IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Disable until we have a proper fix for reshape space allocation,
switching it to begin/end of rimages and activation in the cluster.
Related: rhbz1448116
Related: rhbz1461526
Related: rhbz1448123
Enhance reporting code, so it does not need to do 'extra' ioctl to
get 'status' of normal raid and provide percentage directly.
When we have 'merging' snapshot into raid origin, we still need to get
this secondary number with extra status call - however, since 'raid'
is always a single segment LV - we may skip 'copy_percent' call as
we directly know the percent and also with better precision.
NOTE: for mirror we still base reported number on the percetage of
transferred extents which might get quite imprecisse if big size
of extent is used while volume itself is smaller as reporting jump
steps are much bigger the actual reported number provides.
2nd.NOTE: raid lvs line report already requires quite a few extra status
calls for the same device - but fix will be need slight code improval.
For the test clean-up, I was providing too many devices to the first
command - possibly allowing it to allocate in the wrong place. I was
also not providing a device for the second command - virtually ensuring
the test was not performing correctly at times.
This patch ensures that under normal conditions (i.e. not during repair
operations) that users are prevented from removing devices that would
cause data loss.
When a RAID1 is undergoing its initial sync, it is ok to remove all but
one of the images because they have all existed since creation and
contain all the data written since the array was created. OTOH, if the
RAID1 was created as a result of an up-convert from linear, it is very
important not to let the user remove the primary image (the source of
all the data). They should be allowed to remove any devices they want
and as many as they want as long as one original (primary) device is left
during a "recover" (aka up-convert).
This fixes bug 1461187 and includes the necessary regression tests.
Add the checks necessary to distiguish the state of a RAID when the primary
source for syncing fails during the "recover" process.
It has been possible to hit this condition before (like when converting from
2-way RAID1 to 3-way and having the first two devices die during the "recover"
process). However, this condition is now more likely since we treat linear ->
RAID1 conversions as "recover" now - so it is especially important we cleanly
handle this condition.
Previously, we were treating non-RAID to RAID up-converts as a "resync"
operation. (The most common example being 'linear -> RAID1'.) RAID to
RAID up-converts or rebuilds of specific RAID images are properly treated
as a "recover" operation.
Since we were treating some up-convert operations as "resync", it was
possible to have scenarios where data corruption or data loss were
possibilities if the RAID hadn't been able to sync completely before a
loss of the primary source devices. In order to ensure that the user took
the proper precautions in such scenarios, we required a '--force' option
to be present. Unfortuneately, the force option was rendered useless
because there was no way to distiguish the failure state of a potentially
destructive repair from a nominal one - making the '--force' option a
requirement for any RAID1 repair!
We now treat non-RAID to RAID up-converts properly as "recover" operations.
This eliminates the scenarios that can potentially cause data loss or
data corruption; and this eliminates the need for the '--force' requirement.
This patch removes the requirement to specify '--force' for RAID repairs.
Two of the sync actions performed by the kernel (aka MD runtime) are
"resync" and "recover". The "resync" refers to when an entirely new array
is going through the process of initializing (or resynchronizing after an
unexpected shutdown). The "recover" is the process of initializing a new
member device to the array. So, a brand new array with all new devices
will undergo "resync". An array with replaced or added sub-LVs will undergo
"recover".
These two states are treated very differently when failures happen. If any
device is lost or replaced while "resync", there are no worries. This is
because any writes created from the inception of the array have occurred to
all the devices and can be safely recovered. Even though non-initialized
portions will still be resync'ed with uninitialized data, it is ok. However,
if a pre-existing device is lost (aka, the original linear device in a
linear -> raid1 convert) during a "recover", data loss can be the result.
Thus, writes are errored by the kernel and recovery is halted. The failed
device must be restored or removed. This is the correct behavior.
Unfortunately, we were treating an up-convert from linear as a "resync"
when we should have been treating it as a "recover". This patch
removes the special case for linear upconvert. It allows each new image
sub-LV to be marked with a rebuild flag and treats the array as 'in-sync'.
This has the correct effect of causing the upconvert to be treated as a
"recover" rather than a "resync". There is no need to flag these two states
differently in LVM metadata, because they are already considered differently
by the kernel RAID metadata. (Any activation/deactivation will properly
resume the "recover" process and not a "resync" process.)
We make this behavior change based on the presense of dm-raid target
version 1.9.0+.
On conversion from raid10 to raid0 (takeover), all rmeta
devices and the rimage devices of mirrored stripes are
detached from the raid10 LV. The remaining rimage areas
are being shifted down into the slots of the detached
ones hence requiring renames to show proper _N suffix
sequences (e.g. 0,1,2,3 instead of 0,2,4,6). Only the
top-level raid10 LV has a cluster lock, not the detached
SubLVs thus their deactivation is impossible and e.g the
rename from *_rimage_6 to *_rimage_3 will fail. Fix by
activating exclusively before deactivating and removing.
Resolves: rhbz1448123
Prohibit activation of reshaping RaidLVs on incompatible
lvm2 runtime by storing e.g. 'raid5+RESHAPE' segment type
strings in the lvm2 metadata. Incompatible runtime not
supporting reshaping won't be able to activate those thus
avoiding potential data corruption.
Any new non-reshaping lvconvert command will reset the
segment type string from 'raid5+RESHAPE' to 'raid5'.
See commits
0299a7af1ec1eeb11388ed15c4c78f224fee76b2 and
4141409eb09e78aef030346995f1722fb40956d8
for segtype flag support.
When a combination of thin-pool chunk size and thin-pool data size
goes beyond addressable limit, such volume creation is directly
prohibited.
Maximum usable thin-pool size is calculated with use of maximal support
metadata size (even when it's created smaller) and given chunk-size.
If the value data size is found to be too big, the command reports
error and operation fails.
Previously thin-pool was created however lots of thin-pool data LV was
not usable and this space in VG has been wasted.
Only support RAID conversions on active LVs.
If we'd accept e.g. upconverting linear -> raid1 on inactive
linear LVs, any LV flags passed to the kernel aren't properly
cleared thus errouneously passing them on every activation.
Add respective check to lv_raid_change_image_count() and
move existing one in lv_raid_convert() for better messages.
Warn about a PV that has the in-use flag set, but appears in
the orphan VG (no VG was found referencing it.)
There are a number of conditions that could lead to this:
. The PV was created with no mdas and is used in a VG with
other PVs (with metadata) that have not yet appeared on
the system. So, no VG metadata is found by lvm which
references the in-use PV with no mdas.
. vgremove could have failed after clearing mdas but
before clearing the in-use flag. In this case, the
in-use flag needs to be manually cleared on the PV.
. The PV may have damanged/unrecognized VG metadata
that lvm could not read.
. The PV may have no mdas, and the PVs with the metadata
may have damaged/unrecognized metadata.
A PV holding VG metadata that lvm can't understand
(e.g. damaged, checksum error, unrecognized flag)
will appear as an in-use orphan, and will be cleared
by this repair code. Disable this repair until the
code can keep track of these problematic PVs, and
distinguish them from actual in-use orphans.
Reject any stripe adding/removing reshape on raid4/5/6/10 because
of related MD kernel deadlock on single core systems until
we get a proper fix in MD.
Related: rhbz1443999
Commit 5fe07d3574ddce3d194f0fa57af9028348a91008 failed to set raid5 types
properly on conversions from raid6. It always enforced raid6_ls_6
for types raid6/raid6_zr/raid6_nr/raid6_nc, thus requiring 3 conversions
instead of 2 when asking for raid5_{la,rs,ra,n}.
Related: rhbz1439403
Offer possible interim LV types and display their aliases
(e.g. raid5 and raid5_ls) for all conversions between
striped and any raid LVs in case user requests a type
not suitable to direct conversion.
E.g. running "lvconvert --type raid5 LV" on a striped
LV will replace raid5 aka raid5_ls (rotating parity)
with raid5_n (dedicated parity on last image).
User is asked to repeat the lvconvert command to get to the
requested LV type (raid5 aka raid5_ls in this example)
when such replacement occurs.
Resolves: rhbz1439403
_check_reappeared_pv() incorrectly clears the MISSING_PV flags of
PVs with unknown devices.
While one caller avoids passing such PVs into the function, the other
doesn't. Move the check inside the function so it's not forgotten.
Without this patch, if the normal VG reading code tries to repair
inconsistent metadata while there is an unknown PV, it incorrectly
considers the missing PVs no longer to be missing and produces
incorrect 'pvs' output omitting the missing PV, for example.
Easy reproducer:
Create a VG with 3 PVs pv1, pv2, pv3.
Hide pv2.
Run vgreduce --removemissing.
Reinstate the hidden PV pv2 and at the same time hide a different PV
pv3.
Run 'pvs' - incorrect output.
Run 'pvs' again - correct output.
See https://bugzilla.redhat.com/1434054
There are certain situations (not fully understood)
where is_missing_pv() is false, but pv->dev is NULL,
so this adds a check for NULL pv->dev after is_missing_pv()
to avoid a segfault.