IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
When command calls backup() more then once (which is actually not
wanted) this warning message is shown repeatedly:
"WARNING: This metadata update is NOT backed up."
Instead now print message just once and less confuse user.
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
Previously, vgcfgrestore would attempt to vg_remove the
existing VG from lvmetad and then vg_update to add the
restored VG. But, if there was a failure in the command
or with vg_update, the lvmetad cache would be left incorrect.
Now, disable lvmetad before the restore begins, and then
rescan to populate lvmetad from disk after restore has
written the new VG to disk.
A number of places are working on a specific dev when they
call lvmcache_info_from_pvid() to look up an info struct
based on a pvid. In those cases, pass the dev being used
to lvmcache_info_from_pvid(). When a dev is specified,
lvmcache_info_from_pvid() will verify that the cached
info it's using matches the dev being processed before
returning the info. Calling code will not mistakenly
get info for the wrong dev when duplicate devs exist.
This confusion was happening when scanning labels when
duplicate devs existed. label_read for the first dev
would add an info struct to lvmcache for that dev/pvid.
label_read for the second dev would see the pvid in
lvmcache from first dev, and mistakenly conclude that
the label_read from the second dev can be skipped
because it's already been done. By verifying that the
dev for the cached pvid matches the dev being read,
this mismatch is avoided and the label is actually read
from the second duplicate.
The lvmetad connection is created within the
init_connections() path during command startup,
rather than via the old lvmetad_active() check.
The old lvmetad_active() checks are replaced
with lvmetad_used() which is a simple check that
tests if the command is using/connected to lvmetad.
The old lvmetad_set_active(cmd, 0) calls, which
stopped the command from using lvmetad (to revert to
disk scanning), are replaced with lvmetad_make_unused(cmd).
This uses the vg->pv_write_list in place of the
vg->pvs_to_write list, and eliminates the use of
pvcreate_params. The label remove and zeroing
steps are shifted out of vg_write() to the higher
level like pvcreate will do.
The backup_restore_vg is used directly for restoring the VG from backup.
It's also used to do the VG conversions from one metadata format to
another which means vgconvert calls backup_restore_vg too.
When restoring VG from backup, we need to rewrite/write PV headers as
PVs may have been orphans before and now they're becoming part of some
VG - we need to write the PV_EXT_USED flag at least.
When using the backup_restore_vg for vgconvert, we need to write
completely new PV header in different format.
Avoid the special "pv_write" call and handling that was used before
this patch in vgconvert (vgconvert_single function to be more precise)
and reuse existing internal interface to register PV header for writing
(or rewriting) via vg->pvs_to_write list instead like we do it elsewhere
in the code.
This patch also resolves a problem in which PV headers with target
format were written in the vgconvert_single fn as orphans and VG
metadata were added later on - this was a tiny hack actually.
We can't do this now - we need to write the PV as belonging
to a VG because otherwise the PV_EXT_USED flag won't be written
properly (if the PV header is written as orphan, the PV_EXT_USED
is set to 0, of course, even though metadata are attached later).
So this patch removes this tiny inconsistency which was passing
just fine before because we didn't have any relation to the VG
in PV header before. Now we have the PV_EXT_USED flag which says
the "PV is used in some VG".
It's getting a bit more complex here.
Basic idea behind is - check_current_backup() should not
log error when a user is using a read-only filesystem,
so e.g. vgscan will not report any error when it tries
to take missing backup.
We still have cases when error could be reported though,
e.g. the backup this would be a symbolic link, but these
are rather misconfiguration and unexpected case.
We have to modes of 'archive()' usage -
1. compulsory - fail stops command and user may try '-An' option
to do a command.
2. non-compulsory - some fails in archiving are ignorable (i.e.
read-only filesystem where archive dir is located).
Those 2 cases needs to be properly handle - i.e. the non-compulsory
logging should not be tampering error logging message production.
So more work here is needed
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
When the backup is disabled, avoid testing backup presence.
This only leads to errors being logged in debug trace and the missing
backup can't be fixed, since it's disabled.
Block creations of archive and backup files for internal orphan VGs.
Bug introduced by 603b45e0ed1032875f587eda3391c47b6652303c ("pvresize: Do
not use pv_read (get the PV from orphan VG).")
It will likely not fail to duplicate empty string, but
just keep the test of result of this function consistent.
Also on error path restore extent_size if in some
case someone would still use that variable.
In the last update not all code paths have set the archived flag.
If we run in test mode or without archiving enabled - set the bit
as well - so test whether archiving has been called succesfully
will be ok. (in relase fix).
Do not keep multiple archives for the executed command.
Reuse the ALLOCATABLE_PV from pv status for
ARCHIVED_VG vg status. Mark VG with the bit with the
first archivation.
Allow restoring metadata with thin pool volumes.
No validation is done for this case within vgcfgrestore tool -
thus incorrect metadata may lead to destruction of pool content.
Adding at least stack traces with some FIXMEs for cases,
where we might want to do something cleaver - maybe fail command
or give user hints something is not going well ?
For remote_backup is stack probably 'good' enough for now.
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
Missing free_vg on error_path in lvmcache_get_vg fn. Call destroy_instance
only if the fid is not part of the vg in backup_read_vg fn (otherwise it's
part of the VG we're returning and we definitely don't want to destroy it!).
We'd like to use the fid mempool for text_context that is stored
in the instance (we used cmd mempool before, so the order of
initialisation was not a matter, but now it is since we need to
create the fid mempool first which happens in create_instance fn).
The text_context initialisation is not needed anywhere outside the
create_instance fn so move it there.
Add a small fix that preserves pe_start for lvm1 PVs when being converted.
(this fix needs to be replaced with something more clever, but let's have this working now)
If the PV is already part of the VG (so the pv->fid == vg->fid), it makes no
sense to attach the mdas information from PV to a VG. Instead, we read new
PV metadata information from cache and attach it to the VG fid.
This function also sets a reference to a new VG format instance for all PVs
that are part of the VG so the PV-VG interconnection is consistent after the
change.