IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Previously, the seg_pvs used to track free and allocated space where left
in place after 'release_pv_segment' was called to free space from an LV.
Now, an attempt is made to combine any adjacent seg_pvs that also track
free space. Usually, this doesn't provide much benefit, but in a case
where one command might free some space and then do an allocation, it
can make a difference. One such case is during a repair of a RAID LV,
where one PV of a multi-PV image fails. This new behavior is used when
the replacement image can be allocated from the remaining space of the
PV that did not fail. (First the entire image with the failed PV is
removed. Then the image is reallocated from the remaining PVs.)
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
...to avoid using cached value (persistent filter) and therefore
not noticing any change made after last scan/filtering - the state
of the device may have changed, for example new signatures added.
$ lvm dumpconfig --type diff
allocation {
use_blkid_wiping=0
}
devices {
obtain_device_list_from_udev=0
}
$ cat /etc/lvm/cache/.cache | grep sda
$ vgscan
Reading all physical volumes. This may take a while...
Found volume group "fedora" using metadata type lvm2
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
$ parted /dev/sda mklabel gpt
Information: You may need to update /etc/fstab.
$ parted /dev/sda print
Model: QEMU QEMU HARDDISK (scsi)
Disk /dev/sda: 134MB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
====
Before this patch:
$ pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
With this patch applied:
$ pvcreate /dev/sda
Physical volume /dev/sda not found
Device /dev/sda not found (or ignored by filtering).
Take a local file lock to prevent concurrent activation/deactivation of LVs.
Thin/cache types and an extension for cluster support are excluded for
now.
'lvchange -ay $lv' and 'lvchange -an $lv' should no longer cause trouble
if issued concurrently: the new lock should make sure they
activate/deactivate $lv one-after-the-other, instead of overlapping.
(If anyone wants to experiment with the cluster patch, please get in touch.)
'lvs' would segfault if trying to display the "move pv" if the
pvmove was run with '--atomic'. The structure of an atomic pvmove
is different and requires us to descend another level in the
LV tree to retrieve the PV information.
In 'find_pvmove_lv', separate the code that searches the atomic
pvmove LVs from the code that searches the normal pvmove LVs. This
cleans up the segment iterator code a bit.
replicator/replicator.c:338:2: warning: passing argument 2 of 'build_dm_uuid' from incompatible pointer type [enabled by default]
replicator/replicator.c:629:3: warning: passing argument 2 of 'build_dm_uuid' from incompatible pointer type [enabled by default]
replicator/replicator.c:644:6: warning: passing argument 2 of 'build_dm_uuid' from incompatible pointer type [enabled by default]
replicator/replicator.c:668:7: warning: passing argument 2 of 'build_dm_uuid' from incompatible pointer type [enabled by default]
replicator/replicator.c:677:4: warning: passing argument 2 of 'build_dm_uuid' from incompatible pointer type [enabled by default]
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
The differentiation of the original number field into number, size and
percent field types has been introduced with recent changes for report
selection support.
Make dm_report_init_with_selection to accept an argument with an
array of reserved values where each element contains a triple:
{dm report field type, reserved value, array of strings representing this value}
When the selection is parsed, we always check whether a string
representation of some reserved value is not hit and if it is,
we use the reserved value assigned for this string instead of
trying to parse it as a value of certain field type.
This makes it possible to define selections like:
... --select lv_major=undefined (or -1 or unknown or undef or whatever string representations are registered for this reserved value in the future)
... --select lv_read_ahead=auto
... --select vg_mda_copies=unmanaged
With this, each time the field value of certain type is hit
and when we compare it with the selection, we use the proper
value for comparison.
For now, register these reserved values that are used at the moment
(also more descriptive names are used for the values):
const uint64_t _reserved_number_undef_64 = UINT64_MAX;
const uint64_t _reserved_number_unmanaged_64 = UINT64_MAX - 1;
const uint64_t _reserved_size_auto_64 = UINT64_MAX;
{
{DM_REPORT_FIELD_TYPE_NUMBER, _reserved_number_undef_64, {"-1", "undefined", "undef", "unknown", NULL}},
{DM_REPORT_FIELD_TYPE_NUMBER, _reserved_number_unmanaged_64, {"unmanaged", NULL}},
{DM_REPORT_FIELD_TYPE_SIZE, _reserved_size_auto_64, {"auto", NULL}},
NULL
}
Same reserved value of different field types do not collide.
All arrays are null-terminated.
The list of reserved values is automatically displayed within
selection help output:
Selection operands
------------------
...
Reserved values
---------------
-1, undefined, undef, unknown - Reserved value for undefined numeric value. [number]
unmanaged - Reserved value for unmanaged number of metadata copies in VG. [number]
auto - Reserved value for size that is automatically calculated. [size]
Selection operators
-------------------
...
The {pv,vg,lv,seg}_tags and lv_modules fields are reported as string
lists using the new dm_report_field_string_list - so we just pass
the list to the fn that takes care of reporting and item sorting itself.
The list of strings is used quite frequently and we'd like to reuse
this simple structure for report selection support too. Make it part
of libdevmapper for general reuse throughout the code.
This also simplifies the LVM code a bit since we don't need to
include and manage lvm-types.h anymore (the string list was the
only structure defined there).
This makes it easier to check against the fields (following patches for
report selection) and check whether size units are allowed or not
with the field value.
When creating a cache LV with a RAID origin, we need to ensure that
the sub-LVs of that origin properly change their names to include
the "_corig" extention of the top-level LV. We do this by first
performing a 'lv_rename_update' before making the call to
'insert_layer_for_lv'.
Internal reporting function cannot handle NULL reporting value,
so ensure there is at least dummy label.
So move dummy_lable from tools/reporter.c and use it for all
report_object() calls in lib/report/report.c.
(Fixes RHBZ 1108394)
Simlify lvm_report_object initialization.
Enable 'retry' deactivation also in 'cleanup' phase.
It shouldn't be mostly needed - however udev now produces
more and more completelny non-synchronizable device opens,
so even for orphan devices we can't easily predict where
udevd opens devices.
So it's more preferable here to log error about device being open
and retry clean, but let the command proceed.
And use ifdefs there, not exposing it in the tool code itself.
Later in the future, we should probably make the PIDFILE and
daemon checking code available also in case the daemon itself
is not built.
Accidently it's been commited - but it has also shown,
that on heavy loaded systems (like our test machine could be)
slightly bigger timeouts which waits longer for udev rules
processing does help and avoids occasional refuse of deactivation
because device is still being open.
(i.e. lvcreate...; lvchange -an...)
Unsure how we could now synchronize for this. On very slow(/loaded)
system 5 second timeout is simply not enough.
TODO: introduce at least lvm.conf configurable setting to
allow longer 'retry' loops.
Reindent lv_check_not_in_use to simplify internal loop code.
Also return always '0/1' (drop -1) - since we only
check for failure (0) - and we don't really know
why lv_info() has failed.
Disable code which has postprocessed whole tree and reset udev flags.
We need to find out which case was troublesome - since this loop
was just hidding bug in other code parts (most probably preload tree)
The dumpconfig now understands --commandprofile/--profile/--metadataprofile
The --commandprofile and --profile functionality is almost the same
with only one difference and that is that the --profile is just used
for dumping the content, it's not applied for the command itself
(while the --commandprofile profile is applied like it is done for
any other LVM command).
We also allow --metadataprofile for dumpconfig - dumpconfig *does not*
touch VG/LV and metadata in any way so it's OK to use it here (just for
dumping the content, checking the profile validity etc.).
The validity of the profile can be checked with:
dumpconfig --commandprofile/--profile/--metadataprofile --validate
...depending on the profile type.
Also, mention --config in the dumpconfig help string so users know
that dumpconfig handles this too (it did even before, but it was not
documented in the help string).
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
Mark profilable settings with a separate CFG_PROFILABLE_METADATA
flag where the profile can be attached to VG/LV. This makes it possible
to differentiate global command-profilable settings (CFG_PROFILABLE flag)
and contextual metadata-profilable (per VG/LV) settings (CFG_PROFILABLE_METADATA flag).
When cmd refresh is called, we need to move any already loaded profiles
to profiles_to_load list which will cause their reload on subsequent
use. In addition to that, we need to take into account any change
in config/profile configuration setting on cmd context refresh
since this setting could be overriden with --config.
Also, when running commands in the shell, we need to remove the
global profile used from the configuration cascade so the profile
is not incorrectly reused next time when the --profile option is
not specified anymore for the next command in the shell.
This bug only affected profile specified by --profile cmd line
arg, not profiles referenced from LVM metadata.
Before, the cft_check_handle used to direct configuration checking
was part of cmd_context. It's better to attach this as part of the
exact config tree against which the check is done. This patch moves
the cft_check_handle out of cmd_context and it attaches it to the
config tree directly as dm_config_tree->custom->config_source->check_handle.
This change makes it easier to track the config tree check results
and provides less space for bugs as the results are directly attached
to the tree and we don't need to be cautious whether the global value
is correct or not (and whether it needs reinitialization) as it was
in the case when the cft_check_handle was part of cmd_context.
Add CONFIG_FILE_SPECIAL config source id to make a difference between
real configuration tree (like lvm.conf and tag configs) and special purpose
configuration tree (like LVM metadata, persistent filter).
This makes it easier to attach correct customized data to the config
tree that is created out of the source then.
Since decisions in the silent mode may not be always obvious,
print skipped prompt with answer 'n'.
Also document '-qq' behaviour (single -q only shuts
logging, while -qq sets silent mode).
Support upto 3 levels os nesting signal blocking.
As of today - code blocks signals immediatelly when it opens
VG in read-write mode - this however makes current prompt usage
then partially unusable since user may not 'break' command
during prompt (something most user would expect).
Until a better fix for prompting is implemented, put in support
for signal nesting - thus when prompt enables signal acceptance,
make it possible to really break command at this point.
Adding log_sys_debug for eventual logging of system errors.
(Using debug level, since currently signal handling functions
do not fail when any error is encoutered).
When quering for dmeventd monitoring status, check first
if lvm2 is configured to monitor to avoid unwanted start
of dmeventd process for answering monitoring status.
Relocate info from thin pool and thin volume segments
to proper code section for segments.
Add discards and thin count status info.
Info is shown with 'lvdisplay --maps' (like for other segments).
For percentage display we need -tpool - so check for layered
device presence here instead of plain pool device.
Also update 'info' - so when pool is 'available' we
display open count for -tpool device instead of mostly
irrelevant pool.
TODO: Maybe we should actually display this open info always?
(even when just -tpool is available, but pool is not)
Emphesize virtual extents for virtual LVs and for
those use 'Virtual extents' instead of 'Logical extents',
so it's immeditatelly visible, which extents do have
straighforward physical backend.
Given a named mirror LV, vgsplit will look for the PVs that compose it
and move them to a new VG. It does this by first looking at the log
and then the legs. If the log is on the same device as one of the mirror
images, a problem occurs. This is because the PV is moved to the new VG
as the log is processed and thus cannot be found in the current VG when
the image is processed. The solution is to check and see if the PV we are
looking for has already been moved to the new VG. If so, it is not an
error.
ignore_suspended_devices=0 is already used in lvm.conf we distribute,
but it was still "1" in the code (so it was used when lvm.conf value
was not defined). It should be "0" too.
Perform two allocation attempts with cling if maximise_cling is set,
first with then without positional fill.
Avoid segfaults from confusion between positional and sorted sequential
allocation when number of stripes varies as reported here:
https://www.redhat.com/archives/linux-lvm/2014-March/msg00001.html
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
In general for non-toplevel LVs we shouldn't allow any _tree_action.
For now error on request for cache_pool activation which
doesn't even exist in dm-table.
When down-converting a RAID1 LV, if the user specifies too few devices,
they will get a confusing message.
Ex:
[root]# lvcreate -m 2 --type raid1 -n raid -L 500M taft
Logical volume "raid" created
[root]# lvconvert -m 0 taft/raid /dev/sdd1
Unable to extract enough images to satisfy request
Failed to extract images from taft/raid
This patch makes the error message a bit clearer by telling the user
the count they are trying to remove and the number of devices they
supplied.
[root@bp-01 lvm2]# lvcreate --type raid1 -m 3 -L 200M -n lv vg
Logical volume "lv" created
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sdb1
Unable to remove 3 images: Only 1 device given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bc]1
Unable to remove 3 images: Only 2 devices given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcd]1
[root@bp-01 lvm2]# lvs -a -o name,attr,devices vg
LV Attr Devices
lv -wi-a----- /dev/sde1(1)
This patch doesn't work in all cases. The user can specify the right
number of devices, but not a sufficient amount of devices from the LV.
This will produce the old error message:
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcf]1
Unable to extract enough images to satisfy request
Failed to extract images from vg/lv
However, I think this error message is sufficient for this case.
Since the usability problem were fixed, we can use this function.
Cleanup orphan LVs with TEMPORARY flags
(reduces couple blkid error reports, but couple of them
is still left...)
Since cache segment is purely virtual mapping, it has nothing for
discard. Discardable is cache origin here which is now
properly removed on 'delete' phase.
Plain lv_empty() call needs to only detach cache origin and leave
origin unchanged.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.
Use proper vgmem memory pool for allocation of LV name in the vg
and check if new renamed LV is a valid name.
TODO: validation should really use also VG name, othewise we are not
able to tell "vgname-lvname" will be valid.
When lvm2 command works with clvmd and uses locking in wrong way,
it may 'leak' certain file descriptors in opened (incorrect) state.
dev_cache_exit then destroys memory pool of cached devices, while
_open_devices list in dev-io.c was still referencing them if they
were still opened.
Patch properly calls _close() function to 'self-heal' from this
invalid state, but it will report internal error (so execution
with abort_on_internal_error causes immediate death). On the
normal 'execution', error is only reported, but memory state is
corrected, and linked list is not referencing devices from
released mempool.
For crash see: https://bugzilla.redhat.com/show_bug.cgi?id=1073886
Before:
thin_disabled_features = ""
Now:
thin_disabled_features = []
Which is a more correct and consistent way of specifying void array
though parses can handle both forms.
Smallest supported size for swap device is 40KB, however current
test skipped devices smaller then 4096 sectors (2MB).
Since page is in bytes, convert it to sectors before comparing
with device size (in sectors).
When daemon releases memory and it is still in critical
section, issue an error message and drop memory.
We cannot do anything better for now and we at least
release allocated resource.
FIXME:
This code is triggered when i.e. clvmd is killed while
some LVs are suspend - in this case suspended devices leak,
so if this happens during i.e. clvmd upgrade we have
unresolved problem - even locked rootfs...
This function is typically called for cmd context refresh or destroy.
On the non-clustered case we already unlocked all messages,
however when i.e. 'clvmd' gets break signal it may have
still couple messages queued.
For now just report an error.
Recent debug tracing commit introduce read of uninitialized memory,
since VGID is not really a proper string which ends with '\0'.
Enforce at most 32 (ID_LEN) chars are read from vgid.
(in release fix)
Since commit f12ee43f2e call destroy,
it start to check all VGs are unlocked. However when we become_daemon,
we simply reset locking (since lock is still kept by parent process).
So implement a simple 'reset' flag.
Instead of sending repeatedly LOCAL_SYNC commands to clvmds
like 'lvs', rememeber the last sent commmand, and if there was no other
clvmd command, drop this redundant SYNC call message.
The problem has started with commit:
56cab8cc03
This introduced correct synchronisation of name, when user requests to know
open_count (needs to wait for udev), however it is also executed for
read-only cases like 'lvs' command.
For now implement very simple solution, which is only monitoring
outgoing clvmd command, and when sequence of LOCAL sync names are
recognized, they are skipped automatically.
TODO:
Future solution might move this variable info 'cmd_context' and
use 'needs_sync' flag also i.e. in file locking code.
When the backup is disabled, avoid testing backup presence.
This only leads to errors being logged in debug trace and the missing
backup can't be fixed, since it's disabled.
Decorate NULL returns with debug_cache output so the
debug log doesn't contain spurios <bactrace> line without
any reason for it.
Add internal errors when cache is misused.
The global/suffix was missing from example lvm.conf but it can
be very useful when using lvm in scripts and now in profiles as well
Let's expose it more.
Create a separate function to validation snapshot min chunk value
and relocate code into snapshot_manip file.
This function will be shared with lvconvert then.
Users can create several profiles for how the tools report
the output very easily and then just use
<lvm reporting command> --profile <report_profile_name>
This prevents numerous VG refreshes on each "pvscan --cache -aay" call
if the VG is found complete. We need to issue the refresh only if the PV:
- is new
- was gone before and now it reappears (device "unplug/plug back" scenario)
- the metadata has changed
Reorder detection for internal device - since this test
is much simpler then target analysis, check it sooner.
Replace test for '68' with sizeof & ID_LEN
Add FIXME about device alias problem with is_reserved_lvname,
since this test fails on devices like /dev/dm-X
so we need to convert tests to UUID.
Let's do this the other way round - this makes more logic than commit b995f06.
So let's allow empty values for global/thin_disabled_features where
such an empty value now means "none of this features are disabled".
The global/thin_disabled_features should be marked as having no default
value. Otherwise the output from 'lvm dumpconfig --type default' would
have 'thin_disabled_features=""' which will produce an error message
'Ignoring empty string in config file ...' if such output is feed
back to lvm.
Even though we make pool volume as a public visible LV,
we still do not want tools to look at this volume.
While we do not create /dev/vg/lv link, device is still
accessible via /dev/mapper/vg-lv and there is no easy
way to recognize it's private without lvm2 metadata.
Enhance UUID with -pool suffix and directly skip
any LV with a suffix in device_is_usable() call.
TODO: enhance other targets with this logic.
blkid may probably use same simple logic.
When we create thin-pool we have used trick to keep
volume active, but since we now support TEMPORARY flag,
we could just localy active & deactive metadata LV,
and let the thinpool through normal activation process.
The empty pool is also the pool which has yet queued list of messages
and transaction_id == 1.
Problem is exposed when pool is created inactive.
lvcreate -L10 -T vg/pool -an
lvcreate -V10 -T vg/pool
When pool_has_message() is queried with NULL lv and 0 device_id
it should just return 'true' when there is any message queued.
So it needs to return negative value dm_list_empty().
Since there is no user for this code path in code currently,
this bug has not been triggered.
We can't use mempool for temporary variable for configuration path inside
find_config_tree_* functions since these functions can use the mempool
themselves deeper in the code and we can free mempool chunks only from
top to bottom which is not the case here (some default string
configuration values can be allocated from the mempool).
The same as for allocation/thin_pool_chunk_size - the default value
used is just a starting point. The calculation continues using the
properties of the devices actually used.
The allocation/thin_pool_chunk_size is a bit more complex. It's default
value is evaluated in runtime based on selected thin_pool_chunk_size_policy.
But the value is just a starting point. The calculation then continues
with dependency on the properties of the devices used. Which means for
such a default value, we know only the starting value.
If the config setting is defined as having no default value, but it's
still not NULL, it means such a value acts as a *hint* only
(e.g. a starting value from which the default value is calculated).
The new "cfg_def_get_default_value_hint" will always return the value
as defined in config_settings.h.
The original "cfg_def_get_default_value" will always return 0/NULL if
the config setting is defined with CFG_DEFAULT_UNDEFINED flag (hence
ignoring the hint).
This is needed for proper distiction between a correct default value
and the value which is just a hint or a starting point in calculation,
but it's not the final value (yes, we do have such settings!).
The devices/cache and devices/cache_dir are evaluated in runtime this way:
- if devices/cache is set, use it
- if devices_cache/dir or devices/cache_file_prefix is set, make up a
path out of that for devices/cache in runtime, taking into account
the LVM_SYSTEM_DIR environment variable if set
- otherwise make up the path out of default which is:
<LVM_SYSTEM_DIR>/<cache_dir>/<cache_file_prefix>.cache
With the runtime defaults, we can encode this easily now. Also, the lvm
dumpconfig can show proper and exact information about this setting then
(the variant that shows default values).
Previously, we declared a default value as undefined ("NULL") for
settings which require runtime context to be set first (e.g. settings
for paths that rely on SYSTEM_DIR environment variable or they depend
on any other setting in some way).
If we want to output default values as they are really used in runtime,
we should make it possible to define a default value as function which
is evaluated, not just providing a firm constant value as it was before.
This patch defines simple prototypes for such functions. Also, there's
new helper macros "cfg_runtime" and "cfg_array_runtime" - they provide
exactly the same functionality as the original "cfg" and "cfg_array"
macros when defining the configuration settings in config_settings.h,
but they don't set the constant default value. Instead, they automatically
link the configuration setting definition with one of these functions:
typedef int (*t_fn_CFG_TYPE_BOOL) (struct cmd_context *cmd, struct profile *profile);
typedef int (*t_fn_CFG_TYPE_INT) (struct cmd_context *cmd, struct profile *profile);
typedef float (*t_fn_CFG_TYPE_FLOAT) (struct cmd_context *cmd, struct profile *profile);
typedef const char* (*t_fn_CFG_TYPE_STRING) (struct cmd_context *cmd, struct profile *profile);
typedef const char* (*t_fn_CFG_TYPE_ARRAY) (struct cmd_context *cmd, struct profile *profile);
(The new macros actually set the CFG_DEFAULT_RUNTIME flag properly and
set the default value link to the function accordingly).
Then such configuration setting requires a function of selected type to
be defined. This function has a predefined name:
get_default_<id>
...where the <id> is the id of the setting as defined in
config_settings.h. For example "backup_archive_dir_CFG" if defined
as a setting with default value evaluated in runtime with "cfg_runtime"
will automatically have "get_default_backup_archive_dir_CFG" function
linked to this setting to get the default value.
Using mempool is much safer than using the global static variable.
The global variable would be rewritten on each find_config_tree_* call
and we need to be very careful not to get into this problem (we don't
do now, but we can with the patches for "runtime defaults" that will follow).
These settings don't have any default value predefined:
log/file
log/activate_file
global/library_dir
This settings has default value but not yet declared in config_settings.h:
global/locking_library (default is DEFAULT_LOCKING_LIB)
This is probably not optimal, but makes the lvmetad case mimic non-lvmetad code
more closely. It also fixes vgremove of a partially corrupt VG with lvmetad, as
_vg_write_raw (and consequently, entire vg_write) currently panics when it
encounters a corrupt MDA. Ideally, we'd be able to explicitly control when it is
safe to ignore them.
Move flags for segments to segtype header where it seems more closely
related as the features are related to segtype and not activation.
Use unsigned #define - since it's more common in lvm2 source code
for bit flags.
Condition was swapped - however since it's been based on 'random'
memory content it's been missed as attribute has not been set.
So now we have quite a few possible results when testing.
We have old status without separate metadata and
we have kernels with fixed snapshot leak bug.
(in-release update)
Code uses target driver version for better estimation of
max size of COW device for snapshot.
The bug can be tested with this script:
VG=vg1
lvremove -f $VG/origin
set -e
lvcreate -L 2143289344b -n origin $VG
lvcreate -n snap -c 8k -L 2304M -s $VG/origin
dd if=/dev/zero of=/dev/$VG/snap bs=1M count=2044 oflag=direct
The bug happens when these two conditions are met
* origin size is divisible by (chunk_size/16) - so that the last
metadata area is filled completely
* the miscalculated snapshot metadata size is divisible by extent size -
so that there is no padding to extent boundary which would otherwise
save us
Signed-off-by:Mikulas Patocka <mpatocka@redhat.com>
While stripe size is twice the physical extent size,
the original code will not reduce stripe size to maximum
(physical extent size).
Signed-off-by: Zhiqing Zhang <zhangzq.fnst@cn.fujitsu.com>
To make "lvm dumpconfig --type default" output to be usable like any
other config, we need to comment out lines that have no default value
defined. Otherwise, we'd have the output with config options
with blank or zero values which is not the same as when the value
is not defined! And such configuration can't be feed into lvm again
without further edits. So let's fix this.
Currently this covers these configuration options exactly:
devices/loopfiles
devices/preferred_names
devices/filter
devices/global_filter
devices/types
allocation/cling_tag_list
global/format_libraries
global/segment_libraries
activation/volume_list
activation/auto_activation_volume_list
activation/read_only_volume_list
activation/mlock_filter
metadata/dirs
metadata/disk_areas
metadata/disk_areas/<disk_area>
metadata/disk_areas/<disk_area>/start_sector
metadata/disk_areas/<disk_area>/size
metadata/disk_areas/<disk_area>/id
tags/<tag>
tags/<tag>/host_list
Start to convert percentage size handling in lvresize to the new
standard. Note in the man pages that this code is incomplete.
Fix a regression in non-percentage allocation in my last check in.
This is what I am aiming for:
-l<extents>
-l<percent> LV/ORIGIN
sets or changes the LV size based on the specified quantity
of logical logical extents (that might be backed by
a higher number of physical extents)
-l<percent> PVS/VG/FREE
sets or changes the LV size so as to allocate or free the
desired quantity of physical extents (that might amount to a
lower number of logical extents for the LV concerned)
-l+50%FREE - Use up half the remaining free space in the VG when
carrying out this operation.
-l50%VG - After this operation, this LV should be using up half the
space in the VG.
-l200%LV - Double the logical size of this LV.
-l+100%LV - Double the logical size of this LV.
-l-50%LV - Reduce the logical size of this LV by half.
Reorder detection of cmirrord. Now if cmirrord is not
running, target will not try to load kernel log module,
for communication with cmirrord.
Whole check for attrs now also happens just once.
Test raid10 availability as a target feature (instead of doing
it in all the places where raid10 should be checked).
TODO: activation needs runtime validation - so metadata with raid10
are skipped from activation in user-friendly way in lvm2.
Parsing vg structure during supend/commit/resume may require a lot of
memory - so move this into vg_write.
FIXME: there are now multiple cache layers which our doing some thing
multiple times at different levels. Moreover there is now different
caching path with and without lvmetad - this should be unified
and both path should use same mechanism.
Several fixes for the recent changes that treat allocation percentages
as upper limits.
Improve messages to make it easier to see what is happening.
Fix some cases that failed with errors when they didn't need to.
Fix crashes when first_seg() returns NULL.
Remove a couple of log_errors that were actually debugging messages.
Remove 'skip' argument passed into the function.
We always used '0' - as this is the only supported
option (-K) and there is no complementary option.
Also add some testing for behaviour of skipping.
Avoid introducing libdm structure allocated in library user.
Use direct call with all currently supported args.
When new arg is added, new function will cover it.
When an origin exists and the 'lvcreate' command is used to create
a cache pool + cache LV, the table is loaded into the kernel but
never instantiated (suspend/resume was never called). A user running
LVM commands would never know that the kernel did not have the
proper state unless they also ran the dmsetup 'table/status' command.
The solution is to suspend/resume the cache LV to make the loaded
tables become active.
Introduce a new parameter called "approx_alloc" that is set when the
desired size of a new LV is specified in percentage terms. If set,
the allocation code tries to get as much space as it can but does not
fail if can at least get some.
One of the practical implications is that users can now specify 100%FREE
when creating RAID LVs, like this:
~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
Update the man page so the user knows that dm-cache 1.3.0 module
is needed. Also, enforce that in the code and print a warning if
the module is not new enough.
Users now have the ability to convert their existing logical volumes
into cached logical volumes. A cache pool LV must be specified using
the '--cachepool' argument. The cachepool is the small, fast LV used
to cache the large, slow LV that is being converted.
lv_active_change will enforce proper activation.
Modification of activation was wrong and lead to misuse of
autoactivation. Fix allows to use proper local exclusive activation,
while the removed code turned this into just exclusive
activation (losing required local property).
The libblkid can detect DM_snapshot_cow signature and when creating
new LVs with blkid wiping used (allocation/use_blkid_wiping=1 lvm.conf
setting and --wipe y used at the same time - which it is by default).
Do not issue any prompts about this signature when new LV is created
and just wipe it right away without asking questions. Still keep the
log in verbose mode though.
gcc reports:
metadata/merge.c:229:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
metadata/merge.c:232:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
A cache LV - from LVM's perpective - is a user accessible device that
links the cachepool LV and the origin LV. The following functions
were added to facilitate the creation and removal of this top-level
LV:
1) 'lv_cache_create' - takes a cachepool and an origin device and links
them into a new top-level LV of 'cache' segment type. No allocation
is necessary in this function, as the sub-LVs contain all of the
necessary allocated space. Only the top-level layer needs to be
created.
2) 'lv_cache_remove' - this function removes the top-level LV of a
cache LV - promoting the cachepool and origin sub-LVs to top-level
devices and leaving them exposed to the user. That is, the
cachepool is unlinked and free to be used with another origin to
form a new cache LV; and the origin is no longer cached.
(Currently, if the cache needs to be flushed, it is done in this
function and the function waits for it to complete before proceeding.
This will be taken out in a future patch in favor of polling.)
Cache pools require a data and metadata area (like thin pools). Unlike
thin pool, if 'cache_pool_metadata_require_separate_pvs' is not set to
'1', the metadata and data area will be allocated from the same device.
It is also done in a manner similar to RAID, where a single chunk of
space is allocated and then split to form the metadata and data device -
ensuring that they are together.
Building on the new DM function that parses DM cache status, we
introduce the following LVM level functions to aquire information
about cache devices:
- lv_cache_block_info: retrieves information on the cache's block/chunk usage
- lv_cache_policy_info: retrieves information on the cache's policy
I am reverting the commit below - removing the new 'dm_config_get_int'
function and simply calling 'dm_config_get_uint32' while casting the
'int *' pointer parameter.
Commit being reverted:
commit 94377dfd5e
Author: Jonathan Brassow <jbrassow@redhat.com>
Date: Mon Jan 27 05:26:19 2014 -0600
Misc: New function for reading lvm config file fields
Introduce 'dm_config_get_int', which will be used by the upcoming
cachepool segment type.
Avoid use of external origin with size unaligned/incompatible with
thin pool chunk size, since the last chunk is not correctly provisioned
when it is overwritten.
Since we are currently incapable of providing zeroes for
reextended thin volume area, let's disable extension of
such already reduce thin volumes.
(in-release change)
This patch adds the cache segment type - the second of two necessary
to create cache logical volumes. This segment type references the
cachepool (the small fast device) and the origin (the large slow device);
linking them to create the cache device. The cache device is the
hierarchical device-mapper device that the user ulitmately makes use
of.
The cache segment sources the information necessary to construct the
device-mapper cache target from the origin and cachepool segments to
which it links.
This patch adds the new cachepool segment type - the first of two
necessary to eventually create 'cache' logical volumes. In addition
to the new segment type, updates to makefiles, configure files, the
lv_segment struct, and some necessary libdevmapper flags.
The cachepool is the LV and corresponding segment type that will hold
all information pertinent to the cache itself - it's size, cachemode,
cache policy, core arguments (like migration_threshold), etc.
When lvm2 command forks, it calls reset_locking(),
which as an unwanted side effect unlinked lock file from filesystem.
Patch changes the behavior to just close locked file descriptor
in children - so the lock is being still properly hold in the parent.
Test LVM_LVMETAD_PIDFILE for pid for lvm command.
Fix WHATS_NEW envvar name usage
Fix init order in prepare_lvmetad to respect set vars
and avoid clash with system settings.
Update test to really test the 'is running' message.
Comparing for available feature missed the code path, when
maj is already bigger.
The bug would be only hit in the case, thin pool target would have
increased major version.
When thin volume is using external origin, current thin target
is not able to supply 'extended' size with empty pages.
lvm2 detects version and disables extension of LV past the external
origin size in this case.
Thin LV could be however still reduced and extended freely bellow
this size.
In preparation for other segment types that create and use "pools", we
s/create_thin_pool/create_pool/. This way it is not awkward when creating
a cachepool, for example, to use "create_thin_pool".
Functions that handle set-up, tear-down and creation of thin pool
volumes will be more generally applicable when more targets exist
that make use of device-mapper's persistent data format. One of
these targets is the dm-cache target. I've selected some functions
that will be useful for the cache segment type to be moved, since
they will no longer be thin pool specific but are more broadly
useful to any segment type that makes use of a 'pool' LV.
We need both offset and length when trying to wipe detected signatures.
The libblkid can fail so it's good to have an error message issued for
this state instead of being silent (libblkid does not issue any error
messages here). We just issued "stack" here before but that was not
quite useful if some error occurs...
Only flag thin LV for no scanning in udev if this LV is about
to be wiped. This happens only in case the thin LV's pool was not
created with zeroing of the new blocks enabled.
The size of any metadata must be ignored when calculating the size of an
orphan PV.
Bug introduced by 603b45e0ed ("pvresize: Do
not use pv_read (get the PV from orphan VG).")
Block creations of archive and backup files for internal orphan VGs.
Bug introduced by 603b45e0ed ("pvresize: Do
not use pv_read (get the PV from orphan VG).")
DO NOT USE LVMETAD IF YOU HAVE ANY LVM1-FORMATTED PVS.
You may continue to use it without lvmetad, but do please schedule
an upgrade to the lvm2 format (with 'vgconvert').
Sending the original LVM1 formatted metadata to lvmetad is breaking
assumptions made by the code, so I am marking the format as obsolete for
now and no longer sending it to lvmetad.
This means that if you are using lvmetad, lvm1 volumes will usually
appear invisible - though not always: it depends on exactly what
sequence of commands you run!
The current situation is not satisfactory.
We'll either fix lvmetad and reenable this or we'll fix the code to
issue appropriate warning messages when lvm1 PVs are encountered
to avoid accidents.
(The latest unfixed problem is that lvmetad assumes metadata sequence
numbers exist and always increase - but the lvm1 format does not define
or store any sequence number, confusing both the daemon and client
when default values get passed to-and-fro.)
Several fields used to display 0 if undefined. Recent changes
to the way the fields are reported threw away some tests for
valid pointers, leading to segfaults with 'pvs -o all'.
Reinstate the original behaviour.
If a PV in an existing VG becomes orphaned (with 'pvcreate -ff', for
example) the VG struct cached against its vginfo must be invalidated.
This is because the struct device it references no longer contains
the PV label so becomes incorrect.
This triggers the error:
Internal error: PV $dev unexpectedly not in cache.
when the PV from the cached VG metadata is subsequently looked up
in the cache.
Bug introduced in 2.02.87 by commit 7ad0d47c3c
("Cache and share generated VG structs").
Before:
lvm> pvs
PV VG Fmt Attr PSize PFree
/dev/loop3 vg12 lvm2 a-- 28.00m 28.00m
/dev/loop4 vg12 lvm2 a-- 28.00m 28.00m
lvm> pvcreate -ff /dev/loop3
Really INITIALIZE physical volume "/dev/loop3" of volume group "vg12" [y/n]? y
WARNING: Forcing physical volume creation on /dev/loop3 of volume group "vg12"
Physical volume "/dev/loop3" successfully created
lvm> pvs
Internal error: PV /dev/loop3 unexpectedly not in cache.
PV VG Fmt Attr PSize PFree
/dev/loop3 vg12 lvm2 a-- 28.00m 28.00m
/dev/loop3 lvm2 a-- 32.00m 32.00m
/dev/loop4 vg12 lvm2 a-- 28.00m 28.00m
After:
lvm> pvs
PV VG Fmt Attr PSize PFree
/dev/loop3 vg12 lvm2 a-- 28.00m 28.00m
/dev/loop4 vg12 lvm2 a-- 28.00m 28.00m
lvm> pvcreate -ff /dev/loop3
Really INITIALIZE physical volume "/dev/loop3" of volume group "vg12" [y/n]? y
WARNING: Forcing physical volume creation on /dev/loop3 of volume group "vg12"
Physical volume "/dev/loop3" successfully created
lvm> pvs
PV VG Fmt Attr PSize PFree
/dev/loop3 lvm2 a-- 32.00m 32.00m
/dev/loop4 vg12 lvm2 a-- 28.00m 28.00m
unknown device vg12 lvm2 a-m 28.00m 28.00m
Make this code a bit more readable for Coverity as otherwise
it marks the "type" variable in the "_thin_pool_add_message" fn
as undefined for certain path (...which is normally unreachable anyway,
but let's clean this up).
Introduce FMT_OBSOLETE to identify pool metadata and use it and FMT_MDAS
instead of hard-coded format names.
Explain device accesses on pvscan --cache man page.
If there is no define for BLKPBSZGET - we have hard time how to
decrypt physical block size - we can't use here block_size,
since this is usually 4k while we need to use 512b.
FIXME: find some better way, until that enforce value 512.
Eventually we could also try to put in:
+#ifndef BLKPBSZGET
+# define BLKPBSZGET _IO(0x12,123)
+#endif
but this will still not work well on old kernels.
This reverts commit 24639be558.
Ok - seems we could be here a bit too active - and we
may remove devices which are unsuable for reasons we are not
aware of - thus taking down whole device could be way to big hammer.
So we still need some solution to recover from failing preload
and activation - but it needs more tunning.
When activation fails - we may leak large tree of partially loaded
devices in the dm table (i.e. failure in snapshot activation)
The best we can do here is try to deactivate whole device and
remove as much inactive table entries as we can.
When LV is scanned for its dependencies - scan also origin's snapshots,
and thin external origins.
So if any PV from snapshot or external origin device is missing - lvm2 will
avoid trying to activate such device.
The metadata/disk_areas setting was incorrectly registered as
"string" configuration option but it's a section where each area
is defined in its own subsection with "start_sector", "size" and "id"
setting.
This setting is not officialy supported, it's undocumented and it's
used solely for debugging.
Note: At this moment, it does not seem to be working with lvmetad!
When the device is inserted in dev_name_confirmed() stat() is
called twice as _insert() has it's own stat() call.
Extend _insert() parameter with struct stat* - which could be used
if it has been just obtained. When NULL is passed code is
doing its own stat() call as before.
Thin kernel target 1.9 still does not support online resize of
thin pool metadata properly - so disable it with expectation
for much higher version - and reenable after fixing kernel.
Replacement of pv_read by find_pv_by_name in commit
651d5093ed caused spurious
error messages when running pvcreate or vgextend against an
unformatted device.
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Physical volume /dev/loop4 not found
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Volume group "vg1" successfully extended
If we're calling pvcreate on a device that already has a PV label,
the blkid detects the existing PV and then we consider it for wiping
before we continue creating the new PV label and we issue a warning
with a prompt whether such old PV label should be removed. We don't
do this with native signature detection code. Let's make it consistent
with old behaviour.
But still keep this "PV" (identified as "LVM1_member" or "LVM2_member"
by blkid) detection when creating new LVs to avoid unexpected PV label
appeareance inside LV.
Collapse 2 ifs and replace log_error() with log_warn(), since\
the reported message is not causing tools error.
(and cannot be probably triggered anyway).
Optimize and cleanup recently introduced new function wipe_lv.
Use compound literals to get nicely initialized wipe_params struct.
Pass in lv as explicit argument for wipe_lv.
Use cmd from lv structure.
Initialize only non-null members so it's easy to see what
is the special arg.
Drop find_merging_snapshot() function. Use find_snapshot()
called after check for lv_is_merging_origin() which
is the commonly used code path - so we avoid duplicated
tests and potential risk of derefering NULL point
in unhandled error path.
This is actually the wipefs functionailty as a matter of fact
(wipefs uses the same libblkid calls).
libblkid is more rich when it comes to detecting various
signatures, including filesystems and users can better
decide what to erase and what should be kept.
The code is shared for both pvcreate (where wiping is necessary
to complete the pvcreate operation) and lvcreate where it's up
to the user to decide.
The verbose output contains a bit more information about the
signature like LABEL and UUID.
For example:
raw/~ # lvcreate -L16m vg
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
or more verbose one:
raw/~ # lvcreate -L16m vg -v
...
Found existing signature on /dev/vg/lvol0 at offset 4096: LABEL="raw.virt:0" UUID="da6af139-8403-5d06-b8c4-13f6f24b73b1" TYPE="linux_raid_member" USAGE="raid"
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
The verbose output is the same output as found in blkid.