IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When splitting VG with thin/cache pool volume, handle pmspare during
such split and allocate new pmspare in new VG or extend existing pmspare
there and eventually drop pmspare in original VG if is no longer needed
there.
Add tool 'vdoimport' to support easy conversion of an existing VDO manager managed
VDO volumes into lvm2 managed VDO LV.
When physical converted volume is already a logical volume, conversion
happens with the VG itself, just with validation for extent_size, so
the virtually sized logical VDO volume size can be expressed in extents.
Example of basic simple usage:
vdoimport --name vg/vdolv /dev/mapper/vdophysicalvolume
When adding a device to the devices file with --adddev, lvm
by default chooses the best device ID type for the new device.
The new --deviceidtype option allows the user to override the
built in preference. This is useful if there's a problem with
the default type, or if a secondary type is preferrable.
If the specified deviceidtype does not produce a device ID,
then lvm falls back to the preference it would otherwise use.
Missed -l option in man page, although users should prefer
lvresize -r when the also want to do a volume management,
as there they can specify i.e. extents for allocation.
Also mention dm-crypt support in command description.
Correcting some usage of Bold and Italics (files).
Adding some missing SEE ALSO.
Fixing missed replaceable paths that are configurable.
Be careful about .P in .TP sections - need to use .sp for space line.
Use .UR/.UE for URL references.
Sed replacements script missed to properly replace several '-' to '\-'.
Replace it with simpler set of regexes.
Also add new target 'make checksed' for testing with examples,
where the replacement should or should not occure for easier testing.
With to use .TP where it's easy and doesn't change layout
(since .HP is marked as deprecated) - but .TP is not always perfetc match.
Avoid submitting empty lines to troff and replace them mostly with .P
and use '.' at line start to preserve 'visual' presence of empty line
while editing man page manually when there is no extra space needed.
Fix some markup.
Add some missing SEE ALSO section.
Drop some white-space at end-of-lines.
Improve hyphenation logic so we do not split options.
Use '.IP numbers' only with first one the row (others in row
automatically derive this value)
Use automatic enumeration for .SH titles.
Guidelines in-use:
https://man7.org/linux/man-pages/man7/groff.7.htmlhttps://www.gnu.org/software/groff/manual/html_node/Man-usage.htmlhttps://www.gnu.org/software/groff/manual/html_node/Lists-in-ms.html
Add missing description for profile usage with cache pool.
List cache-pools as first option for dm-cache as it provides
better performance and more functionality over cachevols.
The LVM devices file lists devices that lvm can use. The default
file is /etc/lvm/devices/system.devices, and the lvmdevices(8)
command is used to add or remove device entries. If the file
does not exist, or if lvm.conf includes use_devicesfile=0, then
lvm will not use a devices file. When the devices file is in use,
the regex filter is not used, and the filter settings in lvm.conf
or on the command line are ignored.
LVM records devices in the devices file using hardware-specific
IDs, such as the WWID, and attempts to use subsystem-specific
IDs for virtual device types. These device IDs are also written
in the VG metadata. When no hardware or virtual ID is available,
lvm falls back using the unstable device name as the device ID.
When devnames are used, lvm performs extra scanning to find
devices if their devname changes, e.g. after reboot.
When proper device IDs are used, an lvm command will not look
at devices outside the devices file, but when devnames are used
as a fallback, lvm will scan devices outside the devices file
to locate PVs on renamed devices. A config setting
search_for_devnames can be used to control the scanning for
renamed devname entries.
Related to the devices file, the new command option
--devices <devnames> allows a list of devices to be specified for
the command to use, overriding the devices file. The listed
devices act as a sort of devices file in terms of limiting which
devices lvm will see and use. Devices that are not listed will
appear to be missing to the lvm command.
Multiple devices files can be kept in /etc/lvm/devices, which
allows lvm to be used with different sets of devices, e.g.
system devices do not need to be exposed to a specific application,
and the application can use lvm on its own set of devices that are
not exposed to the system. The option --devicesfile <filename> is
used to select the devices file to use with the command. Without
the option set, the default system devices file is used.
Setting --devicesfile "" causes lvm to not use a devices file.
An existing, empty devices file means lvm will see no devices.
The new command vgimportdevices adds PVs from a VG to the devices
file and updates the VG metadata to include the device IDs.
vgimportdevices -a will import all VGs into the system devices file.
LVM commands run by dmeventd not use a devices file by default,
and will look at all devices on the system. A devices file can
be created for dmeventd (/etc/lvm/devices/dmeventd.devices) If
this file exists, lvm commands run by dmeventd will use it.
Internal implementaion:
- device_ids_read - read the devices file
. add struct dev_use (du) to cmd->use_devices for each devices file entry
- dev_cache_scan - get /dev entries
. add struct device (dev) to dev_cache for each device on the system
- device_ids_match - match devices file entries to /dev entries
. match each du on cmd->use_devices to a dev in dev_cache, using device ID
. on match, set du->dev, dev->id, dev->flags MATCHED_USE_ID
- label_scan - read lvm headers and metadata from devices
. filters are applied, those that do not need data from the device
. filter-deviceid skips devs without MATCHED_USE_ID, i.e.
skips /dev entries that are not listed in the devices file
. read lvm label from dev
. filters are applied, those that use data from the device
. read lvm metadata from dev
. add info/vginfo structs for PVs/VGs (info is "lvmcache")
- device_ids_find_renamed_devs - handle devices with unstable devname ID
where devname changed
. this step only needed when devs do not have proper device IDs,
and their dev names change, e.g. after reboot sdb becomes sdc.
. detect incorrect match because PVID in the devices file entry
does not match the PVID found when the device was read above
. undo incorrect match between du and dev above
. search system devices for new location of PVID
. update devices file with new devnames for PVIDs on renamed devices
. label_scan the renamed devs
- continue with command processing
Initial support for thin-pool used slightly smaller max size 15.81GiB
for thin-pool metadata. However the real limit later settled at 15.88GiB
(difference is ~64MiB - 16448 4K blocks).
lvm2 could not simply increase the size as it has been using hard cropping
of the loaded metadata device to avoid warnings printing warning of kernel
when the size was bigger (i.e. due to bigger extent_size).
This patch adds the new lvm.conf configurable setting:
allocation/thin_pool_crop_metadata
which defaults to 0 -> no crop of metadata beyond 15.81GiB.
Only user with these sizes of metadata will be affected.
Without cropping lvm2 now limits metadata allocation size to 15.88GiB.
Any space beyond is currently not used by thin-pool target.
Even if i.e. bigger LV is used for metadata via lvconvert,
or allocated bigger because of to large extent size.
With cropping enabled (=1) lvm2 preserves the old limitation
15.81GiB and should allow to work in the evironement with
older lvm2 tools (i.e. older distribution).
Thin-pool metadata with size bigger then 15.81G is now using CROP_METADATA
flag within lvm2 metadata, so older lvm2 recognizes an
incompatible thin-pool and cannot activate such pool!
Users should use uncropped version as it is not suffering
from various issues between thin_repair results and allocated
metadata LV as thin_repair limit is 15.88GiB
Users should use cropping only when really needed!
Patch also better handles resize of thin-pool metadata and prevents resize
beoyond usable size 15.88GiB. Resize beyond 15.81GiB automatically
switches pool to no-crop version. Even with existing bigger thin-pool
metadata command 'lvextend -l+1 vg/pool_tmeta' does the change.
Patch gives better controls 'coverted' metadata LV and
reports less confusing message during conversion.
Patch set also moves the code for updating min/max into pool_manip.c
for better sharing with cache_pool code.
Enhance VDO man page with description of memory usage
and space requirements chapter.
Remove some unneeded blank lines in man page.
Use more precise terminology.
Correct examples since cpool and vpool are protected names.
The lock adopt feature was disabled since it had used
lvmetad as a source of info. This replaces the lvmetad
info with a local file and enables the adopt feature again
(enabled with lvmlockd --adopt 1).
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m
Make it possible to tear down VDO volumes with blkdeactivate if VDO is
part of a device stack (and if VDO binary is installed). Also, support
optional -o|--vdooptions configfile=file.
To write a new/repaired pv_header and label_header:
pvck --repairtype pv_header --file <file> <device>
This uses the metadata input file to find the PV UUID,
device size, and data offset.
To write new/repaired metadata text and mda_header:
pvck --repairtype metadata --file <file> <device>
This requires a good pv_header which points to one or two
metadata areas. Any metadata areas referenced by the
pv_header are updated with the specified metadata and
a new mda_header. "--settings mda_num=1|2" can be used
to select one mda to repair.
To combine all header and metadata repairs:
pvck --repair --file <file> <device>
It's best to use a raw metadata file as input, that was
extracted from another PV in the same VG (or from another
metadata area on the same PV.) pvck will also accept a
metadata backup file, but that will produce metadata that
is not identical to other metadata copies on other PVs
and other areas. So, when using a backup file, consider
using it to update metadata on all PVs/areas.
To get a raw metadata file to use for the repair, see
pvck --dump metadata|metadata_search.
List all instances of metadata from the metadata area:
pvck --dump metadata_search <device>
Save one instance of metadata at the given offset to
the specified file (this file can be used for repair):
pvck --dump metadata_search --file <file>
--settings "metadata_offset=<off>" <device>
The new command 'pvck --dump metadata PV' will extract
the current version of VG metadata from a PV for testing
and debugging. --dump metadata_area extracts the entire
text metadata area.
- remove reference to locking_type which is no longer used
- remove references to adopting locks which has been disabled
- move some sanlock-specific info out of a general section
- remove info about doing automatic lockstart by the system
since this was never used (the resource agent does it)
- replace info about lvextend and manual refresh under gfs2
with a description about the automatic remote refresh
This reverts 518a8e8cfb
"lvmlockd: activate mirror LVs in shared mode with cmirrord"
because while activating a mirror LV with cmirrord worked,
changes to the active cmirror did not work.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.