IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When NULL info struct is passed in - function is usable
as a quick query for lv_is_active_locally() - with a bonus
we may query for layered device.
So it could be seen as a more efficient lv_is_active_locally().
Add internal devtypes reporting command to display built-in recognised
block device types. (The output does not include any additional
types added by a configuration file.)
> lvm devtypes -o help
Device Types Fields
-------------------
devtype_all - All fields in this section.
devtype_name - Name of Device Type exactly as it appears in /proc/devices.
devtype_max_partitions - Maximum number of partitions. (How many device minor numbers get reserved for each device.)
devtype_description - Description of Device Type.
> lvm devtypes
DevType MaxParts Description
aoe 16 ATA over Ethernet
ataraid 16 ATA Raid
bcache 1 bcache block device cache
blkext 1 Extended device partitions
...
Older gcc is giving misleading warning:
metadata/lv_manip.c:4018: warning: ‘seg’ may be used uninitialized in
this function
But warning free compilation is better.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
When images and their associated metadata are removed from a RAID1 LV,
the remaining sub-LVs are "shifted" down to fill the gaps. For
example, if there is a 3-way mirror:
[0][1][2]
and we remove device#0, the devices will be shifted down
[1][2]
and renamed.
[0][1]
This can create a problem for resume_lv (specifically,
dm_tree_activate_children) during the renaming process though. This
is because it will attempt to rename the higher indexed sub-LVs first
and find that it cannot because there are currently other sub-LVs with
that name. The solution is to check for a conflicting name before
attempting to rename. If a conflict is found and that conflicting
sub-LV is also in the process of renaming, we can defer the current
rename until the conflicting sub-LV has renamed and cleared the
conflict.
Now that resume_lv can handle these types of rename conflicts, we can
remove the workaround in RAID that was attempting to resume a RAID1
LV from the bottom-up in order to force a proper rename in assending
order before attempting a resume on the top-level LV. This "hack"
only worked for single machine use-cases of LVM. Clearing this up
paves the way for exclusive activation of RAID LVs in a cluster.
Properly skip unmonitoring of thin pool volume in deactivation code
path. Code makes sure if there is just any thin pool user
it stays monitored with all its resources.
When the pool is created from non-linear target the more complex rules
have to be used and stacking needs to properly decode args for _tdata
LV. Also proper allocation policies are being used according to those
set in lvm2 metadata for data and metadata LVs.
Also properly check for active pool and extra code to active it
temporarily.
With this fix it's now possible to use:
lvcreate -L20 -m2 -n pool vg --alloc anywhere
lvcreate -L10 -m2 -n poolm vg --alloc anywhere
lvconvert --thinpool vg/pool --poolmetadata vg/poolm
lvresize -L+10 vg/pool
The pool metadata LV must be accounted for when determining what PVs
are in a thin-pool. The pool LV must also be accounted for when
checking thin volumes.
This is a prerequisite for pvmove working with thin types.
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
This is a regression caused by commit 3bd9048854.
The error message added with that commit "mpath major %d is not dm major %d" is
superfluous.
When scanning for mpath components, we're looking for a parent device.
But this parent device is not necessarily an mpath device (so the dm device)
if it exists - it can be any other device layered on top (e.g. an MD RAID device).
- null_fd resource leak on error path in _reopen_fd_null fn
- dead code in verify_message in clvmd code
- dead code in _init_filter_components in toolcontext code
- null dereference in dm_prepare_selinux_context on error path if
setfscreatecon fails while resetting SELinux context
Split out the partitioned device filter that needs to open the device
and move the multipath filter in front of it.
When a device is multipathed, sending I/O to the underlying paths may
cause problems, the most obvious being I/O errors visible to lvm if a
path is down.
Revert the incorrect <backtrace> messages added when a device doesn't
pass a filter.
Log each filter initialisation to show sequence.
Avoid duplicate 'Using $device' debug messages.
According to bug 995193, if a volume group
1) contains a mirror
2) is clustered
3) 'locking_type' = 0 is used
then it is not possible to remove the 'c'luster flag from the VG. This
is due to the way _lv_is_active behaves.
We shouldn't allow the cluster flag to be flipped unless the mirrors in
the cluster are not active. This is because different kernel modules
are used depending on whether a mirror is cluster or not. When we
attempt to see if the mirror is active, we first check locally. If it
is not, then we attempt to check for remotely active instances if the VG
is clustered. Since the no_lock locking type is LCK_CLUSTERED, but does
not implement 'query_resource', remote_lock_held will always return an
error in this case. An error from remove_lock_held is treated as though
the lock _is_ held (i.e. the LV is active remotely). This blocks the
cluster flag from changing.
The solution is to implement 'query_resource' for the no_lock type. It
will report a message and return 1. This will allow _lv_is_active to
function properly. The LV would be considered not active remotely and
the VG can change its flag.
gcc -O2 v4.8 on 32 bit architecture is causing a bug in parameter
passing. It does not happen with -01 nor -O0.
The problematic part of the code was strlen use in config.c in
the config_def_check fn and the call for _config_def_check_tree in it:
<snip>
rplen = strlen(rp);
if (!_config_def_check_tree(handle, vp, vp + strlen(vp), rp, rp + rplen, CFG_PATH_MAX_LEN - rplen, cn, cmd->cft_def_hash)) ...
</snip>
If compiled with -O0 (correct):
Breakpoint 1, config_def_check (cmd=0x819b050, handle=0x81a04f8) at config/config.c:775
(gdb) p vp
$1 = 0x8189ee0 <_cfg_path> "config"
(gdb) p strlen(vp)
$2 = 6
(gdb)
_config_def_check_tree (handle=0x81a04f8, vp=0x8189ee0 <_cfg_path>
"config", pvp=0x8189ee6 <_cfg_path+6> "", rp=0xbfffe1e8 "config",
prp=0xbfffe1ee "", buf_size=58, root=0x81a2568, ht=0x81a65
48) at config/config.c:680
(gdb) p vp
$4 = 0x8189ee0 <_cfg_path> "config"
(gdb) p pvp
$5 = 0x8189ee6 <_cfg_path+6> ""
If compiled with -O2 (incorrect):
Breakpoint 1, config_def_check (cmd=cmd@entry=0x8183050, handle=0x81884f8) at config/config.c:775
(gdb) p vp
$1 = 0x8172fc0 <_cfg_path> "config"
(gdb) p strlen(vp)
$2 = 6
(gdb) p vp + strlen(vp)
$3 = 0x8172fc6 <_cfg_path+6> ""
(gdb)
_config_def_check_tree (handle=handle@entry=0x81884f8, pvp=0x8172fc7
<_cfg_path+7> "host_list", rp=rp@entry=0xbffff190 "config",
prp=prp@entry=0xbffff196 "", buf_size=buf_size@entry=58, ht=0x
818e548, root=0x818a568, vp=0x8172fc0 <_cfg_path> "config") at
config/config.c:674
(gdb) p pvp
$4 = 0x8172fc7 <_cfg_path+7> "host_list"
The difference is in passing the "pvp" arg for _config_def_check_tree.
While in the correct case, the value of _cfg_path+6 is passed
(the result of vp + strlen(vp) - see the snippet of the code above),
in the incorrect case, this value is increased by 1 to _cfg_path+7,
hence totally malforming the string that is being processed.
This ends up with incorrect validation check and incorrect warning
messages are issued like:
"Configuration setting "config/checks" has invalid type. Found integer, expected section."
To workaround this issue, remove the "static" qualifier from the
"static char _cfg_path[CFG_PATH_MAX_LEN]". This causes the optimalizer
to be less aggressive (also shuffling the arg list for
_config_def_check_tree call helps).
Commit b248ba0a39 attempted to
prevent mirror devices which had a failed device in their
mirrored log from being usable/readable by LVM. This was to
protect against circular dependancies where one LVM command
could be blocked trying to read one of these affected mirrors
while the LVM command to fix/unblock that mirror was stuck
behind the currently running command.
The above commit went wrong when it used 'device_is_usable()' to
recurse on the mirrored log device to check if it was suspended
or blocked. The 'device_is_usable' function also contains a check
for reserved names - like *_mlog, etc. This last check always
triggered when checking a mirror's log simply because of the name,
not because it was suspended or blocked - a false positive.
The solution is to create a new function like 'device_is_usable',
but without the check for reserved names. Using this new function
(device_is_suspended_or_blocked), we can check the status of a
mirror's log device properly.
When both the '-i' and '-m' arguments are specified on the command
line, use the "raid10" segment type. This way, the native RAID10
personality is used through dm-raid rather than layering a mirror
on striped LVs. If the old behavior is desired, the '--type'
argument to use would be "mirror" rather than "raid10".
When reading an info about MDAs from lvmetad, we need to use 64 bit
int to read the value of the offset/size, otherwise the value is
overflows and then it's used throughout!
This is dangerous if we're trying to write such metadata area then,
mostly visible if we're using 2 mdas where the 2nd one is at the end
of the underlying device and hence the value of the mda offset is
high enough to cause problems:
(the offset trimmed to value of 0 instead of 4096m, so we write
at the very start of the disk (or elsewhere if the offset has
some other value!)
[1] raw/~ # lvcreate -s -l 100%FREE vg --virtualsize 4097m
Logical volume "lvol0" created
[1] raw/~ # pvcreate --metadatacopies 2 /dev/vg/lvol0
Physical volume "/dev/vg/lvol0" successfully created
[1] raw/~ # hexdump -n 512 /dev/vg/lvol0
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
0000200
[1] raw/~ # pvchange -u /dev/vg/lvol0
Physical volume "/dev/vg/lvol0" changed
1 physical volume changed / 0 physical volumes not changed
[1] raw/~ # hexdump -n 512 /dev/vg/lvol0
0000000 d43e d2a5 4c20 4d56 2032 5b78 4135 7225
0000010 4e30 3e2a 0001 0000 0000 0000 0000 0000
0000020 0000 0010 0000 0000 0000 0000 0000 0000
0000030 0000 0000 0000 0000 0000 0000 0000 0000
*
0000200
=======
(the offset overflows to undefined values which is far behind
the end of the disk)
[1] raw/~ # lvcreate -s -l 100%FREE vg --virtualsize 100g
Logical volume "lvol0" created
[1] raw/~ # pvcreate --metadatacopies 2 /dev/vg/lvol0
Physical volume "/dev/vg/lvol0" successfully created
[1] raw/~ # pvchange -u /dev/vg/lvol0
/dev/vg/lvol0: lseek 18446744073708503040 failed: Invalid argument
/dev/vg/lvol0: lseek 18446744073708503040 failed: Invalid argument
Failed to store physical volume "/dev/vg/lvol0"
0 physical volumes changed / 1 physical volume not changed
When creating a new thin pool and there's no profile requested
via "lvcreate --profile ...", inherit any VG profile if it's attached.
Currently this applies to these settings:
allocation/thin_pool_chunk_size
allocation/thin_pool_discards
allocation/thin_pool_zero
Add new configure lvm.conf options for binaries thin_repair
and thin_dump.
Those are part of device-mapper-persistent-data package
and will be used for recovery of thin_pool.
The PREFERRED allocation mechanism requires the number of areas in the
previous LV segment to match the number in the new segment being
allocated. If they do not match, the code may crash.
E.g. https://bugzilla.redhat.com/989347
Introduce A_AREA_COUNT_MATCHES and when not set avoid referring
to the previous segment with the contiguous and cling policies.
When using a global_filter and if this filter is incorrectly
specified, we ended up with a segfault:
raw/~ $ pvs
Invalid filter pattern "r|/dev/sda".
Segmentation fault (core dumped)
In the example above a closing '|' character is missing at the end
of the regex. The segfault itself was caused by trying to destroy
the same filter twice in _init_filters fn within the error path
(the "bad" goto target):
bad:
if (f3)
f3->destroy(f3);
if (f4)
f4->destroy(f4);
Where f3 is the composite filter (sysfs + regex + type + md + mpath filter)
and f4 is the persistent filter which encompasses this composite filter
within persistent filter's 'real' field in 'struct pfilter'.
So in the end, we need to destroy the persistent filter only as
this will also destroy any 'real' filter attached to it.
commit d00d45a8b6 introduced changes
that are causing cluster mirror tests to fail. Ultimately, I think
the change was right, but a proper clean-up will have to wait.
The portion of the commit we are reverting correlates to the
following commit comment:
2) lib/metadata/mirror.c:_delete_lv() - should have been calling
_activate_lv_like_model() with 'mirror_lv'. This is because
'mirror_lv' is the LV that the overall operation is being
performed on. We need to use this LV as the basis for
determining whether to activate locally, or across the
cluster, etc.
It appears that when legs or logs are removed from a mirror, they
are being activated before they are deleted in order to make them
top-level LVs that can be acted upon. When doing this, it appears
they are not activated based on the characteristics of the mirror
from which they came. IOW, if the mirror was exclusively active,
the sub-LVs are activated globally. This is a no-no. This then
made it impossible to activate_lv_like_model if the model was
"mirror_lv" instead of "lv" in _delete_lv(). Thus, at some point
this change should probably be put back and those location where
the sub-LVs are being improperly activated "shared" instead of
EX should be corrected.
Three fixme's addressed in this commit:
1) lib/metadata/lv_manip.c:_calc_area_multiple() - this could be
safely changed to a comment explaining that currently because
RAID10 can only have a 2-way mirror, we don't need to know the
number of stripes. However, we will need to know that in the
future if RAID10 is to support more than 2-way mirroring.
2) lib/metadata/mirror.c:_delete_lv() - should have been calling
_activate_lv_like_model() with 'mirror_lv'. This is because
'mirror_lv' is the LV that the overall operation is being
performed on. We need to use this LV as the basis for
determining whether to activate locally, or across the
cluster, etc.
3) tools/lvcreate.c:_lvcreate_params() - Minor clean-up. If
'-m 0' is given, treat it as though the mirroring argument
was not given (i.e. as though the requested segment type
was 'stripe' and not mirror).
Activation is needed only for clustered VG.
For non-clustered VG skip activation, since deactivate_lv()
is called without problems (no testing for lock presence).
(updates f6ded62291)
When the merging of snapshot is finished, we need to clean dm table
intries for snapshot and -cow device. So for merging snapshot
we have to activate_lv plain 'cow' LV and let the table
resolver to its work - shortly deactivation_lv() request
will follow - in cluster this needs LV lock to be held by clvmd.
Also update a test - add small wait - if lvremove is not 'fast enough'
and merging process has not been stopped and $lv1 removed in background.
Ortherwise the following lvcreate occasionally finds name $lv1 still in use.
(in release fix)
The status printed for dm-raid targets on older kernels does not include
the syncaction field. This is handled by dev_manager_raid_status() just
fine by populating the raid status structure with NULL for that field.
However, lv_raid_sync_action() does not properly handle that field being
NULL. So, check for it and return 0 if it is NULL.
Add --poolmetadataspare option and creates and handles
pool metadata spare lv when thin pool is created.
With default setting 'y' it tries to ensure, spare has
at least the size of created LV.
Pool creation involves clearing of metadata device
which triggers udev watch rule we cannot udev synchronize with
in current code.
This metadata devices needs to be activated localy,
so in cluster mode deactivation and reactivation
is always needed.
However for non-clustered mode we may reload table
via suspend/resume path which avoids collision with
udev watch rule which was occasionaly triggering
retry deactivation loop.
Code has been also split into 2 separate code paths
for thin pools and thin volumes which improved readability
of the code as well.
Deactivation has been moved out of extend_pool() and
decision is now in _lv_create_an_lv() which knows
the change mode.
Since we vg_write&commit metadata LV inside lv_extend() call,
proper restore is needed in case something fails.
So add bad: section which deactivates activated LV
and removes it from VG.
Also check early for metadata LV name lengh fail.
When tree for thin LVs was using external_lv, there has been
far less optimal solution, that has tried to add certain
existing dependencie only when new node was added.
However this has lead to way to complex tree construction since
many repeated checks have been made during such tree build.
This patch move this detection to the proper _partial_tree generation
code and uses for it new 'activation' flag, which is set when
tree for ACTIVATION or PRELOAD is generated.
It increases performance when thins with external origins are used.
(in release update)
Created dlid for test is not needed afterward, so lower a memory
usage of this call is repeatedly used for building some large tree.
TODO: create function to use given buffer on stack as much cheaper.
Code needs to check if the layer origin device is suspended,
It's valid to create thinvolume snapshot of thinvolume which is also
used as an old-style snapshot. In this case we need to check -real
is suspended.
When adding origin_only - add only layer thin volume.
(in case it's also old-snapshot add only -real device)
Remove backup() call from update_pool_lv() as it's been there
duplicated and preperly order backup() call after lvresize,
so there is just one such call.
If the thin pool is known to be active, messages can be passed
to the pool even when the created thin volume is not going to be
activated.
So we do not need to stack large list of message and validate
and catch creation errors earlier in this case.
Replace the test for valid activation combination with simpler list of
deactivation combinations.
cfg_def_get_path uses a global static var to store the result (for efficiency).
So we need to apply the profile first and then get the path for the config item
when calling find_config_tree_* fns.
Also activation/auto_set_activation is not profilable (at least not now,
maybe later if we need that).
Add thin and thin pool lv creation support to lvm library
This is Mohan's thinp patch, re-worked to include suggestions
from Zdenek and Mohan.
Rework of commit 4d5de8322b
which uses refactored properties handling.
Based on work done by M. Mohan Kumar <mohan@in.ibm.com>
Signed-off-by: Tony Asleson <tasleson@redhat.com>
The common bits from lib/report/properties.[c|h] have
been moved to lib/properties/prop_common.[c|h] to allow
re-use of property handling functionality without
polluting the report handling functionality.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
The activation/auto_set_activation_skip enables/disables automatic
adding of the ACTIVATION_SKIP LV flag. By default thin snapshots
are flagged to be skipped during activation.
And by default, the auto_set_activation_skip is enabled.
Also add -k/--setactivationskip y/n and -K/--ignoreactivationskip
options to lvcreate.
The --setactivationskip y sets the flag in metadata for an LV to
skip the LV during activation. Also, the newly created LV is not
activated.
Thin snapsots have this flag set automatically if not specified
directly by the --setactivationskip y/n option.
The --ignoreactivationskip overrides the activation skip flag set
in metadata for an LV (just for the run of the command - the flag
is not changed in metadata!)
A few examples for the lvcreate with the new options:
(non-thin snap LV => skip flag not set in MDA + LV activated)
raw/~ $ lvcreate -l1 vg
Logical volume "lvol0" created
raw/~ $ lvs -o lv_name,attr vg/lvol0
LV Attr
lvol0 -wi-a----
(non-thin snap LV + -ky => skip flag set in MDA + LV not activated)
raw/~ $ lvcreate -l1 -ky vg
Logical volume "lvol1" created
raw/~ $ lvs -o lv_name,attr vg/lvol1
LV Attr
lvol1 -wi------
(non-thin snap LV + -ky + -K => skip flag set in MDA + LV activated)
raw/~ $ lvcreate -l1 -ky -K vg
Logical volume "lvol2" created
raw/~ $ lvs -o lv_name,attr vg/lvol2
LV Attr
lvol2 -wi-a----
(thin snap LV => skip flag set in MDA (default behaviour) + LV not activated)
raw/~ $ lvcreate -L100M -T vg/pool -V 1T -n thin_lv
Logical volume "thin_lv" created
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg
LV Attr
pool twi-a-tz-
thin_lv Vwi-a-tz-
thin_snap Vwi---tz-
(thin snap LV + -K => skip flag set in MDA (default behaviour) + LV activated)
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap -K
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg/thin_lv
LV Attr
thin_lv Vwi-a-tz-
(thins snap LV + -kn => no skip flag in MDA (default behaviour overridden) + LV activated)
[0] raw/~ # lvcreate -s vg/thin_lv -n thin_snap -kn
Logical volume "thin_snap" created
[0] raw/~ # lvs -o name,attr vg/thin_snap
LV Attr
thin_snap Vwi-a-tz-
...when creating config trees while calling config_def_create_tree fn
that constructs a tree out of config_settings.h definition
(CFG_DEF_TREE_NEW/MISSING/DEFAULT/PROFILABLE).
Till now, we needed the config tree merge only for merging
tag configs with lvm.conf. However, this type of merging
did a few extra exceptions:
- leaving out the tags section
- merging values in activation/volume_list
- merging values in devices/filter
- merging values in devices/types
Any other config values were replaced by new values.
However, we'd like to do a 'raw merge' as well, simply
bypassing the exceptions listed above. This will help
us to create a single tree representing the cascaded
configs like CONFIG_STRING -> CONFIG_PROFILE -> ...
The reason for this patch is that when trees are cascaded,
the first value found while traversing the cascade is used,
not making any exceptions like we do for tag configs.
When CFG_DEF_TREE_MISSING is created, it needs to know the status
of the check done on the tree used (the CFG_USED flag).
This bug was introduced with f1c292cc38
"make it possible to run several instances of configuration check at
once". This patch separated the CFG_USED and CFG_VALID flags in
a separate 'status' field in struct cft_check_handle.
However, when creating some trees, like CFG_DEF_TREE_MISSING,
we need this status to do a comparison with full config definition
to determine which items are missing and for which default values
were used. Otherwise, all items would be considered missing.
So, pass this status in a new field called 'check_status' in
struct config_def_tree_spec that defines how the (dumpconfig) tree
should be constructed (and this struct is passed to
config_def_create_tree fn then).
Start separating the validation from the action in the basic lvresize
code moved to the library.
Remove incorrect use of command line error codes from lvresize library
functions. Move errors.h to tools directory to reinforce this,
exporting public versions of the error codes in lvm2cmd.h for dmeventd
plugins to use.
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
The pv resize code required that a lvm_vg_write be done
to commit the change. When the method to add the ability
to list all PVs, including ones that are not assocated with
a VG we had no way for the user to make the change persistent.
Thus additional resize code was move and now liblvm calls into
a resize function that does indeed write the changes out, thus
not requiring the user to explicitly write out he changes.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Code move and changes to support calling code from
command line and from library interface.
V2 Change lock_vol call
Signed-off-by: Tony Asleson <tasleson@redhat.com>
As locks are held, you need to call the included function
to release the memory and locks when done transversing the
list of physical volumes.
V2: Rebase fix
V3: Prevent VGs from getting cached and then write protected.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Simplified version of lv resize.
v3: Rebase changes to make work. Needed to set sizeargs = 1
to indicate to resize that we are asking for a size based
resize.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Add thin and thin pool lv creation support to lvm library
This is Mohan's thinp patch, re-worked to include suggestions
from Zdenek and Mohan.
V2: Remove const lvm_lv_params_create_thin
Add const lvm_lv_params_skip_zero_get
V3: Changed get/set to use generic functions like current
property
V4: Corrected macro in properties.c
V5: Fixed a bug in liblvm/lvm_lv.c function lvm_lv_create.
incorrectly used pool instead of lv_name when doing the
find_lv_in_vg call.
Based on work done by M. Mohan Kumar <mohan@in.ibm.com>
Signed-off-by: Tony Asleson <tasleson@redhat.com>
These settins are customizable by profiles:
allocation/thin_pool_zero
allocation/thin_pool_discards
allocation/thin_pool_chunk_size
activation/thin_pool_autoextend_threshold
activation/thin_pool_autoextend_percent
Besides the classical configuration checks (type checking and
checking whether the item is recognized by lvm tools) for profiles,
do an extra check whether the configuration setting is customizable
by a profile at all. Give a warning message if not.
Before, the status of the configuration check (config_def_check fn call)
was saved directly in global configuration definitinion array (as part
of the cfg_def_item_t/flags)
This patch introduces the "struct cft_check_handle" that defines
configuration check parameters as well as separate place to store
the status (status here means CFG_USED and CFG_VALID flags, formerly
saved in cfg_def_item_t/flags). This struct can hold config check
parameters as well as the status for each config tree separately,
thus making it possible to run several instances of config_def_check
without interference.
Just to make it more clear and also not to confuse
config_valid with check against config definition
(and its 'valid' flag within the config defintion tree).
If "vgcreate/lvcreate --profile <profile_name>" is used, the profile
name is automatically stored in metadata for making it possible to
load it automatically next time the VG/LV is used.
This is per VG/LV profile loading on demand. The profile itself is saved
in struct volume_group/logical_volume as "profile" field so we can
reference it whenever needed.
When placing the profile in a configuration cascade, this sequence is
used exactly:
CONFIG_STRING -> CONFIG_PROFILE -> CONFIG_FILE/MERGED_FILES
So if the profile is used, it overloads the lvm.conf (and any
existing tag configs). However, if "--config" is used to define
a custom configuration on command line, this overloads even the
profile config!
This patch adds --profile arg to lvm cmds and adds config/profile_dir
configuration setting to select the directory where profiles are stored
By default it's /etc/lvm/profile.
The profiles are added by using new "add_profile" fn and then loaded
using the "load_profile" fn. All profiles are stored in a cmd context
within the new "struct profile_params":
struct profile_params {
const char *dir;
struct profile *global_profile;
struct dm_list profiles_to_load;
struct dm_list profiles;
};
...where "dir" is the directory with profiles, "global_profile" is
the profile that is set globally via the --profile arg (IOW, not
set per VG/LV basis based on metadata record) and the "profiles"
is the list with loaded profiles.
Configuration profiles are selected configuration items that can
be loaded dynamically on demand and overlayed over existing
configuration on demand (either on cmd line by selecting the profile
name to be used globally or retrieved from metadata and used per
VG/LV basis only).
The default directory where profiles are stored is configurable
at compile time with --with-default-profile-subdir.
A helper type that helps with identification of the configuration source
which makes handling the configuration cascade a bit easier, mainly
removing and adding configuration trees to cascade dynamically.
Currently, the possible types are:
CONFIG_UNDEFINED - configuration is not defined yet (not initialized)
CONFIG_FILE - one file configuration
CONFIG_MERGED_FILES - configuration that is a result of merging more files into one
CONFIG_STRING - configuration string typed on cmd line directly
CONFIG_PROFILE - profile configuration (the new type of configuration, patches will follow...)
Also, generalize existing "remove_overridden_config_tree" to work with
configuration type identification in a cascade. Before, it was just
the CONFIG_STRING we used. Now, we need some more to add in a
cascade (like the CONFIG_PROFILE). So, we have:
struct dm_config_tree *remove_config_tree_by_source(struct cmd_context *cmd, config_source_t source);
config_source_t config_get_source_type(struct dm_config_tree *cft);
... for removing the tree by its source type from the cascade and
simply getting the source type.
In the last update not all code paths have set the archived flag.
If we run in test mode or without archiving enabled - set the bit
as well - so test whether archiving has been called succesfully
will be ok. (in relase fix).
Do not keep multiple archives for the executed command.
Reuse the ALLOCATABLE_PV from pv status for
ARCHIVED_VG vg status. Mark VG with the bit with the
first archivation.
...not the other way round as it was before. This way it makes
more sense as BA use is exceptional and it's useless to
contaminate the log with messages about BA not being found
in metadata.
Since reduce the message has informational character and doesn't lead
to exit of the command - reduce the log level to info print as we
use for other similar types.
Reindent next print message.
When vgname has not existed in metadata, it has crashed on double free
in format_instance destroy() - since VG was created, used FID and was
released - which also released FID, so further use was accessing bad
memory.
Fix it for this code path before release_vg() so FID will exists
when _vg_read_file_name() returns NULL.
Revert commit 37ffe6a. If static variables are to be used then we
will put them elsewhere and limit the optimization to reporting
code, rather that have it be used in the general case.
Reinstate the previous sort order for origin_size, so that LVs with
an empty origin_size continue to appear at the start of the list
not the end.
Ref. 9d445f371c
We use mpath filtering (enabled by devices/multipath_component_detection=1
lvm.conf setting) to avoid a situation in which we could end up with
duplicate PVs found. We need to filter out the mpath components and
use only the top-level multipath mapping instead for PV scans.
However, if the there are partitions on multipath components, we need
to filter out these partitions. This patch fixes it so those
partitions found on multipath components are filtered as well.
For example, let's consider following configuration:
The sda and sdb are mpath components, sda1 and sdb1 the partitions
on these components, mpath-test the mpath mapping and mpath-test1
the partition mapping - created automatically by kpartx right
after mpath-test creation. The PV resides on top.
(LVM PV)
|
mpath-test1
|
mpath-test
|
sda1 ---------- sdb1
\ | |/
sda sdb
E.g. for sda1 and sdb1, the code will detect this and it skips
the partition that belongs to the multipath component:
<snippet from the log>
#filters/filter-mpath.c:156 /dev/sda1: Device is a partition, using primary device /dev/sda for mpath component detection
130 #ioctl/libdm-iface.c:1724 dm status (253:2) OF[16384](*1)
131 #filters/filter-mpath.c:196 /dev/sda1: Skipping mpath component device
</snippet from the log>
Othewise, we'd see the same PV label on sda1/sdb1 and mpath-test1
at the same time ending up with "Duplicate PV found...".
The dev_get_primary_dev fn now returns:
0 if the dev is already a primary dev
1 if the dev is a partition, primary dev is returned in "result" (output arg)
-1 on error
This way, we can better differentiate between the error state
and the state in which the dev supplied is not a partition
in the caller (this was same return value before).
Also, if we already have information about the device type,
we can check its major number against the list of known device
types (cmd->dev_types) directly, so we don't need to go through
the sysfs - we only check the major:minor pair which is a bit
more straightforward and faster. If the dev_types does not have
any info about this device type, the code just fallbacks to
the original sysfs interface to get the partition info.
Changes:
- move device type registration out of "type filter" (filter.c)
to a separate and new dev-type.[ch] for common use throughout the code
- the structure for keeping the major numbers detected for available
device types and available partitioning available is stored in
"dev_types" structure now
- move common partitioning detection code to dev-type.[ch] as well
together with other device-related functions bound to dev_types
(see dev-type.h for the interface)
The dev-type interface contains all common functions used to detect
subsystems/device types, signature/superblock recognition code,
type-specific device properties and other common device properties
(bound to dev_types), including partitioning support.
- add dev_types instance to cmd context as cmd->dev_types for common use
- use cmd->dev_types throughout as a central point for providing
information about device types
Giving volume type information about being 'metadata' type of volume
has higher priority then i.e. 'mirror' or 'thin' flag - for those
type we have 'target attr' (7th. field).
The special suspend/resume code in lv_remove for LVM1 snapshots was interpsersed
with a vg_commit call. However, while with LVM1 metadata, vg_commit is
technically a no-op, the activation code relied on the ondisk and incore
metadata being the same, since on LVM1, a "commit" happens in vg_write
already. Since the "ondisk" metadata was previously not available with format1
(and incore was silently used instead, via lvmcache), the problem was masked.
This ties the two preceding changes together, actually using the "ondisk"
version of VG metadata instead of calling into lvmcache when activating
volumes. The cache hooks are still used as a fallback, because we don't have an
uncached scanning API yet.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
This allows us to get the current on-disk version of the metadata whenever we
have the current in-flight version, without a recourse to scanning or lvmcache.
Last commit made dump filter only partially composable.
Add remaining functionality and also support composable wipe,
which is needed, when i.e. vgscan needs to remove cache.
(in release fix)
Add a generic dump operation to filters and make the composite filter call
through to its components. Previously, when global filter was set, the code
would treat the toplevel composite filter's private area as if it belonged a
persistent filter, trying to write nonsense into a non-sensical file.
Also deal with NULL cmd->filter gracefully.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
There is no point in creation of 2chunks snapshot,
since the snapshot is invalidated immeditelly with the first write
as there is no free chunk for COW blocks
(2 chunks are used by the snap header and the 1st. metadata chunk).
Enhance error message about the lowest usable size.
Avoid hitting memory corruption (double free) in code path,
where PV FID has been already destroyed and the released pointer
was left in PV structure and could have been tried to be released
from there 2nd. time with final context destruction.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
If calling _snap_target_present on 2nd and later call and for
a segment with MERGING flag set, we must return the status of
snapshot as well as snapshot-merge target presence, not just
the snapshot one.
This fixes a long standing regression since LVM2 2.02.74 (commit 4efb1d9c,
"Update heuristic used for default and detected data alignment.")
The default PE alignment could be used (via MAX()) even if it was
determined that the device's MD stripe width, or minimal_io_size or
optimal_io_size were not factors of the default PE alignment (either 64K
or the newer default of 1MB, etc). This bug would manifest if the
default PE alignment was larger than the overriding hint that the
device provided (e.g. default of 1MB vs optimal_io_size of 768K).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If the dm_realloc would fail, the already allocate _maps_buffer
memory would have been lost (overwritten with NULL).
Fix this by using temporary line buffer.
Also add a minor cleanup to set end of buffer to '\0',
only when we really know the file size fits the preallocated buffer.
Setting the cmd->default_settings.udev_fallback also requires DM
driver version check. However, this caused useless mapper/control
access with ioctl if not needed actually. For example if we're not
using activation code, we don't need to know the udev_fallback as
there's no node and symlink processing.
For example, this premature mapper/control access caused problems
when using lvm2app even when no activation happens - there are
situations in which we don't need to use mapper/control, but still
need some of the lvm2app functionality. This is also the case for
lvm2-activation systemd generator which just needs to look at the
lvm2 configuration, but it shouldn't touch mapper/control.
For reporting stacked or joined devices properly in cluster,
we need to report their activation state according the lock,
which activated this device tree.
This is getting a bit complex - current code tries simple approach -
For snapshot - return status for origin.
For thin pool - return status of the first known active thin volume.
For the rest of them - try to use dependency list of LVs and skip
known execptions. This should be able to recursively deduce top level
device for given LV.
(in release fix)
Add new lvs segment field 'Monitor' showing 3 states:
"monitored" - LV is monitored by dmeventd.
"not monitored" - LV is currently not being monitored by dmeventd
"" (empty) - LV does not support monitoring, or dmeventd support
is not compiled in.
Support for exclusive activation of snapshots revealed some problems.
When snapshot is created, COW LV is activated first (for clearing) and
then it's transformed into snapshot's COW LV, but it has left the lock
for such LV active in cluster and this lock could not have been removed
from dlm, unless snapshot has been removed within same dlm session.
If the user tried to remove snapshot after rebooting node, the lock was
missing, and COW LV could not have been detached.
Patch modifes the approach in this way:
Always deactivate COW LV for clustered vg after clearing (so it's
activated again via imlicit snapshot activation rule when snapshot is activated).
When snapshot is removed, activate COW LV as independend LV, so the lock
will exist for such LV, but only when the snapshot is active.
Also add test case for testing snapshot removal after cluster reboot.
Merging multiple config files together needs to know newest (highest)
timestamp of merged files. Persistent cache file is being used
only in case, the config file is older then .cache file.
Add verbose message when we will not obtain devices from udev
(i.e. testing is using different udev dir, and the log was
giving misleading info about using udev)
Add proper error message if zalloc from pull would have failed.
Fix typo obolete -> obsolete
Assign fid as the last step before returning VG.
Make the format reader for 'lvm1' and 'pool' equal to 'lvm2' format reader.
It has caused memory corruption to lvmetad as it later calls
destroy_instance() to allocated fid. This patch should fix problems
with crashing test lvmetad-lvm1.sh.
There is no need to strdup a key when inserting into
the hash table as the table allocates memory and copies
the string. This was causing memory to be lost.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Commit 9fd7ac7d03 introduced a way a
method of avoiding reading from mirrors with a device failure. If
a device was found to be dead, the mapping table was checked for
'handle_errors' or 'block_on_error'. These strings were checked for
in the table string via 'strstr', which could also match on strings
like, 'no_handle_errors' or 'no_block_on_error'. No such strings
exist, but we don't want to have problems in the future if they do.
So, we check for ' <string>{'\0'|' '}'.
Revert commit 31c24dd9f2. This commit
was used to force a RAID device-mapper table to be loaded into the
kernel despite the fact that it was identical to the one already
loaded. The effect allowed a RAID array with a transiently failed
device to refresh and reintegrate the failed device. This operation
is better done in the kernel on a 'resume'. Since,
'lvchange --refresh' already performs a suspend/resume cycle, the
above commit is not needed once the kernel change is made. Reverting
the commit removes an unnecessary (at least for now) change to the
device-mapper interface.
New options to 'lvchange' allow users to scrub their RAID LVs.
Synopsis:
lvchange --syncaction {check|repair} vg/raid_lv
RAID scrubbing is the process of reading all the data and parity blocks in
an array and checking to see whether they are coherent. 'lvchange' can
now initaite the two scrubbing operations: "check" and "repair". "check"
will go over the array and recored the number of discrepancies but not
repair them. "repair" will correct the discrepancies as it finds them.
'lvchange --syncaction repair vg/raid_lv' is not to be confused with
'lvconvert --repair vg/raid_lv'. The former initiates a background
synchronization operation on the array, while the latter is designed to
repair/replace failed devices in a mirror or RAID logical volume.
Additional reporting has been added for 'lvs' to support the new
operations. Two new printable fields (which are not printed by
default) have been added: "syncaction" and "mismatches". These
can be accessed using the '-o' option to 'lvs', like:
lvs -o +syncaction,mismatches vg/lv
"syncaction" will print the current synchronization operation that the
RAID volume is performing. It can be one of the following:
- idle: All sync operations complete (doing nothing)
- resync: Initializing an array or recovering after a machine failure
- recover: Replacing a device in the array
- check: Looking for array inconsistencies
- repair: Looking for and repairing inconsistencies
The "mismatches" field with print the number of descrepancies found during
a check or repair operation.
The 'Cpy%Sync' field already available to 'lvs' will print the progress
of any of the above syncactions, including check and repair.
Finally, the lv_attr field has changed to accomadate the scrubbing operations
as well. The role of the 'p'artial character in the lv_attr report field
as expanded. "Partial" is really an indicator for the health of a
logical volume and it makes sense to extend this include other health
indicators as well, specifically:
'm'ismatches: Indicates that there are discrepancies in a RAID
LV. This character is shown after a scrubbing
operation has detected that portions of the RAID
are not coherent.
'r'efresh : Indicates that a device in a RAID array has suffered
a failure and the kernel regards it as failed -
even though LVM can read the device label and
considers the device to be ok. The LV should be
'r'efreshed to notify the kernel that the device is
now available, or the device should be 'r'eplaced
if it is suspected of failing.
I've updated the dm_status_raid structure and dm_get_status_raid()
function to make it handle the new kernel status fields that will
be coming in dm-raid v1.5.0. It is backwards compatible with the
old status line - initializing the new fields to '0'. The new
structure is also more amenable to future changes. It includes a
'reserved' field that is currently initialized to zero but could
be used to hold flags describing new features. It also now uses
pointers for the character strings instead of attempting to allocate
their space along with the structure (causing the size of the
structure to be variable). This allows future fields to be appended.
The new fields that are available are:
- sync_action : shows what the sync thread in the kernel is doing
(idle, frozen, resync, recover, check, repair, or
reshape)
- mismatch_count: shows the number of discrepancies which were
found or repaired by a "check" or "repair"
process, respectively.
...to not pollute the common and format-independent code in the
abstraction layer above.
The format1 pv_write has common code for writing metadata and
PV header by calling the "write_disks" fn and when rewriting
the header itself only (e.g. just for the purpose of changing
the PV UUID) during the pvchange operation, we had to tweak
this functionality for the format1 case and we had to assign
the PV the orphan state temporarily.
This patch removes the need for this format1 tweak and it calls
the write_disks with appropriate flag indicating whether this is
a PV write call or a VG write call, allowing for metatada update
for the latter one.
Also, a side effect of the former tweak was that it effectively
invalidated the cache (even for the non-format1 PVs) as we
assigned it the orphan state temporarily just for the format1
PV write to pass.
Also, that tweak made it difficult to directly detect whether
a PV was part of a VG or not because the state was incorrect.
Also, it's not necessary to backup and restore some PV fields
when doing a PV write:
orig_pe_size = pv_pe_size(pv);
orig_pe_start = pv_pe_start(pv);
orig_pe_count = pv_pe_count(pv);
...
pv_write(pv)
...
pv->pe_size = orig_pe_size;
pv->pe_start = orig_pe_start;
pv->pe_count = orig_pe_count;
...this is already done by the layer below itself (the _format1_pv_write fn).
So let's have this cleaned up so we don't need to be bothered
about any 'format1 special case for pv_write' anymore.
The pv_by_path might be also dangerous to use as it does not
count with any other metadata areas but the ones found on the PV
itself. If metadata was not found on the PV referenced by the path,
it returned no PV though it might have been referenced by metadata
elsewhere (on other PVs...).
If extending a VG and including a PV with 0 MDAs that was already
a part of a VG, the vgextend allowed that PV to be added and we
ended up *with one PV in two VGs*!
The vgextend code used the 'pv_by_path' fn that returned a PV for
a given path. However, when the PV did not have any metadata areas,
the fn just returned a PV without any reference to existing VG.
Consequently, any checks for the existing VG failed.
[0] raw/~ # pvcreate --metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdb
Physical volume "/dev/sdb" successfully created
[0] raw/~ # vgcreate vg1 /dev/sda /dev/sdb
Volume group "vg1" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdc
Physical volume "/dev/sdc" successfully created
[0] raw/~ # vgcreate vg2 /dev/sdc
Volume group "vg2" successfully created
Before this patch (incorrect):
[0] raw/~ # vgextend vg2 /dev/sda
Volume group "vg2" successfully extended
With this patch (correct):
[0] raw/~ # vgextend vg2 /dev/sda
Physical volume '/dev/sda' is already in volume group 'vg1'
Unable to add physical volume '/dev/sda' to volume group 'vg2'.
Before, the find_pv_by_name call always failed if the PV found was orphan.
However, we might use this function even for a PV that is not part of any VG.
This patch adds 'allow_orphan' arg to find_pv_by_name fn that allows that.
_find_pv_by_name -> find_pv_by_name
_find_pv_in_vg -> find_pv_in_vg
_find_pv_in_vg_by_uuid -> find_pv_in_vg_by_uuid
The only callers of the underscored variants were their wrappers
without the underscore. No other part of the code referenced the
underscored variants.
Keep the flag whether given thin pool argument has been given on command
line or it's been 'estimated'
Call of update_pool_params() must not change cmdline given args and
needs to know this info.
Since there is a need to move this update function into /lib, we cannot
use arg_count().
FIXME: we need some generic mechanism here.
Previous commit included changes to WHATSNEW, but the code changes
were missing. Here is the description from the previous commit:
commit bbc6378b73
Author: Jonathan Brassow <jbrassow@redhat.com>
Date: Thu Feb 21 11:31:36 2013 -0600
RAID: Make 'lvchange --refresh' restore transiently failed RAID PVs
A new function (dm_tree_node_force_identical_table_reload) was added to
avoid the suppression of identical table reloads. This allows RAID LVs
to reload the on-disk superblock information that contains which devices
have failed and the bitmaps. If the failed device has returned, this has
the effect of restoring the device and initiating recovery. Without this
patch, the user had to completely deactivate their RAID LV and re-activate
it in order to restore the failed device. Now they simply need to
suspend and resume (which is done by 'lvchange --refresh').
The identical table suppression is only avoided if the LV is not PARTAIL
(i.e. all of it's devices can be seen and read by LVM) and the kernel
status of the array contains failed devices. In other words, the function
will only be called in the case where we may have success in restoring
a failed device in the array.
lvm dumpconfig [--ignoreadvanced] [--ignoreunsupported]
--ignoreadvanced causes the advanced configuration options to be left
out on dumpconfig output
--ignoreunsupported causes the options that are not officially supported
to be lef out on dumpconfig output
This shows up in the output as a short commentary:
$ lvm dumpconfig --type default --withcomments metadata/disk_areas
# Configuration option metadata/disk_areas.
# This configuration option is advanced.
# This configuration option is not officially supported.
disk_areas=""
lvm dumpconfig [--withcomments] [--withversions]
The --withcomments causes the comments to appear on output before each
config node (if they were defined in config_settings.h).
The --withversions causes a one line extra comment to appear on output
before each config node with the version information in which the
configuration setting first appeared.
There's a possibility to interconnect the dm_config_node with an
ID, which in our case is used to reference the configuration
definition ID from config_settings.h. So simply interconnecting
struct dm_config_node with struct cfg_def_item.
This patch also adds support for enhanced config node output besides
existing "output line by line". This patch adds a possibility to
register a callback that gets called *before* the config node is
processed line by line (for example to include any headers on output)
and *after* the config node is processed line by line (to include any
footers on output). Also, it adds the config node reference itself
as the callback arg in addition to have a possibility to extract more
information from the config node itself if needed when processing the
output callback (e.g. the key name, the id, or whether this is a
section or a value etc...).
If the config node from lvm.conf/--config tree is recognized and valid,
it's always coupled with the config node definition ID from
config_settings.h:
struct dm_config_node {
int id;
const char *key;
struct dm_config_node *parent, *sib, *child;
struct dm_config_value *v;
}
For example if the dm_config_node *cn holds "devices/dev" configuration,
then the cn->id holds "devices_dev_CFG" ID from config_settings.h, -1 if
not found in config_settings.h and 0 if matching has not yet been done.
To support the enhanced config node output, a new structure has been
defined in libdevmapper to register it:
struct dm_config_node_out_spec {
dm_config_node_out_fn prefix_fn; /* called before processing config node lines */
dm_config_node_out_fn line_fn; /* called for each config node line */
dm_config_node_out_fn suffix_fn; /* called after processing config node lines */
};
Where dm_config_node_out_fn is:
typedef int (*dm_config_node_out_fn)(const struct dm_config_node *cn, const char *line, void *baton);
(so in comparison to existing callbacks for config node output, it has
an extra dm_config_node *cn arg in addition)
This patch also adds these functions to libdevmapper:
- dm_config_write_node_out
- dm_config_write_one_node_out
...which have exactly the same functionality as their counterparts
without the "out" suffix. The "*_out" functions adds the extra hooks
for enhanced config output (prefix_fn and suffix_fn mentioned above).
One can still use the old interface for config node output, this is
just an enhancement for those who'd like to modify the output more
extensively.
lvm dumpconfig [--type {current|default|missing|new}] [--atversion] [--validate]
This patch adds above-mentioned args to lvm dumpconfig and it maps them
to creation and writing out a configuration tree of a specific type
(see also previous commit):
- current maps to CFG_TYPE_CURRENT
- default maps to CFG_TYPE_DEFAULT
- missing maps to CFG_TYPE_MISSING
- new maps to CFG_TYPE_NEW
If --type is not defined, dumpconfig defaults to "--type current"
which is the original behaviour of dumpconfig before all these changes.
The --validate option just validates current configuration tree
(lvm.conf/--config) and it writes a simple status message:
"LVM configuration valid" or "LVM configuration invalid"
Configuration checking is initiated during config load/processing
(_process_config fn) which is part of the command context
creation/refresh.
This patch also defines 5 types of trees that could be created from
the configuration definition (config_settings.h), the cfg_def_tree_t:
- CFG_DEF_TREE_CURRENT that denotes a tree of all the configuration
nodes that are explicitly defined in lvm.conf/--config
- CFG_DEF_TREE_MISSING that denotes a tree of all missing
configuration nodes for which default valus are used since they're
not explicitly used in lvm.conf/--config
- CFG_DEF_TREE_DEFAULT that denotes a tree of all possible
configuration nodes with default values assigned, no matter what
the actual lvm.conf/--config is
- CFG_DEF_TREE_NEW that denotes a tree of all new configuration nodes
that appeared in given version
- CFG_DEF_TREE_COMPLETE that denotes a tree of the whole configuration
tree that is used in LVM2 (a combination of CFG_DEF_TREE_CURRENT +
CFG_DEF_TREE_MISSING). This is not implemented yet, it will be added
later...
The function that creates the definition tree of given type:
struct dm_config_tree *config_def_create_tree(struct config_def_tree_spec *spec);
Where the "spec" specifies the tree type to be created:
struct config_def_tree_spec {
cfg_def_tree_t type; /* tree type */
uint16_t version; /* tree at this LVM2 version */
int ignoreadvanced; /* do not include advanced configs */
int ignoreunsupported; /* do not include unsupported configs */
};
This tree can be passed to already existing functions that write
the tree on output (like we already do with cmd->cft).
There is a new lvm.conf section called "config" with two new options:
- config/checks which enables/disables checking (enabled by default)
- config/abort_on_errors which enables/disables aborts on any type of
mismatch found in the config (disabled by default)
Add support for configuration checking - type checking and recognition
of registered configuration settings that LVM2 understands and also
check the structure of the configuration. Log error on any mismatch
found.
A hash over all allowed configuration paths is created which helps
with matching the exact configuration (lvm.conf/--config tree) with
the configuration item definition from config_settings.h in an
efficient and one-step way.
Two more helper flags are introduced for each configuration definition
item:
- CFG_USED which marks the item as being used (lvm.conf/--config)
This helps with identifying missing configuration options
(and for which defaults were used) when traversing the tree later.
- CFG_VALID which denotes that the item has already been checked and
it was found valid. This improves performance, so if the check
is called once again on the same tree which was not reloaded, we
can just return the state from previous check (with a possibility
to force the check if needed).
The new function that config.h exports and which is going to be used
to perform the configuration checking is:
int config_def_check(struct cmd_context *cmd, int force, int skip, int suppress_messages)
...which is exported internally via config.h.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
This patch adds basic structures that encapsulate the config_settings.h
content - it takes each item and puts it in structures:
- cfg_def_type_t to define config item type
- cfg_def_value_t to define config item (default) value
- flags used to define the nature and use of the config item:
- CFG_NAME_VARIABLE for items with variable names (e.g. tags)
- CFG_ALLOW_EMPTY for items where empty value is allowed
- CFG_ADVANCED for items which are considered as "advanced settings"
- CFG_UNSUPPORTED for items which are not officially supported
(config options mostly for internal use and testing/debugging)
- cfg_def_item_t to encapsulate the whole definition of the config
definition itself
Each config item is referenced by named ID, e.g. "devices_dir_CFG"
instead of directly typing the path "devices/dir" as it was before.
This patch also adds cfg_def_get_path helper function to get the
config setting path up to the root for given config ID
(it returns the path in form of "abc/def/.../xyz" where the "abc"
is the topmost element).
This file centrally defines all recognized LVM2 configuration
sections and settings. Each item here has its parent, set of
allowed types, default value, brief comment, version the setting
first appeared in and flags that further define the nature of
the configuration setting and its use.
Just to prevent accidental and improper use when reading the layout
from disk because of the already existing disk_areas_xl[0] lists
that are variable in size. We can read pv_header_extension only
after we know exactly where the lists end...
There are new reporting fields for Embedding Area: ea_start and ea_size.
An example of 1m Embedding Area and relevant reporting fields:
raw/~ # pvs -o pv_name,pe_start,ea_start,ea_size
PV 1st PE EA start EA size
/dev/sda 2.00m 1.00m 1.00m
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
New tools with PV header extension support will read the extension
if it exists and it's not an error if it does not exist (so old PVs
will still work seamlessly with new tools).
Old tools without PV header extension support will just ignore any
extension.
As for the Embedding Area location information (its start and size),
there are actually two places where this is stored:
- PV header extension
- VG metadata
The VG metadata contains a copy of what's written in the PV header
extension about the Embedding Area location (NULL value is not copied):
physical_volumes {
pv0 {
id = "AkSSRf-difg-fCCZ-NjAN-qP49-1zzg-S0Fd4T"
device = "/dev/sda" # Hint only
status = ["ALLOCATABLE"]
flags = []
dev_size = 262144 # 128 Megabytes
pe_start = 67584
pe_count = 23 # 92 Megabytes
ea_start = 2048
ea_size = 65536 # 32 Megabytes
}
}
The new metadata fields are "ea_start" and "ea_size".
This is mostly useful when restoring the PV by using existing
metadata backups (e.g. pvcreate --restorefile ...).
New tools does not require these two fields to exist in VG metadata,
they're not compulsory. Therefore, reading old VG metadata which doesn't
contain any Embedding Area information will not end up with any kind
of error but only a debug message that the ea_start and ea_size values
were not found.
Old tools just ignore these extra fields in VG metadata.
PV header extension comes just beyond the existing PV header base:
PV header base (existing):
- uuid
- device size
- null-terminated list of Data Areas
- null-terminater list of MetaData Areas
PV header extension:
- extension version
- flags
- null-terminated list of Embedding Areas
This patch also adds "eas" (Embedding Areas) list to lvmcache (lvmcache_info)
and it also adds support for common operations on the list (just like for
already existing "das" - Data Areas list):
- lvmcache_add_ea
- lvmcache_update_eas
- lvmcache_foreach_ea
- lvmcache_del_eas
Also, add ea_start and ea_size to struct physical_volume for processing
PV Embedding Area location throughout the code (currently only one
Embedding Area is supported, though the definition on disk allows for
more if needed in the future...).
Also, define FMT_EAS format flag to mark that the format actually
supports Embedding Areas (currently format-text only).
Extract restorable PV creation parameters from struct pvcreate_params into
a separate struct pvcreate_restorable_params for clarity and also for better
maintainability when adding any new items later.
Add basic support for converting LV into an external origin volume.
Syntax:
lvconvert --thinpool vg/pool --originname renamed_origin -T origin
It will convert volume 'origin' into a thin volume, which will
use 'renamed_origin' as an external read-only origin.
All read/write into origin will go via 'pool'.
renamed_origin volume is read-only volume, that could be activated
only in read-only mode, and cannot be modified.
Use the field 'origin' for reporting external origin lv name.
For thin volumes with external origin, report the size of
external origin size via:
lvs -o+origin_size
Reorder activation code to look similar for preload tree and
activation tree.
Its also give much better suppport for device stacking,
since now we also support activation of snapshot which might
be then used for other devices.