:00
return r;
}
static int _lvchange_tag(struct cmd_context *cmd, struct logical_volume *lv, int arg)
2004-03-08 20:19:15 +03:00
{
if (!change_tag(cmd, NULL, lv, NULL, arg))
return_0;
2004-03-08 20:19:15 +03:00
log_very_verbose("Updating logical volume %s on disk(s).", display_lvname(lv));
2004-03-08 20:19:15 +03:00
/* No need to suspend LV for this change */
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
2008-01-30 16:19:47 +03:00
return_0;
2004-03-08 20:19:15 +03:00
backup(lv->vg);
2004-03-08 20:19:15 +03:00
return 1;
}
static int _lvchange_writemostly(struct logical_volume *lv)
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
{
int s, pv_count, i = 0;
char **pv_names;
const char *tmp_str;
size_t tmp_str_len;
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
struct pv_list *pvl;
struct arg_value_group_list *group;
struct cmd_context *cmd = lv->vg->cmd;
struct lv_segment *raid_seg = first_seg(lv);
if (!seg_is_raid1(raid_seg)) {
log_error("--write%s can only be used with 'raid1' segment type.",
arg_is_set(cmd, writemostly_ARG) ? "mostly" : "behind");
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
return 0;
}
if (arg_is_set(cmd, writebehind_ARG))
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
raid_seg->writebehind = arg_uint_value(cmd, writebehind_ARG, 0);
if ((pv_count = arg_count(cmd, writemostly_ARG))) {
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
/* writemostly can be specified more than once */
pv_names = dm_pool_alloc(lv->vg->vgmem, sizeof(char *) * pv_count);
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
if (!pv_names)
return_0;
dm_list_iterate_items(group, &cmd->arg_value_groups) {
if (!grouped_arg_is_set(group->arg_values,
writemostly_ARG))
continue;
if (!(tmp_str = grouped_arg_str_value(group->arg_values,
writemostly_ARG,
NULL)))
return_0;
/*
* Writemostly PV specifications can be:
* <PV> - Turn on writemostly
* <PV>:t - Toggle writemostly
* <PV>:n - Turn off writemostly
* <PV>:y - Turn on writemostly
*
* We allocate strlen + 3 to add our own ':{t|n|y}' if
* not present plus the trailing '\0'.
*/
tmp_str_len = strlen(tmp_str);
if (!(pv_names[i] = dm_pool_zalloc(lv->vg->vgmem, tmp_str_len + 3)))
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
return_0;
if ((tmp_str_len < 3) ||
(tmp_str[tmp_str_len - 2] != ':'))
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
/* Default to 'y' if no mode specified */
sprintf(pv_names[i], "%s:y", tmp_str);
else
sprintf(pv_names[i], "%s", tmp_str);
i++;
}
for (i = 0; i < pv_count; i++)
pv_names[i][strlen(pv_names[i]) - 2] = '\0';
for (i = 0; i < pv_count; i++) {
if (!(pvl = find_pv_in_vg(lv->vg, pv_names[i]))) {
log_error("%s not found in volume group, %s",
pv_names[i], lv->vg->name);
return 0;
}
for (s = 0; s < (int) raid_seg->area_count; s++) {
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
/*
* We don't bother checking the metadata area,
* since writemostly only affects the data areas.
*/
if (seg_type(raid_seg, s) == AREA_UNASSIGNED)
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
continue;
if (lv_is_on_pv(seg_lv(raid_seg, s), pvl->pv)) {
if (pv_names[i][strlen(pv_names[i]) + 1] == 'y')
seg_lv(raid_seg, s)->status |=
LV_WRITEMOSTLY;
else if (pv_names[i][strlen(pv_names[i]) + 1] == 'n')
seg_lv(raid_seg, s)->status &=
~LV_WRITEMOSTLY;
else if (pv_names[i][strlen(pv_names[i]) + 1] == 't')
seg_lv(raid_seg, s)->status ^=
LV_WRITEMOSTLY;
else
return_0;
}
}
}
}
if (!lv_update_and_reload(lv))
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
return_0;
return 1;
}
static int _lvchange_recovery_rate(struct logical_volume *lv)
{
struct cmd_context *cmd = lv->vg->cmd;
struct lv_segment *raid_seg = first_seg(lv);
if (!seg_is_raid(raid_seg)) {
log_error("Unable to change the recovery rate of non-RAID "
"logical volume %s.", display_lvname(lv));
return 0;
}
if (arg_is_set(cmd, minrecoveryrate_ARG))
raid_seg->min_recovery_rate =
arg_uint_value(cmd, minrecoveryrate_ARG, 0) / 2;
if (arg_is_set(cmd, maxrecoveryrate_ARG))
raid_seg->max_recovery_rate =
arg_uint_value(cmd, maxrecoveryrate_ARG, 0) / 2;
if (raid_seg->max_recovery_rate &&
(raid_seg->max_recovery_rate < raid_seg->min_recovery_rate)) {
log_error("Minimum recovery rate cannot be higher than maximum.");
return 0;
}
if (!lv_update_and_reload(lv))
return_0;
return 1;
}
static int _lvchange_profile(struct logical_volume *lv)
{
const char *old_profile_name, *new_profile_name;
struct profile *new_profile;
old_profile_name = lv->profile ? lv->profile->name : "(inherited)";
if (arg_is_set(lv->vg->cmd, detachprofile_ARG)) {
new_profile_name = "(inherited)";
lv->profile = NULL;
} else {
if (arg_is_set(lv->vg->cmd, metadataprofile_ARG))
config: differentiate command and metadata profiles and consolidate profile handling code - When defining configuration source, the code now uses separate CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers (before, it was just CONFIG_PROFILE that did not make the difference between the two). This helps when checking the configuration if it contains correct set of options which are all in either command-profilable or metadata-profilable group without mixing these groups together - so it's a firm distinction. The "command profile" can't contain "metadata profile" and vice versa! This is strictly checked and if the settings are mixed, such profile is rejected and it's not used. So in the end, the CONFIG_PROFILE_COMMAND set of options and CONFIG_PROFILE_METADATA are mutually exclusive sets. - Marking configuration with one or the other marker will also determine the way these configuration sources are positioned in the configuration cascade which is now: CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES - Marking configuration with one or the other marker will also make it possible to issue a command context refresh (will be probably a part of a future patch) if needed for settings in global profile set. For settings in metadata profile set this is impossible since we can't refresh cmd context in the middle of reading VG/LV metadata and for each VG/LV separately because each VG/LV can have a different metadata profile assinged and it's not possible to change these settings at this level. - When command profile is incorrect, it's rejected *and also* the command exits immediately - the profile *must* be correct for the command that was run with a profile to be executed. Before this patch, when the profile was found incorrect, there was just the warning message and the command continued without profile applied. But it's more correct to exit immediately in this case. - When metadata profile is incorrect, we reject it during command runtime (as we know the profile name from metadata and not early from command line as it is in case of command profiles) and we *do continue* with the command as we're in the middle of operation. Also, the metadata profile is applied directly and on the fly on find_config_tree_* fn call and even if the metadata profile is found incorrect, we still need to return the non-profiled value as found in the other configuration provided or default value. To exit immediately even in this case, we'd need to refactor existing find_config_tree_* fns so they can return error. Currently, these fns return only config values (which end up with default values in the end if the config is not found). - To check the profile validity before use to be sure it's correct, one can use : lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate (the --commandprofile/--metadataprofile for dumpconfig will come as part of the subsequent patch) - This patch also adds a reference to --commandprofile and --metadataprofile in the cmd help string (which was missing before for the --profile for some commands). We do not mention --profile now as people should use --commandprofile or --metadataprofile directly. However, the --profile is still supported for backward compatibility and it's translated as: --profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange (as these commands are able to attach profile to metadata) --profile == --commandprofile for all the other commands (--metadataprofile is not allowed there as it makes no sense) - This patch also contains some cleanups to make the code handling the profiles more readable...
2014-05-20 16:13:10 +04:00
new_profile_name = arg_str_value(lv->vg->cmd, metadataprofile_ARG, NULL);
else
new_profile_name = arg_str_value(lv->vg->cmd, profile_ARG, NULL);
if (!(new_profile = add_profile(lv->vg->cmd, new_profile_name, CONFIG_PROFILE_METADATA)))
return_0;
lv->profile = new_profile;
}
log_verbose("Changing configuration profile for LV %s: %s -> %s.",
display_lvname(lv), old_profile_name, new_profile_name);
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
backup(lv->vg);
return 1;
}
static int _lvchange_activation_skip(struct logical_volume *lv)
{
int skip = arg_int_value(lv->vg->cmd, setactivationskip_ARG, 0);
lv_set_activation_skip(lv, 1, skip);
log_verbose("Changing activation skip flag to %s for LV %s.",
display_lvname(lv), skip ? "enabled" : "disabled");
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
backup(lv->vg);
return 1;
}
static int _lvchange_single(struct cmd_context *cmd, struct logical_volume *lv,
struct processing_handle *handle __attribute__((unused)))
2002-11-18 17:04:08 +03:00
{
int doit = 0, docmds = 0;
struct logical_volume *origin;
char snaps_msg[128];
2002-11-18 17:04:08 +03:00
if (sigint_caught())
return_ECMD_FAILED;
2002-11-18 17:04:08 +03:00
if (!(lv->vg->status & LVM_WRITE) &&
2016-04-26 23:04:19 +03:00
arg_from_list_is_set(cmd, NULL,
alloc_ARG,
contiguous_ARG,
discards_ARG,
metadataprofile_ARG,
permission_ARG,
persistent_ARG,
profile_ARG,
readahead_ARG,
zero_ARG,
-1)) {
log_error("Only -a permitted with read-only volume group %s.",
lv->vg->name);
return ECMD_FAILED;
2002-11-18 17:04:08 +03:00
}
if (lv_is_origin(lv) && !lv_is_thin_volume(lv) &&
2016-04-26 23:04:19 +03:00
arg_from_list_is_set(cmd, NULL,
alloc_ARG,
contiguous_ARG,
metadataprofile_ARG,
permission_ARG,
persistent_ARG,
profile_ARG,
readahead_ARG,
-1)) {
log_error("Can't change logical volume %s under snapshot.",
display_lvname(lv));
2002-11-18 17:04:08 +03:00
return ECMD_FAILED;
}
if (lv_is_pvmove(lv)) {
log_error("Unable to change pvmove LV %s.", display_lvname(lv));
if (arg_is_set(cmd, activate_ARG))
2003-05-06 16:14:36 +04:00
log_error("Use 'pvmove --abort' to abandon a pvmove");
return ECMD_FAILED;
}
if (lv_is_mirror_log(lv)) {
log_error("Unable to change mirror log LV %s directly.",
display_lvname(lv));
2005-06-01 20:51:55 +04:00
return ECMD_FAILED;
}
if (lv_is_mirror_image(lv)) {
log_error("Unable to change mirror image LV %s directly.",
display_lvname(lv));
return ECMD_FAILED;
}
/* If LV is sparse, activate origin instead */
if (arg_is_set(cmd, activate_ARG) && lv_is_cow(lv) &&
lv_is_virtual_origin(origin = origin_from_cow(lv)))
lv = origin;
if ((lv_is_thin_pool_data(lv) || lv_is_thin_pool_metadata(lv) ||
lv_is_cache_pool_data(lv) || lv_is_cache_pool_metadata(lv)) &&
!arg_is_set(cmd, activate_ARG) &&
!arg_is_set(cmd, permission_ARG) &&
!arg_is_set(cmd, setactivationskip_ARG))
/* Rest can be changed for stacked thin pool meta/data volumes */
;
2014-08-15 15:52:21 +04:00
else if (!lv_is_visible(lv) && !lv_is_virtual_origin(lv)) {
log_error("Unable to change internal LV %s directly.",
display_lvname(lv));
return ECMD_FAILED;
}
if (lv_is_cow(lv) && arg_is_set(cmd, activate_ARG)) {
origin = origin_from_cow(lv);
if (origin->origin_count < 2)
snaps_msg[0] = '\0';
else if (dm_snprintf(snaps_msg, sizeof(snaps_msg),
" and %u other snapshot(s)",
origin->origin_count - 1) < 0) {
log_error("Failed to prepare message.");
return ECMD_FAILED;
}
if (!arg_is_set(cmd, yes_ARG) &&
(yes_no_prompt("Change of snapshot %s will also change its "
"origin %s%s. Proceed? [y/n]: ",
display_lvname(lv), display_lvname(origin),
snaps_msg) == 'n')) {
log_error("Logical volume %s not changed.", display_lvname(lv));
return ECMD_FAILED;
}
}
if (arg_is_set(cmd, errorwhenfull_ARG) && !lv_is_thin_pool(lv)) {
log_error("Option --errorwhenfull is only supported with thin pools.");
return ECMD_FAILED;
}
if (arg_is_set(cmd, persistent_ARG) && lv_is_pool(lv)) {
log_error("Persistent major and minor numbers are not supported with pools.");
return ECMD_FAILED;
}
if (!arg_is_set(cmd, activate_ARG) && !arg_is_set(cmd, refresh_ARG)) {
2015-03-05 23:00:44 +03:00
/*
* If a persistent lv lock already exists from activation
* (with the needed mode or higher), this will be a no-op.
* Otherwise, the lv lock will be taken as non-persistent
* and released when this command exits.
*
* FIXME: use "sh" if the options imply that the lvchange
* operation does not modify the LV.
*/
if (!lockd_lv(cmd, lv, "ex", 0)) {
stack;
return ECMD_FAILED;
}
}
/*
* FIXME: DEFAULT_BACKGROUND_POLLING should be "unspecified".
* If --poll is explicitly provided use it; otherwise polling
* should only be started if the LV is not already active. So:
* 1) change the activation code to say if the LV was actually activated
* 2) make polling of an LV tightly coupled with LV activation
*
* Do not initiate any polling if --sysinit option is used.
*/
init_background_polling(arg_is_set(cmd, sysinit_ARG) ? 0 :
arg_int_value(cmd, poll_ARG,
DEFAULT_BACKGROUND_POLLING));
2002-11-18 17:04:08 +03:00
/* access permission change */
if (arg_is_set(cmd, permission_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_permission(cmd, lv);
docmds++;
2002-11-18 17:04:08 +03:00
}
/* allocation policy change */
if (arg_is_set(cmd, contiguous_ARG) || arg_is_set(cmd, alloc_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_alloc(cmd, lv);
docmds++;
2002-11-18 17:04:08 +03:00
}
/* error when full change */
if (arg_is_set(cmd, errorwhenfull_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_errorwhenfull(cmd, lv);
docmds++;
}
2002-11-18 17:04:08 +03:00
/* read ahead sector change */
if (arg_is_set(cmd, readahead_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_readahead(cmd, lv);
docmds++;
2002-11-18 17:04:08 +03:00
}
2009-11-04 15:39:56 +03:00
/* persistent device number change */
if (arg_is_set(cmd, persistent_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_persistent(cmd, lv);
docmds++;
2002-11-18 17:04:08 +03:00
}
if (arg_is_set(cmd, discards_ARG) ||
arg_is_set(cmd, zero_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_pool_update(cmd, lv);
docmds++;
}
2004-03-08 20:19:15 +03:00
/* add tag */
if (arg_is_set(cmd, addtag_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_tag(cmd, lv, addtag_ARG);
docmds++;
2004-03-08 20:19:15 +03:00
}
/* del tag */
if (arg_is_set(cmd, deltag_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_tag(cmd, lv, deltag_ARG);
docmds++;
2004-03-08 20:19:15 +03:00
}
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
/* change writemostly/writebehind */
if (arg_is_set(cmd, writemostly_ARG) || arg_is_set(cmd, writebehind_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_writemostly(lv);
RAID: Add writemostly/writebehind support for RAID1 'lvchange' is used to alter a RAID 1 logical volume's write-mostly and write-behind characteristics. The '--writemostly' parameter takes a PV as an argument with an optional trailing character to specify whether to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing character is given, it will set the flag. Synopsis: lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv Example: lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv The last character in the 'lv_attr' field is used to show whether a device has the WriteMostly flag set. It is signified with a 'w'. If the device has failed, the 'p'artial flag has priority. Example ("nosync" raid1 with mismatch_cnt and writemostly): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg Rwi---r-m 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m Example (raid1 with mismatch_cnt, writemostly - but failed drive): [~]# lvs -a --segment vg LV VG Attr #Str Type SSize raid1 vg rwi---r-p 2 raid1 500.00m [raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m [raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m [raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m [raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m A new reportable field has been added for writebehind as well. If write-behind has not been set or the LV is not RAID1, the field will be blank. Example (writebehind is set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- 512 [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor-- Example (writebehind is not set): [~]# lvs -a -o name,attr,writebehind vg LV Attr WBehind lv rwi-a-r-- [lv_rimage_0] iwi-aor-w [lv_rimage_1] iwi-aor-- [lv_rmeta_0] ewi-aor-- [lv_rmeta_1] ewi-aor--
2013-04-15 22:59:46 +04:00
docmds++;
}
/* change [min|max]_recovery_rate */
if (arg_is_set(cmd, minrecoveryrate_ARG) ||
arg_is_set(cmd, maxrecoveryrate_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_recovery_rate(lv);
docmds++;
}
/* change configuration profile */
if (arg_is_set(cmd, profile_ARG) || arg_is_set(cmd, metadataprofile_ARG) ||
arg_is_set(cmd, detachprofile_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_profile(lv);
docmds++;
}
if (arg_is_set(cmd, setactivationskip_ARG)) {
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_activation_skip(lv);
docmds++;
}
if (arg_is_set(cmd, cachemode_ARG) ||
arg_is_set(cmd, cachepolicy_ARG) || arg_is_set(cmd, cachesettings_ARG)) {
2014-11-19 20:39:58 +03:00
if (!archive(lv->vg))
return_ECMD_FAILED;
doit += _lvchange_cache(cmd, lv);
2014-11-19 20:39:58 +03:00
docmds++;
}
2002-11-18 17:04:08 +03:00
if (doit)
log_print_unless_silent("Logical volume %s changed.", display_lvname(lv));
2002-11-18 17:04:08 +03:00
if (arg_is_set(cmd, resync_ARG) &&
!_lvchange_resync(cmd, lv))
return_ECMD_FAILED;
2006-10-24 03:03:55 +04:00
if (arg_is_set(cmd, syncaction_ARG)) {
struct lv_segment *seg = first_seg(lv);
if (seg_is_any_raid0(seg)) {
log_error("Unable to sync raid0 LV %s.", display_lvname(lv));
return_ECMD_FAILED;
}
if (!lv_raid_message(lv, arg_str_value(cmd, syncaction_ARG, NULL)))
return_ECMD_FAILED;
}
RAID: Add scrubbing support for RAID LVs New options to 'lvchange' allow users to scrub their RAID LVs. Synopsis: lvchange --syncaction {check|repair} vg/raid_lv RAID scrubbing is the process of reading all the data and parity blocks in an array and checking to see whether they are coherent. 'lvchange' can now initaite the two scrubbing operations: "check" and "repair". "check" will go over the array and recored the number of discrepancies but not repair them. "repair" will correct the discrepancies as it finds them. 'lvchange --syncaction repair vg/raid_lv' is not to be confused with 'lvconvert --repair vg/raid_lv'. The former initiates a background synchronization operation on the array, while the latter is designed to repair/replace failed devices in a mirror or RAID logical volume. Additional reporting has been added for 'lvs' to support the new operations. Two new printable fields (which are not printed by default) have been added: "syncaction" and "mismatches". These can be accessed using the '-o' option to 'lvs', like: lvs -o +syncaction,mismatches vg/lv "syncaction" will print the current synchronization operation that the RAID volume is performing. It can be one of the following: - idle: All sync operations complete (doing nothing) - resync: Initializing an array or recovering after a machine failure - recover: Replacing a device in the array - check: Looking for array inconsistencies - repair: Looking for and repairing inconsistencies The "mismatches" field with print the number of descrepancies found during a check or repair operation. The 'Cpy%Sync' field already available to 'lvs' will print the progress of any of the above syncactions, including check and repair. Finally, the lv_attr field has changed to accomadate the scrubbing operations as well. The role of the 'p'artial character in the lv_attr report field as expanded. "Partial" is really an indicator for the health of a logical volume and it makes sense to extend this include other health indicators as well, specifically: 'm'ismatches: Indicates that there are discrepancies in a RAID LV. This character is shown after a scrubbing operation has detected that portions of the RAID are not coherent. 'r'efresh : Indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed - even though LVM can read the device label and considers the device to be ok. The LV should be 'r'efreshed to notify the kernel that the device is now available, or the device should be 'r'eplaced if it is suspected of failing.
2013-04-12 00:33:59 +04:00
/* activation change */
if (arg_is_set(cmd, activate_ARG)) {
if (!_lvchange_activate(cmd, lv))
return_ECMD_FAILED;
} else if (arg_is_set(cmd, refresh_ARG)) {
if (!_lvchange_refresh(cmd, lv))
return_ECMD_FAILED;
} else {
if (arg_is_set(cmd, monitor_ARG) &&
!_lvchange_monitoring(cmd, lv))
return_ECMD_FAILED;
if (arg_is_set(cmd, poll_ARG) &&
!_lvchange_background_polling(cmd, lv))
return_ECMD_FAILED;
}
if (doit != docmds)
return_ECMD_FAILED;
2003-10-22 02:06:07 +04:00
return ECMD_PROCESSED;
2002-11-18 17:04:08 +03:00
}
int lvchange(struct cmd_context *cmd, int argc, char **argv)
{
[lv|vg]change: Allow limited metadata changes when PVs are missing A while back, the behavior of LVM changed from allowing metadata changes when PVs were missing to not allowing changes. Until recently, this change was tolerated by HA-LVM by forcing a 'vgreduce --removemissing' before trying (again) to add tags to an LV and then activate it. LVM mirroring requires that failed devices are removed anyway, so this was largely harmless. However, RAID LVs do not require devices to be removed from the array in order to be activated. In fact, in an HA-LVM environment this would be very undesirable. Device failures in such an environment can often be transient and it would be much better to restore the device to the array than synchronize an entirely new device. There are two methods that can be used to setup an HA-LVM environment: "clvm" or "tagging". For RAID LVs, "clvm" is out of the question because RAID LVs are not supported in clustered VGs - not even in an exclusively activated manner. That leaves "tagging". HA-LVM uses tagging - coupled with 'volume_list' - to ensure that only one machine can have an LV active at a time. If updates are not allowed when a PV is missing, it is impossible to add or remove tags to allow for activation. This removes one of the most basic functionalities of HA-LVM - site redundancy. If mirroring or RAID is used to replicate the storage in two data centers and one of them goes down, a server and a storage device are lost. When the service fails-over to the alternate site, the VG will be "partial". Unable to add a tag to the VG/LV, the RAID device will be unable to activate. The solution is to allow vgchange and lvchange to alter the LVM metadata for a limited set of options - --[add|del]tag included. The set of allowable options are ones that do not cause changes to the DM kernel target (like --resync would) or could alter the structure of the LV (like allocation or conversion).
2012-10-10 20:33:10 +04:00
/*
* Options that update metadata should be listed in one of
* the two lists below (i.e. options other than -a, --refresh,
* --monitor or --poll).
*/
int update_partial_safe = /* options safe to update if partial */
2016-04-26 23:04:19 +03:00
arg_from_list_is_set(cmd, NULL,
addtag_ARG,
contiguous_ARG,
deltag_ARG,
detachprofile_ARG,
metadataprofile_ARG,
permission_ARG,
persistent_ARG,
profile_ARG,
readahead_ARG,
setactivationskip_ARG,
-1);
[lv|vg]change: Allow limited metadata changes when PVs are missing A while back, the behavior of LVM changed from allowing metadata changes when PVs were missing to not allowing changes. Until recently, this change was tolerated by HA-LVM by forcing a 'vgreduce --removemissing' before trying (again) to add tags to an LV and then activate it. LVM mirroring requires that failed devices are removed anyway, so this was largely harmless. However, RAID LVs do not require devices to be removed from the array in order to be activated. In fact, in an HA-LVM environment this would be very undesirable. Device failures in such an environment can often be transient and it would be much better to restore the device to the array than synchronize an entirely new device. There are two methods that can be used to setup an HA-LVM environment: "clvm" or "tagging". For RAID LVs, "clvm" is out of the question because RAID LVs are not supported in clustered VGs - not even in an exclusively activated manner. That leaves "tagging". HA-LVM uses tagging - coupled with 'volume_list' - to ensure that only one machine can have an LV active at a time. If updates are not allowed when a PV is missing, it is impossible to add or remove tags to allow for activation. This removes one of the most basic functionalities of HA-LVM - site redundancy. If mirroring or RAID is used to replicate the storage in two data centers and one of them goes down, a server and a storage device are lost. When the service fails-over to the alternate site, the VG will be "partial". Unable to add a tag to the VG/LV, the RAID device will be unable to activate. The solution is to allow vgchange and lvchange to alter the LVM metadata for a limited set of options - --[add|del]tag included. The set of allowable options are ones that do not cause changes to the DM kernel target (like --resync would) or could alter the structure of the LV (like allocation or conversion).
2012-10-10 20:33:10 +04:00
int update_partial_unsafe =
2016-04-26 23:04:19 +03:00
arg_from_list_is_set(cmd, NULL,
alloc_ARG,
cachemode_ARG,
2016-04-26 23:04:19 +03:00
cachepolicy_ARG,
cachesettings_ARG,
discards_ARG,
errorwhenfull_ARG,
maxrecoveryrate_ARG,
minrecoveryrate_ARG,
resync_ARG,
syncaction_ARG,
writebehind_ARG,
writemostly_ARG,
zero_ARG,
-1);
[lv|vg]change: Allow limited metadata changes when PVs are missing A while back, the behavior of LVM changed from allowing metadata changes when PVs were missing to not allowing changes. Until recently, this change was tolerated by HA-LVM by forcing a 'vgreduce --removemissing' before trying (again) to add tags to an LV and then activate it. LVM mirroring requires that failed devices are removed anyway, so this was largely harmless. However, RAID LVs do not require devices to be removed from the array in order to be activated. In fact, in an HA-LVM environment this would be very undesirable. Device failures in such an environment can often be transient and it would be much better to restore the device to the array than synchronize an entirely new device. There are two methods that can be used to setup an HA-LVM environment: "clvm" or "tagging". For RAID LVs, "clvm" is out of the question because RAID LVs are not supported in clustered VGs - not even in an exclusively activated manner. That leaves "tagging". HA-LVM uses tagging - coupled with 'volume_list' - to ensure that only one machine can have an LV active at a time. If updates are not allowed when a PV is missing, it is impossible to add or remove tags to allow for activation. This removes one of the most basic functionalities of HA-LVM - site redundancy. If mirroring or RAID is used to replicate the storage in two data centers and one of them goes down, a server and a storage device are lost. When the service fails-over to the alternate site, the VG will be "partial". Unable to add a tag to the VG/LV, the RAID device will be unable to activate. The solution is to allow vgchange and lvchange to alter the LVM metadata for a limited set of options - --[add|del]tag included. The set of allowable options are ones that do not cause changes to the DM kernel target (like --resync would) or could alter the structure of the LV (like allocation or conversion).
2012-10-10 20:33:10 +04:00
int update = update_partial_safe || update_partial_unsafe;
if (!update &&
!arg_is_set(cmd, activate_ARG) && !arg_is_set(cmd, refresh_ARG) &&
!arg_is_set(cmd, monitor_ARG) && !arg_is_set(cmd, poll_ARG)) {
log_error("Need 1 or more of -a, -C, -M, -p, -r, -Z, "
"--resync, --refresh, --alloc, --addtag, --deltag, "
"--monitor, --poll or --discards");
2002-11-18 17:04:08 +03:00
return EINVALID_CMD_LINE;
}
if ((arg_is_set(cmd, profile_ARG) || arg_is_set(cmd, metadataprofile_ARG)) &&
arg_is_set(cmd, detachprofile_ARG)) {
config: differentiate command and metadata profiles and consolidate profile handling code - When defining configuration source, the code now uses separate CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers (before, it was just CONFIG_PROFILE that did not make the difference between the two). This helps when checking the configuration if it contains correct set of options which are all in either command-profilable or metadata-profilable group without mixing these groups together - so it's a firm distinction. The "command profile" can't contain "metadata profile" and vice versa! This is strictly checked and if the settings are mixed, such profile is rejected and it's not used. So in the end, the CONFIG_PROFILE_COMMAND set of options and CONFIG_PROFILE_METADATA are mutually exclusive sets. - Marking configuration with one or the other marker will also determine the way these configuration sources are positioned in the configuration cascade which is now: CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES - Marking configuration with one or the other marker will also make it possible to issue a command context refresh (will be probably a part of a future patch) if needed for settings in global profile set. For settings in metadata profile set this is impossible since we can't refresh cmd context in the middle of reading VG/LV metadata and for each VG/LV separately because each VG/LV can have a different metadata profile assinged and it's not possible to change these settings at this level. - When command profile is incorrect, it's rejected *and also* the command exits immediately - the profile *must* be correct for the command that was run with a profile to be executed. Before this patch, when the profile was found incorrect, there was just the warning message and the command continued without profile applied. But it's more correct to exit immediately in this case. - When metadata profile is incorrect, we reject it during command runtime (as we know the profile name from metadata and not early from command line as it is in case of command profiles) and we *do continue* with the command as we're in the middle of operation. Also, the metadata profile is applied directly and on the fly on find_config_tree_* fn call and even if the metadata profile is found incorrect, we still need to return the non-profiled value as found in the other configuration provided or default value. To exit immediately even in this case, we'd need to refactor existing find_config_tree_* fns so they can return error. Currently, these fns return only config values (which end up with default values in the end if the config is not found). - To check the profile validity before use to be sure it's correct, one can use : lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate (the --commandprofile/--metadataprofile for dumpconfig will come as part of the subsequent patch) - This patch also adds a reference to --commandprofile and --metadataprofile in the cmd help string (which was missing before for the --profile for some commands). We do not mention --profile now as people should use --commandprofile or --metadataprofile directly. However, the --profile is still supported for backward compatibility and it's translated as: --profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange (as these commands are able to attach profile to metadata) --profile == --commandprofile for all the other commands (--metadataprofile is not allowed there as it makes no sense) - This patch also contains some cleanups to make the code handling the profiles more readable...
2014-05-20 16:13:10 +04:00
log_error("Only one of --metadataprofile and --detachprofile permitted.");
return EINVALID_CMD_LINE;
}
if (arg_is_set(cmd, activate_ARG) && arg_is_set(cmd, refresh_ARG)) {
log_error("Only one of -a and --refresh permitted.");
return EINVALID_CMD_LINE;
}
if ((arg_is_set(cmd, ignorelockingfailure_ARG) ||
arg_is_set(cmd, sysinit_ARG)) && update) {
log_error("Only -a permitted with --ignorelockingfailure and --sysinit");
2002-11-18 17:04:08 +03:00
return EINVALID_CMD_LINE;
}
[lv|vg]change: Allow limited metadata changes when PVs are missing A while back, the behavior of LVM changed from allowing metadata changes when PVs were missing to not allowing changes. Until recently, this change was tolerated by HA-LVM by forcing a 'vgreduce --removemissing' before trying (again) to add tags to an LV and then activate it. LVM mirroring requires that failed devices are removed anyway, so this was largely harmless. However, RAID LVs do not require devices to be removed from the array in order to be activated. In fact, in an HA-LVM environment this would be very undesirable. Device failures in such an environment can often be transient and it would be much better to restore the device to the array than synchronize an entirely new device. There are two methods that can be used to setup an HA-LVM environment: "clvm" or "tagging". For RAID LVs, "clvm" is out of the question because RAID LVs are not supported in clustered VGs - not even in an exclusively activated manner. That leaves "tagging". HA-LVM uses tagging - coupled with 'volume_list' - to ensure that only one machine can have an LV active at a time. If updates are not allowed when a PV is missing, it is impossible to add or remove tags to allow for activation. This removes one of the most basic functionalities of HA-LVM - site redundancy. If mirroring or RAID is used to replicate the storage in two data centers and one of them goes down, a server and a storage device are lost. When the service fails-over to the alternate site, the VG will be "partial". Unable to add a tag to the VG/LV, the RAID device will be unable to activate. The solution is to allow vgchange and lvchange to alter the LVM metadata for a limited set of options - --[add|del]tag included. The set of allowable options are ones that do not cause changes to the DM kernel target (like --resync would) or could alter the structure of the LV (like allocation or conversion).
2012-10-10 20:33:10 +04:00
if (!update || !update_partial_unsafe)
cmd->handles_missing_pvs = 1;
if (!argc && !arg_is_set(cmd, select_ARG)) {
log_error("Please give logical volume path(s) or use --select for selection.");
2002-11-18 17:04:08 +03:00
return EINVALID_CMD_LINE;
}
if ((arg_is_set(cmd, minor_ARG) || arg_is_set(cmd, major_ARG)) &&
!arg_is_set(cmd, persistent_ARG)) {
log_error("--major and --minor require -My.");
return EINVALID_CMD_LINE;
}
if (arg_is_set(cmd, minor_ARG) && argc != 1) {
log_error("Only give one logical volume when specifying minor.");
2002-11-18 17:04:08 +03:00
return EINVALID_CMD_LINE;
}
if (arg_is_set(cmd, contiguous_ARG) && arg_is_set(cmd, alloc_ARG)) {
log_error("Only one of --alloc and --contiguous permitted.");
return EINVALID_CMD_LINE;
}
if (arg_is_set(cmd, poll_ARG) && arg_is_set(cmd, sysinit_ARG)) {
log_error("Only one of --poll and --sysinit permitted.");
return EINVALID_CMD_LINE;
}
/*
* If --sysinit -aay is used and at the same time lvmetad is used,
* we want to rely on autoactivation to take place. Also, we
* need to take special care here as lvmetad service does
* not neet to be running at this moment yet - it could be
* just too early during system initialization time.
*/
if (arg_is_set(cmd, sysinit_ARG) && (arg_uint_value(cmd, activate_ARG, 0) == CHANGE_AAY)) {
if (lvmetad_used()) {
log_warn("WARNING: lvmetad is active, skipping direct activation during sysinit.");
return ECMD_PROCESSED;
}
}
2015-03-05 23:00:44 +03:00
/*
* Include foreign VGs that contain active LVs.
* That shouldn't happen in general, but if it does by some
* mistake, then we want to allow those LVs to be deactivated.
*/
if (arg_is_set(cmd, activate_ARG))
cmd->include_active_foreign_vgs = 1;
2015-03-05 23:00:44 +03:00
/*
* The default vg lock mode for lvchange is ex, but these options
* are cases where lvchange does not modify the vg, so they can use
* the sh lock mode.
*/
if (arg_is_set(cmd, activate_ARG) || arg_is_set(cmd, refresh_ARG)) {
2015-03-05 23:00:44 +03:00
cmd->lockd_vg_default_sh = 1;
/* Allow deactivating if locks fail. */
if (is_change_activating((activation_change_t)arg_uint_value(cmd, activate_ARG, CHANGE_AY)))
cmd->lockd_vg_enforce_sh = 1;
}
2015-03-05 23:00:44 +03:00
return process_each_lv(cmd, argc, argv, NULL, NULL,
update ? READ_FOR_UPDATE : 0, NULL,
&_lvchange_single);
2002-11-18 17:04:08 +03:00
}