IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For dev_in_device_list() != 0 allocated 'devl' was
actually leaking - so instead allocate 'devl' only
when !dev_in_device_list() and indent code around.
Since we check for NULL pointers earlier we need
to be consistent across function - since the NULL
would applies across whole function.
When dropping 'mda' check - we are actually
already dereferencing it before - so it can't
be NULL at that places (and it's validated
before entering _read_mda_header_and_metadata).
dev_unset_last_byte() must be called while the fd is still valid.
After a write error, dev_unset_last_byte() must be called before
closing the dev and resetting the fd.
In the write error path, dev_unset_last_byte() was being called
after label_scan_invalidate() which meant that it would not unset
the last_byte values.
After a write error, dev_unset_last_byte() is now called in
dev_write_bytes() before label_scan_invalidate(), instead of by
the caller of dev_write_bytes().
In the common case of a successful write, the sequence is still:
dev_set_last_byte(); dev_write_bytes(); dev_unset_last_byte();
Signed-off-by: Zhao Heming <heming.zhao@suse.com>
When resizing 2 volumes like thin-pool and it's metadata and they
would be of a different type - command would be actually expecting
both LVs being of a same segtype - and would throw an error in
case they are different.
This patch fixes is by setting a new segtype from last segment of
2nd. extented device.
Also it fixes the possible 'percentage' extension setup that
might have been used for 'primary' volume - while the 'secondary'
LV always goes with direct size - as we do not support 'percentage'
setup for them
This affects maily usage of thin-pool where the extension of
thin-pool data size may also lead to extension of metadata size.
Instead of checking all LVs in a VG - do just a direct copy of LVs
from the existing list ->segs_using_thin_lv.
TODO: maybe it could be better to expose seg_list to /tools...
Enhance lv_info with lv_info_with_name_check.
This 'variant' not only check existance if UUID in DM table
but also compares its DM name whether it's matching expected LV name.
Otherwise activation may 'skip' activation with rename in case the
DM UUID already exists, just device is different name.
This change make fairly easier manipulation with i.e. detached mirror
leg which ATM is using same UUID - just the LV name have been changed.
Used code was not able to run 'activation' (and do a rename) and just
skipped the call. So the code used to do a workaround and 'tried'
to deactivate such LV firts - this however work only in non-clvmd case,
as cluster was not having the lock for deactivated LV.
With this extended lv_info code will run 'activation' and will
synchronize the name to match expected LV name.
Patch extends _lv_info() with new paramter 'with_name_check',
which is later translated into 'name_check' argument for
_info_run() which in case of name mismatch evaluates the
check as if device does not exists.
Such call is only used in one place _lv_activate() which then
let activation run. All other invocation of _info() calls
are left intact.
TODO: fix mirror table manipulation (and raid)....
The return value from bcache_invalidate_fd() was not being checked.
So I've introduced a little function, _invalidate_fd() that always
calls bcache_abort_fd() if the write fails.
The resume of 'released' 'COW' should preceed the resume of origin.
The fact we need to do the sequence differently for merge was
cause by bugs fixed in 2 previous commits - so we no longer need
to recognize 'merging' and we should always go with single
sequence.
The importance of this order is - to properly remove '-real' device
from origin LV. When COW is activated as 2nd. '-real' device is
kept in table as it cannot be removed during 1st. resume of origin,
and later activation of COW LV no longer builds tree associated
with origin LV.
When checking device id of a thin device that is just being
merged - the snapshot actually could have been already finished
which means '-real' suffix for the LV is already gone and just LV
is there - so check explicitely for this condition and use
correct UUID for this case.
When a cachevol LV is attached, have the LV keep it's lock
allocated. The lock on the cachevol won't be used while
it's attached. When the cachevol is split a new lock does
not need to be allocated. (Applies to cachevol usage by
both dm-cache and dm-writecache.)
When LV gets cached and uses cache-pool - such cache-pool
will now get _cpool suffix automatically.
Thus 'Pool' column for cached LV will now show either _cvol
or _cpool LV.
Before 'archive()' is called, lvm2 must not touch/modify metadata.
So move setting CACHE_VOL related flags past this point.
Also make sure reading of cache segtype always restores this
flag properly (even if compatible flag would be lost).
Since code is using -cdata and -cmeta UUID suffixes, it does not need
any new 'extra' ID to be generated and stored in metadata.
Since introduce of new 'segtype' cache+CACHE_USES_CACHEVOL we can
safely assume 'new' cache with cachevol will now be created
without extra metadata_id and data_id in metadata.
For backward compatibility, code still reads them in case older
version of metadata have them - so it still should be able
to activate such volumes.
Bonus is lowered size of lv structure used to store info about LV
(noticable with big volume groups).
The first part of a cachevol LV is used for metadata,
and the rest of the space is used for data. The
division of space between metadata and data depends
on the total size of the cachevol.
The previous division gave more space than needed to
metadata, it was:
cachevol size 8M to 128M -> metadata size 16M *
cachevol size 128M to 1G -> metadata size 32M
cachevol size 1G and up -> metadata size 64M
(* if this resulted in over half the LV used as
metadata, then half the cachevol would be used
for metadata, and the other half for data.)
The division of space now gives less space to
metadata, it is:
cachevol size 8M to 16M -> metadata size 4M
cachevol size 16M to 4G -> metadata size 8M
cachevol size 4G to 16G -> metadata size 16M
cachevol size 16G to 32G -> metadata size 32M
cachevol size 32G and up -> metadata size 64M
When a VG contains some LVs with unknown segtypes, the user
should still be allowed to activate other LVs in the VG that
are understood.
$ lvs foo
WARNING: Unrecognised flag CACHE_USES_CACHEVOL in segment type cache+CACHE_USES_CACHEVOL.
WARNING: Unrecognised segment type cache+CACHE_USES_CACHEVOL
LV VG Attr LSize
lvol0 foo -wi------- 4.00m
other foo vwi---u--- 48.00m
$ lvcreate -l1 foo
WARNING: Unrecognised flag CACHE_USES_CACHEVOL in segment type cache+CACHE_USES_CACHEVOL.
WARNING: Unrecognised segment type cache+CACHE_USES_CACHEVOL
Cannot change VG foo with unknown segments in it!
Cannot process volume group foo
$ lvchange -ay foo/lvol0
WARNING: Unrecognised flag CACHE_USES_CACHEVOL in segment type cache+CACHE_USES_CACHEVOL.
WARNING: Unrecognised segment type cache+CACHE_USES_CACHEVOL
$ lvchange -ay foo/other
WARNING: Unrecognised flag CACHE_USES_CACHEVOL in segment type cache+CACHE_USES_CACHEVOL.
WARNING: Unrecognised segment type cache+CACHE_USES_CACHEVOL
Refusing activation of LV foo/other containing an unrecognised segment.
$ lvs foo
WARNING: Unrecognised flag CACHE_USES_CACHEVOL in segment type cache+CACHE_USES_CACHEVOL.
WARNING: Unrecognised segment type cache+CACHE_USES_CACHEVOL
LV VG Attr LSize
lvol0 foo -wi-a----- 4.00m
other foo vwi---u--- 48.00m
A cachevol LV had the CACHE_VOL status flag in metadata,
and the cache LV using it had no new flag. This caused
problems if the new metadata was used by an old version
of lvm. An old version of lvm would have two problems
processing the new metadata:
. The old lvm would return an error when reading the VG
metadata when it saw the unknown CACHE_VOL status flag.
. The old lvm would return an error when reading the VG
metadata because it would not find an expected cache pool
attached to the cache LV (since the cache LV had a
cachevol attached instead.)
Change the use of flags:
. Change the CACHE_VOL flag to be a COMPATIBLE flag (instead
of a STATUS flag) so that old versions will not fail when
they see it.
. When a cache LV is using a cachevol, the cache LV gets
a new SEGTYPE flag CACHE_USES_CACHEVOL. This flag is
appended to the segtype name, so that old lvm versions
will fail to use the LV because of an unknown segtype,
as opposed to failing to read the VG.
Enhance activation of cached devices using cachevol.
Correctly instatiace cachevol -cdata & -cmeta devices with
'-' in name (as they are only layered devices).
Code is also a bit more compacted (although still not ideal,
as the usage of extra UUIDs stored in metadata is troublesome
and will be repaired later).
NOTE: this patch my brink potentially minor incompatiblity for 'runtime' upgrade
Let vgck --updatemetadata repair cases where different mdas
hold indepedently valid but unmatching copies of the metadata,
i.e. different text metadata checksums or text metadata sizes.