IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Test currently fails with make check_cluster - so uses 'should'
CLVMD[4f435880]: Feb 19 23:27:36 Send local reply
format_text/archiver.c:230 WARNING: This metadata update is NOT backed up
metadata/mirror.c:1105 Failed to initialize log device
metadata/mirror.c:1145 <backtrace>
lvconvert.c:1547 <backtrace>
lvconvert.c:3084 <backtrace>
Remove 'skip' argument passed into the function.
We always used '0' - as this is the only supported
option (-K) and there is no complementary option.
Also add some testing for behaviour of skipping.
We already have /dev/disk/by-id/dm-uuid-... (which encompasses the
VG UUID and LV UUID in case of LVs since the mapping's UUID is
VG+LV UUID together) and /dev/disk/by-id/dm-name-... (which encompasses
the VG and LV name in case of LVs).
This patch addds /dev/disk/by-id/lvm-pv-uuid-<PV_UUID> that completes
this scheme and makes navigation a bit easier using PV UUIDs since
one can navigate using PV UUIDs only and there's no need to do extra
PV UUID <--> kernel name matching (the PV UUID is stable across reboots).
This may come in handy in various scripts.
Since we already have the PV UUID stored in udev database (as a result
of blkid call - returned in ID_FS_UUID blkid's variable), this operation
is very cheap indeed, just creating the extra one symlink.
There are typically 2 functions for the more advanced segment types that
deal with parameters in lvcreate.c: _get_*_params() and _check_*_params().
(Not all segment types name their functions according to this scheme.)
The former function is responsible for reading parameters before the VG
has been read. The latter is for sanity checking and possibly setting
parameters after the VG has been read.
This patch adds a _check_raid_parameters() function that will determine
if the user has specified 'stripe' or 'mirror' parameters. If not, the
proper number is computed from the list of PVs the user has supplied or
the number that are available in the VG. Now that _check_raid_parameters()
is available, we move the check for proper number of stripes from
_get_* to _check_*.
This gives the user the ability to create RAID LVs as follows:
# 5-device RAID5, 4-data, 1-parity (i.e. implicit '-i 4')
~> lvcreate --type raid5 -L 100G -n lv vg /dev/sd[abcde]1
# 5-device RAID6, 3-data, 2-parity (i.e. implicit '-i 3')
~> lvcreate --type raid6 -L 100G -n lv vg /dev/sd[abcde]1
# If 5 PVs in VG, 4-data, 1-parity RAID5
~> lvcreate --type raid5 -L 100G -n lv vg
Considerations:
This patch only affects RAID. It might also be useful to apply this to
the 'stripe' segment type. LVM RAID may include RAID0 at some point in
the future and the implicit stripes would apply there. It would be odd
to have RAID0 be able to auto-determine the stripe count while 'stripe'
could not.
The only draw-back of this patch that I can see is that there might be
less error checking. Rather than informing the user that they forgot
to supply an argument (e.g. '-i'), the value would be computed and it
may differ from what the user actually wanted. I don't see this as a
problem, because the user can check the device count after creation
and remove the LV if they have made an error.
When clustered VG is available in the system but we don't have
clustering set up for whatever reason, the lvm2-monitor scripts should
not fail completely just because these clustered VGs are skipped during
vgs/vgchange calls in lvm2-monitor initscript/systemd unit.
Avoid introducing libdm structure allocated in library user.
Use direct call with all currently supported args.
When new arg is added, new function will cover it.
When an origin exists and the 'lvcreate' command is used to create
a cache pool + cache LV, the table is loaded into the kernel but
never instantiated (suspend/resume was never called). A user running
LVM commands would never know that the kernel did not have the
proper state unless they also ran the dmsetup 'table/status' command.
The solution is to suspend/resume the cache LV to make the loaded
tables become active.
Do not use default dependencies that systemd adds to the units
so we have better control of when the service is started/stopped
and we don't end up with unexpected behaviour.
When the activation units are generated if use_lvmetad=0 (no
autoactivation), use --ignoreskippedcluster option for vgchange calls
since the cluster with cLVM is set up by separate units.
This avoids a situation in which the generated activation units are
improperly in failed state just because of the vgchange return value
when clustered VGs are encountered while the activation of non-clustered
VGs does proceed normally.
Introduce a new parameter called "approx_alloc" that is set when the
desired size of a new LV is specified in percentage terms. If set,
the allocation code tries to get as much space as it can but does not
fail if can at least get some.
One of the practical implications is that users can now specify 100%FREE
when creating RAID LVs, like this:
~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
I've added an "Advanced Logical Volume Types" section that I hope
to contain information on the logical volume types that may use
multiple steps and multiple commands to create. Cache is the
first entry into this section. I'd like to see thin and RAID in
here in the future.
Update the man page so the user knows that dm-cache 1.3.0 module
is needed. Also, enforce that in the code and print a warning if
the module is not new enough.
Users now have the ability to convert their existing logical volumes
into cached logical volumes. A cache pool LV must be specified using
the '--cachepool' argument. The cachepool is the small, fast LV used
to cache the large, slow LV that is being converted.
This patch allows users to convert existing logical volumes into
cache pool LVs. Since cache pool LVs consist of data and metadata
sub-LVs, there is also the '--poolmetadata' (similar to thin_pool)
which allows for the specification of the metadata device.
Replace some in-test use of lvs commands with their check
and get equivalent.
Advantage is these 'checking' commands are not necessarily always
valiadated via extensive valgrind testing and also the output noice
is significantly reduces since the output of check/get is suppressed.