IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In process_each_{vg,lv,pv} when no vgname args are given,
the first step is to get a list of all vgid/vgname on the
system. This is exactly what lvmetad returns from a
vg_list request. The current code is doing a vg_lookup
on each VG after the vg_list and populating lvmcache with
the info for each VG. These preliminary vg_lookup's are
unnecessary, because they will be done again when the
processing functions call vg_read. This patch eliminates
the initial round of vg_lookup's, which can roughly cut in
half the number of lvmetad requests and save a lot of extra work.
When kernel target reports sync status as 0% it might as well mean
it's 100% in sync, just the target is in some race inconsistent
state - so reread once again and take a more optimistic value ;)
Patch tries to work around:
https://bugzilla.redhat.com/show_bug.cgi?id=1210637
When performing initial allocation (so there is nothing yet to
cling to), use the list of tags in allocation/cling_tag_list to
partition the PVs. We implement this by maintaining a list of
tags that have been "used up" as we proceed and ignoring further
devices that have a tag on the list.
https://bugzilla.redhat.com/983600
Add A_PARTITION_BY_TAGS set when allocated areas should not share tags
with each other and allow _match_pv_tags to accept an alternative list
of tags. (Not used yet.)
Do not keep dangling LVs if they're removed from the vg->lvs list and
move them to vg->removed_lvs instead (this is actually similar to already
existing vg->removed_pvs list, just it's for LVs now).
Once we have this vg->removed_lvs list indexed so it's possible to
do lookups for LVs quickly, we can remove the LV_REMOVED flag as
that one won't be needed anymore - instead of checking the flag,
we can directly check the vg->removed_lvs list if the LV is present
there or not and to say if the LV is removed or not then. For now,
we don't have this index, but it may be implemented in the future.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
Since we take a lock inside vg_lock_newname() and we do a full
detection of presence of vgname inside all scanned labels,
there is no point to do this for second time to be sure
there is no such vg.
The only side-effect of such call would be a full validation of
some already exising VG metadata - but that's not the task for
vgcreate when create a new VG.
This call noticable reduces number of scans during 'vgcreate'.
When reading VG mda from multiple PVs - do all the validation only
when mda is seen for the first time and when mda checksum and length
is same just return already existing VG pointer.
(i.e. using 300PVs for a VG would lead to create and destroy 300 config trees....)
Previous versions of lvm will not obey the restrictions
imposed by the new system_id, and would allow such a VG
to be written. So, a VG with a new system_id is further
changed to force previous lvm versions to treat it as
read-only. This is done by removing the WRITE flag from
the metadata status line of these VGs, and putting a new
WRITE_LOCKED flag in the flags line of the metadata.
Versions of lvm that recognize WRITE_LOCKED, also obey the
new system_id. For these lvm versions, WRITE_LOCKED is
identical to WRITE, and the rules associated with matching
system_id's are imposed.
A new VG lock_type field is also added that causes the same
WRITE/WRITE_LOCKED transformation when set. A previous
version of lvm will also see a VG with lock_type as read-only.
Versions of lvm that recognize WRITE_LOCKED, must also obey
the lock_type setting. Until the lock_type feature is added,
lvm will fail to read any VG with lock_type set and report an
error about an unsupported lock_type. Once the lock_type
feature is added, lvm will allow VGs with lock_type to be
used according to the rules imposed by the lock_type.
When both system_id and lock_type settings are removed, a VG
is written with the old WRITE status flag, and without the
new WRITE_LOCKED flag. This allows old versions of lvm to
use the VG as before.
The seg_monitor did not display monitored status for thick snapshots
and mirrors (with mirror log *not* mirrored). The seg monitor did work
correctly even before for other segtypes - thins and raids.
Before (mirrors and snapshots, only mirrors with mirrored log properly displayed monitoring status):
[0] f21/~ # lvs -a -o lv_name,lv_layout,lv_role,seg_monitor vg
LV Layout Role Monitor
mirror mirror public
[mirror_mimage_0] linear private,mirror,image
[mirror_mimage_1] linear private,mirror,image
[mirror_mlog] linear private,mirror,log
mirror_with_mirror_log mirror public monitored
[mirror_with_mirror_log_mimage_0] linear private,mirror,image
[mirror_with_mirror_log_mimage_1] linear private,mirror,image
[mirror_with_mirror_log_mlog] mirror private,mirror,log monitored
[mirror_with_mirror_log_mlog_mimage_0] linear private,mirror,image
[mirror_with_mirror_log_mlog_mimage_1] linear private,mirror,image
thick_origin linear public,origin,thickorigin
thick_snapshot linear public,snapshot,thicksnapshot
With this patch applied (monitoring status displayed for all mirrors and snapshots):
[0] f21/~ # lvs -a -o lv_name,lv_layout,lv_role,seg_monitor vg
LV Layout Role Monitor
mirror mirror public monitored
[mirror_mimage_0] linear private,mirror,image
[mirror_mimage_1] linear private,mirror,image
[mirror_mlog] linear private,mirror,log
mirror_with_mirror_log mirror public monitored
[mirror_with_mirror_log_mimage_0] linear private,mirror,image
[mirror_with_mirror_log_mimage_1] linear private,mirror,image
[mirror_with_mirror_log_mlog] mirror private,mirror,log monitored
[mirror_with_mirror_log_mlog_mimage_0] linear private,mirror,image
[mirror_with_mirror_log_mlog_mimage_1] linear private,mirror,image
thick_origin linear public,origin,thickorigin
thick_snapshot linear public,snapshot,thicksnapshot monitored
Set ACCESS_NEEDS_SYSTEM_ID VG status flag whenever there is
a non-lvm1 system_id set. Prevents concurrent access from
older LVM2 versions.
Not set on VGs that bear a system_id only due to conversion
from lvm1 metadata.
format_text processes both lvm2 on-disk metadata and metadata read
from other sources such as backup files. Add original_fmt field
to retain the format type of the original metadata.
Before this patch, /etc/lvm/archives would contain backups of
lvm1 metadata with format = "lvm2" unless the source was lvm1 on-disk
metadata.
The vg->lvm1_systemd_id needs to be initialized as all the code around
counts with that. Just like we initialize lvm1_system_id in vg_create
(no matter if it's actually LVM1 or LVM2 format), this patch adds this
init in alloc_vg as well so the rest of the code does not segfaul
when trying to access vg->lvm1_system_id.
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
The only realistic way for a host to have active LVs in a
foreign VG is if the host's system_id (or system_id_source)
is changed while LVs are active.
In this case, the active LVs produce an warning, and access
to the VG is implicitly allowed (without requiring --foreign.)
This allows the active LVs to be deactivated.
In this case, rescanning PVs for the VG offers no benefit.
It is not possible that rescanning would reveal an LV that
is active but wasn't previously in the VG metadata.
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
A foreign VG should be silently ignored by a reporting/display
command like 'vgs'. If the reporting/display command specifies
a foreign VG by name on the command line, it should produce an
error message.
Scanning commands pvscan/vgscan/lvscan are always allowed to
read and update caches from all PVs, including those that belong
to foreign VGs.
Other non-report/display/scan commands always ignore a foreign
VG, or report an error if they attempt to use a foreign VG.
vgimport should always invalidate the lvmetad cache because
lvmetad likely holds a pre-vgexported copy of the VG.
(This is unrelated to using foreign VGs; the pre-vgexported
VG may have had no system_id at all.)
When checking whether the system ID permits access to a VG, check for
each permitted situation first, and only then issue the appropriate
error message. Always issue a message for now. (We'll try to
suppress some of those later when the VG concerned wasn't explicitly
requested.)
Add more messages to try to ensure every return code is checked and
every error path (and only an error path) contains a log_error().
Add self-correction to vgchange -c to deal with situations where
the cluster state and system ID state are out-of-sync (e.g. if
old tools were used).
Move the lvm1 sys ID into vg->lvm1_system_id and reenable the #if 0
LVM1 code. Still display the new-style system ID in the same
reporting field, though, as only one can be set.
Add a format feature flag FMT_SYSTEM_ON_PVS for LVM1 and disallow
access to LVM1 VGs if a new-style system ID has been set.
Treat the new vg->system_id as const.
Dop unused value assignments.
Unknown is detected via other combination
(!linear && !striped).
Also change the log_error() message into a warning,
since the function is not really returning error,
but still keep the INTERNAL_ERROR.
Ret value is always set later.
The dev ext source must be reset for the dev_cache_get call
(which evaluates filters), not lvmcache_label_scan - so fix
original commit 727c7ff85d.
Also, add comments in _pvcreate_check fn explaining why
refresh filter and rescan is needed and exactly in which
situations.
Before, we refreshed filters and we did full rescan of devices if
we passed through wiping (wipe_known_signatures fn call). However,
this fn returns success even if no signatures were found and so
nothing was wiped. In this case, it's not necessary to do the
filter refresh/rescan of devices as nothing changed clearly.
This patch exports number of wiped signatures from all the
wiping functions below. The caller (_pvcreate_check) then checks
whether any wiping was done at all and if not, no refresh/rescan
is done, saving some time and resources.
pvcreate code path executes signature wiping if there are any signatures
found on device to prepare the device for PV. When the signature is wiped,
the WATCH udev rule triggers the event which then updates udev database
with fresh info, clearing the old record about previous signature.
However, when we're using udev db as dev-ext source, we'd need to wait
for this WATCH-triggered event. But we can't synchronize against such
events (at least not at this moment). Without this sync, if the code
continues, the device could still be marked as containing the old
signature if reading udev db. This may end up even with the device
to be still filtered, though the signature is already wiped.
This problem is then exposed as (an example with md components):
$ mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sda /dev/sdb --run
$ mdadm -S /dev/md0
$ pvcreate -y /dev/sda
Wiping linux_raid_member signature on /dev/sda.
/dev/sda: Couldn't find device. Check your filters?
$ echo $?
5
So we need to temporarily switch off "udev" dev-ext source here
in this part of pvcreate code until we find a way how to sync
with WATCH events.
(This problem does not occur with signature wiping which we do
on newly created LVs since we already handle this properly with
our udev flags - the LV_NOSCAN/LV_TEMPORARY flag. But we can't use
this technique for non-dm devices to keep WATCH rule under control.)
for_each_sub_lv() now scans in depth also pools, however for
rename we actually do want to skip pools.
So add a new for_each_sub_lv_except_pools() to be used by rename,
every other user of for_each_sub_lv() scans every sub LV with pools
included.
This is i.e. necessary for properly working preload of pools
that are using raid arrays.
This is a regression from v115 where some of the fields/properties
were converted to using the common "struct lvinfo" and
"struct lv_seg_status" so we don't need to issue info and status
ioctl several times per one reported line. Not all fields are
converted yet, but one that *is* converted is the lv_attr field
with the lv_attr_dup counterpart used in lvm_lv_get_attr lvm2app fn.
These changes were introduced with e34b004422
and later - this patch introduced the "info_ok" field in the
lv_with_info_and_seg_status structure which encapsulates the lvinfo
and lv_seg_status struct.
For the lv_attr_dup, the lv_attr_dup code missed the
assignment for the "info_ok" flag which saves the result of the
lv_info_with_seg_status call. Hence such info was marked
as unusable - unknown and it was returned as such via lvm_lv_get_attr
lvm2app fn.
When raid leg is extracted, now the preload code handles this state
correctly and put proper new table entry into dm tree,
so the activation of extracted leg and removed metadata works
after commit.
Rename original lv_error_when_full field to lv_when_full and also
convert it from binary field to string field displaying three
possible values: "error", "queueu" or "" (blank for undefined).
$ lvs vg/pool vg/pool1 vg/linear_lv -o+lv_when_full
LV VG Attr LSize Data% Meta% WhenFull
linear_lv vg -wi-a----- 4.00m
pool vg twi-aotz-- 4.00m 0.00 0.98 queue
pool1 vg twi-a-tz-- 4.00m 0.00 0.88 error
For -S|--select these synonyms are recognized:
"error" -> "error when full", "error if no space"
"queue" -> "queue when full", "queue if no space"
"" -> "undefined"
Recently the single 'status' code has been used for number of cache
features.
Extend the API a little bit to allow usage also for lv_attr_dup.
As the function itself is used in lvm2api - add a new function:
lv_attr_dup_with_info_and_seg_status() that is able to use
grabbed info & status information.
report_init() is now using directly passed lvdm struct pointer
which holds the infomation whether lv_info() was correctly obtained or
there was some error when trying to read it.
Move 'healt' attribute to status.
TODO convert raid function to use the already known status.
The previous patch felt short WRT disabling allocation on PVs holding other
legs of the RAID LV persistently; this patch introduces an internal,
transient PV flag PV_ALLOCATION_PROHIBITED to address this very problem.
General problem description for completeness:
An 'lvconvert --repair $RAID_LV" to replace a failed leg of a multi-segment
RAID10/4/5/6 logical volume can lead to allocation of (parts of) the replacement
image component pair on the physical volume of another image component
(e.g. image 0 allocated on the same PV as image 1 silently impeding resilience).
Patch fixes this severe resilince issue by prohibiting allocation on PVs
already holding other legs of the RAID set. It allows to allocate free space
on any operational PV already holding parts of the image component pair.
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
An 'lvconvert --repair $RAID_LV" to replace a failed leg of a multi-segment
RAID10/4/5/6 logical volume can lead to allocation of (parts of) the replacement
image component pair on the physical volume of another image component
(e.g. image 0 allocated on the same PV as image 1 silently impeding resilience).
Patch fixes this severe resilince issue by prohibiting allocation on PVs
already holding other legs of the RAID set. It allows to allocate free space
on any operational PV already holding parts of the image component pair.
Better than previous patch which changed log_warn to log_error -
we can have multiple MDAs and if one of them fails to be written,
we can still continue with other MDAs if we're in a mode where
we can handle missing PVs - so keep the log_warn for single
failed MDA write as it was before.
However, add log_error with "Failed to write VG <vg_name>." in
case we're not handling missing PVs or no MDA was written at all
during VG write process. This also prevents an internal error in
which the vg_write fails and we're not issuing any other log_error
in vg_write caller or above, so we end up with:
"Internal error: Failed command did not use log_error".
$ lvcreate -l1 -m1 --type mirror vg
Logical volume "lvol0" created.
$ lvconvert --type raid1 vg/lvol0
Before:
$ lvs -a vg
LV VG Active Attr LSize Cpy%Sync Layout Role
lvol0 vg active rwi-a-r--- 4.00m 100.00 raid,raid1 public
[lvol0_mimage_0_rimage_0] vg active iwi-aor--- 4.00m linear private,raid,image
[lvol0_mimage_1_rimage_1] vg active iwi-aor--- 4.00m linear private,raid,image
[lvol0_rmeta_0] vg active ewi-aor--- 4.00m linear private,raid,metadata
[lvol0_rmeta_1] vg active ewi-aor--- 4.00m linear private,raid,metadata
Incorrect name: lvol0_mimage_0_rimage_0
With this patch applied:
$ lvs -a vg
LV VG Active Attr LSize Cpy%Sync Layout Role
lvol0 vg active rwi-a-r--- 4.00m 100.00 raid,raid1 public
[lvol0_rimage_0] vg active iwi-aor--- 4.00m linear private,raid,image
[lvol0_rimage_1] vg active iwi-aor--- 4.00m linear private,raid,image
[lvol0_rmeta_0] vg active ewi-aor--- 4.00m linear private,raid,metadata
[lvol0_rmeta_1] vg active ewi-aor--- 4.00m linear private,raid,metadata
Proper name: lvol0_rimage_0
When mirror has missing PVs and there are mirror images on those missing
PVs, we delete the images and during this delete operation, we also
reactivate the LV. But if we're trying to reactivate the LV in cluster
which is not active and at the same time cmirrord is not running (which
is OK since we may have created the mirror LV as inactive), we end up
with:
"Error locking on node <node_name>: Shared cluster mirrors are not available."
That is because we're trying to activate the mirror LV without cmirrord.
However, there's no need to do this reactivation if the mirror LV (and
hence it's sub LVs) were not activated before.
This issue caused failure in mirror-vgreduce-removemissing.sh test
recently with this sequence (excerpt from the test script):
prepare_lvs_
lvcreate -an -Zn -l2 --type mirror -m1 --nosync -n $lv1 $vg "$dev1" $dev2" "$dev3":$BLOCKS
mimages_are_on_ $lv1 "$dev1" "$dev2"
mirrorlog_is_on_ $lv1 "$dev3"
aux disable_dev "$dev2"
vgreduce --removemissing --force $vg
The important thing about that test is that we're not running cmirrord,
we're activating the mirror with "-an" so it's inactive and then
vgreduce --removemissing tries to reactivate the mirror images
as part of the _delete_lv function call inside and since cmirrord
is not running, we end up with the "Shared cluster mirrors are not
available." error.
When creating cluster mirrors while they're not supposed to be activated
immediately after creation, we don't need to check for cmirrord availability.
We can just create these mirrors and let the check to be done on activation
later on. This is addendum for commit cba6186325.
When creating/activating clustered mirrors, we should have cmirrord
available and running. If it's not, we ended up with rather cryptic
errors like:
$ lvcreate -l1 -m1 --type mirror vg
Error locking on node 1: device-mapper: reload ioctl on failed: Invalid argument
Failed to activate new LV.
$ vgchange -ay vg
Error locking on node node 1: device-mapper: reload ioctl on failed: Invalid argument
This patch adds check for cmirror availability and it errors out
properly, also giving a more precise error messge so users are able
to identify the source of the problem easily:
$ lvcreate -l1 -m1 --type mirror vg
Shared cluster mirrors are not available.
$ vgchange -ay vg
Error locking on node 1: Shared cluster mirrors are not available.
Exclusively activated cluster mirror LVs are OK even without cmirrord:
$ vgchange -aey vg
1 logical volume(s) in volume group "vg" now active
When we split leg from raid - we take a proper new lock for a new LV.
However for now activation checks only 'existince' of device UUID,
but it's not validating device has a proper name.
As a quick fix call suspend()/resume() to rename after split mirror.
When chunk size needs to be estimated, the code missed to round
to proper 64kb boundaries (or power of 2 for older thin pool driver).
So for some data and metadata size (i.e. 10GB and 4MB) it resulted
in incorrect chunk size (not being a multiple of 64KB)
Fix it by adding proper rounding and also use 1 routine for 2 places
where the same calculation is made.
Fix also incorrect printed warning that has used 'ffs()'
(which returns first 'least significant' bit in word)
and it was not really giving any useful size info and replace it
with properly estimated chunk size.
Use log_warn when we are effectively not creating an error -
we 'allowed' inconsistent read for a reason - so it's just warning
level we process inconsistent VG - it's upto caller later to decide
error level of command return value and in case of error it needs
to use log_error then.
Failed recovery provides different (NULL) VG then FAILED_INCONSISTENT.
Mark it with different failure bit - since FAILED_INCONSISTENT is
supposed to contain something 'usable' (thought inconsistent).
Since we support device stack of pools over pool
(thin-pool with cache data volume) the existing code
is no longer able to detect orphan _pmspare.
So instead do a _pmspare check after volume removal,
and remove spare afterwards.
This would be in case the pool segment was not found.
LVM2.2.02.112/lib/metadata/pool_manip.c:238:36: warning: Access to field 'segtype' results in a dereference of a null pointer (loaded from variable 'pool_seg')
LVM2.2.02.112/lib/metadata/cache_manip.c:73: overflow_before_widen: Potentially overflowing expression "*pool_metadata_extents *vg->extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
LVM2.2.02.112/lib/activate/dev_manager.c:217: overflow_before_widen: Potentially overflowing expression "seg_status->seg->len * extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
LVM2.2.02.112/lib/activate/dev_manager.c:217: overflow_before_widen: Potentially overflowing expression "seg_status->seg->le * extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
Do not use 'any' policy name as a value in config tree - so we stick
with 'policy_settings' and extra 'policy_name' for libdm params.
Update lvm2 API as well.
Example of supported metadata:
policy = "mq"
policy_settings {
migration_threshold = 2048
sequential_threshold = 512
random_threshold = 4
read_promote_adjustment = 10
}
More efficient spare volume creation. Save 1 extra commit
and properly activate this volume according to our cluster
activation rules (using lv_active_change() for this).
Since we 'layer' for cache origin which and we support dropping
cache layer - we need to restore origin name in case
the origin LV is more complex target - i.e. raid.
Drop _corig from name
Cleanup and rename parent -> parent_lv.
Revert part of commit 51a29e6056,
it's probably bad idea to continue with any recovery, when
vg_write() or vg_commit() fail - so it's better to leave it as it is.
Let's use this function for more activations in the code.
'needs_exlusive' will enforce exlusive type for any given LV.
We may want to activate LV in exlusive mode, even when we know
the LV (as is) supports non-exlusive activation as well.
lvcreate -ay -> exclusive & local
lvcreate -aay -> exclusive & local
lvcreate -aly -> exclusive & local
lvcreate -aey -> exclusive (might be on any node).
Call check_new_thin_pool() to detect in-use thin-pool.
Save extra reactivation of thin-pool when thin pool is not active.
(it's now a bit more expensive to invoke thin_check for new pools.)
For new pools:
We now active locally exclusively thin-pool as 'public' LV.
Validate transaction_id is till 0.
Deactive.
Prepare create message for thin-pool and exclusively active pool.
Active new thin LV.
And deactivate thin pool if it used to be inactive.
Replace lv_cache_block_info() and lv_cache_policy_info()
with lv_cache_status() which directly returns
dm_status_cache structure together with some calculated
values.
After use mem pool stored inside lv_status_cache structure
needs to be destroyed.
Add API call to calculate extents from percentage value.
Size is based in DM_PERCENT_1 units.
(Supporting decimal point number).
This commit is preparing functionality for more global
usage of % with i.e. --size option.
Unlike with thin-pool - with cache we support all args also
directly when create cache volume.
So the result of 'separate' cache-pool creation and setting its
options should give same result as specifying those args
during cache creation.
Cache-pool values are used as defaults if the params are
not specified with cache creation.
Move code for creation of thin volume into a single place
out of lv_extend(). This allows to drop extra pool arg
for alloc_lv_segment() && lv_extend() and makes code
more easier to read and follow.
When we create volumes with chunk size bigger then extent size
we try to round up to some nearest chunk boundary.
Until now we did this for thins - use same logic for
cache volumes.
Refactor lvcreate code.
Prefer to use arg_outside_list_is_set() so we get automatic 'white-list'
validation of supported options with different segment types.
Drop used lp->cache, lp->cache and use seg_is_cache(), seg_is_thin()
Draw clear border where is the last moment we could change create
segment type.
When segment type is given with --type - do not allow it to be changed
later.
Put together tests related to individual segment types.
Finish cache conversion at proper part of lv_manip code after
the vg_metadata are written - so we could correcly clean-up created
stripe LV for cache volume.
Move test for size of new LV names in front before
any creation of LV.
Properly check striped segtype kernel presence,
since passed 'segtype' is already tested.
Keep deactivation error path local to wiping part of the function.
Create metadata with temporary flag (it's activated, zeroed
and deactivated).
Introduce new option to specify pool data size.
This will be user to create i.e. cache & cachepool at once.
And possible for thin external origin snapshot.
This is only very basic patch to enable options, the
real working code will come later.
We want to print smarter warning message only when
the zeroing was not provided on the first zeroable segment
of newly created LV.
Put warning within _should_wipe_lv function to avoid reevaluation
of same conditions twice.
Hide creation of temporary LVs and print them only in verbose mode.
e.g. hides confusing message about creation of _pmspare
device during creation of pool.
Ask for lock the proper LV.
Use the top-most LV to query for locally exclusive lock.
The rest of operations are then using 'lv_info()'
TODO:
Check all devices are reloaded from proper level.
In general any query on lv_is_active is supposed to be running
ona lv_lock_holder() volume.
Instead of segtype->ops->name() introduce lvseg_name().
This also allows us to leave name() function 'empty' for default
return of segtype->name.
TODO: add functions for rest of ops->
When we are given an existing LV name - it needs to be allowed
to pass in even restricted name as the LV could have existed
long before we introduced some new restriction on prefix/suffix.i
Fix the regression on name limits and drop restriction to be applied
on any existing LVs - only the new created LV names have to be
complient with current name restrictions.
FIXME: we are currently using restricted names incorrectly in few
other places - device_is_usable() skips restricted names,
and udev flags are also incorrectly set for restricted names
so these LVs are not getting links properly.
find_pv_in_vg fn iterates over the list of PVs covered by the VG and
each PV's pvl->pv->dev is compared with device acquired from device
cache. However, in case pvl->pv->dev is NULL as well as device cache
returns NULL (e.g. when device is filtered), we'll get incorrect match
and the code calling find_pv_in_vg uses incorrect PV (as it thinks
it's the exact PV with the pv_name). The INTERNAL_ERROR covers this
situation and errors out immediately.
The warnings arg was used to enable logging of warnings
when reading a PV. This arg is turned into a set of flags
with the WARN_PV_READ flag matching the existing behavior.
A new flag WARN_INCONSISTENT is added that will cause
vg_read_internal() to log the "VG is not consistent"
warning so the various callers do not need to log
this warning themselves.
A new vg_read flag READ_WARN_INCONSISTENT is used from
reporting to enable the WARN_INCONSISTENT flag in
vg_read_internal.
[Committed by agk with cosmetic changes and tweaks.]
Process PVs by iterating through VGs, then iterating through
devices if the command needs to process non-PV devices.
The process_single function can always use the VG and PV args.
[Committed by agk with cosmetic changes and tweaks.]
Introduce pool function for validation of chunk size.
It's good idea to be able to reject invalid chunk size
when entered on command line before we open VG.
Move code to better locations.
Improve test and remove invalid ones
(i.e. no reason to require cache size to be >= then origin).
Correctly comment where the code is doing actual conversion
of other existing volume - we do already a similar thing with
external origins.
Lots of new command line options and combinations is now supported.
Hopefully older syntax still works as well.
lvcreate --cache --cachepool vg/pool -l1
lvcreate --type cache --cachepool vg/pool -l1
lvcreate --type cache-pool vg/pool -l1
lvcreate --type cache-pool --name pool vg -l1
... and many many more ...
Since _pmspare is internal volume move it to
lv_remove_single - so it's automatically removed with
last remove thin-pool.
lv_remove_with_dependencies() is not always used for pool removal.
The cache mode of a new cache pool is always explicitly
included in the vg metadata. If a cache mode is not
specified on the command line, the cache mode is taken
from lvm.conf allocation/cache_pool_cachemode, which
defaults to "writethrough".
The cache mode can be displayed with lvs -o+cachemode.
There are actually three filter chains if lvmetad is used:
- cmd->lvmetad_filter used when when scanning devices for lvmetad
- cmd->filter used when processing lvmetad responses
- cmd->full_fiilter (which is just cmd->lvmetad_filter + cmd->filter chained together) used
for remaining situations
This patch adds the third one - "cmd->full_filter" - currently this is
used if device processing does not fall into any of the groups before,
for example, devices which does not have the PV label yet and we're just
creating a new one or we're processing the devices where the list of the
devices (PVs) is not returned by lvmetad initially.
Currently, the cmd->full_filter is used exactly in these functions:
- lvmcache_label_scan
- _pvcreate_check
- pvcreate_vol
- lvmdiskscan
- pvscan
- _process_each_label
If lvmetad is used, then simply cmd->full_filter == cmd->filter because
cmd->lvmetad_filter is NULL in this case.
We are not using already defined segement type names where we could.
There is a lot of other places in device-mapper and LVM2 we have those
hardcoded so we should better finally have a common interface in
libdevmapper to avoid this.
Use of lv_info() internally in lv_check_not_in_use(),
so it always could use with_open_count properly.
Skip sysfs() testing in open_count == 0 case.
Accept just 'lv' pointer like other functions.
The function has 'built-in' lv_is_active_locally check,
which however is not what we need to check in many place.
For now at least remotely active snapshot merge is
detected and for this case merge on next activation is scheduled.
We use adjusted_mirror_region_size() in two different contexts.
Either on command line -
here we do want to inform user about reduction of size.
Or in pvmove activation context -
here we should only use 'verbose' info.
When requesting to reload an LV imrove this API to
automatically reload its lock holding LV as in cluster
only top-level LVs are addressable with lock.
When vg_ondisk is NULL we do not need to search
through the whole VG to find out the same LV.
NOTE: as of now - VG locking is not enabled as some code parts
are breaking memory locking rules (lvm2app).
Once we enforce VG locking for read-only commands the effect
will be much better for larger VGs.
If we want to support conversion of VG to clustered type,
we currently need to relock active LV to get proper DLM lock.
So add extra loop after change of VG clustered attribute
to exlusively activate all active top level LVs.
When doing change -cy -> -cn we should validate LVs are not
active on other cluster nodes - we could be sure about this only
when with local exclusive activation - for other types
we require user to deactivate volumes first.
As a workaround for this limitation there is always
locking_type = 0 which amongs other skip the detection
of active LVs.
FIXME:
clvmd should handle looks for cluster locking type all the time.
While we could probably reacquire some type of lock when
going from non-clustered to clustered vg, we don't have any
single road back to drop the lock and keep LV active.
For now keep it safe and prohibit conversion when LV
is active in the VG.
Try to enforce consistent macro usage along these lines:
lv_is_mirror - mirror that uses the original dm-raid1 implementation
(segment type "mirror")
lv_is_mirror_type - also includes internal mirror image and log LVs
lv_is_raid - raid volume that uses the new dm-raid implementation
(segment type "raid")
lv_is_raid_type - also includes internal raid image / log / metadata LVs
lv_is_mirrored - LV is mirrored using either kernel implementation
(excludes non-mirror modes like raid5 etc.)
lv_is_pvmove - internal pvmove volume
Use lv_is_* macros throughout the code base, introducing
lv_is_pvmove, lv_is_locked, lv_is_converting and lv_is_merging.
lv_is_mirror_type no longer includes pvmove.
Use lv_update_and_reload() and lv_update_and_reload_origin()
to handle write/suspend/commit/resume sequence.
In few places this properly handle vg_revert() after suspend failure,
and also ensures there is metadata backup after successful vg_commit().
Fix rename operation for snapshot (cow) LV.
Only the snapshot's origin has the lock and by mistake suspend
and resume has been called for the snapshot LV.
This further made volumes unusable in cluster.
So instead of suspend and resuming list of LVs,
we need to just suspend and resume origin.
As the sequence write/suspend/commit/resume
is widely used in lvm2 code base - move it to
new lv_update_and_reload function.
Fixing problem, when user sets volume_list and excludes thin pools
from activation. In this case pool return 'success' for skipped activation.
We need to really check the volume it is actually active to properly
to remove queued pool messages. Otherwise the lvm2 and kernel
metadata started to go async since lvm2 believed, messages were submitted.
Add also better check for threshold when create a new thin volume.
In this case we require local activation of thin pool so we are able
to check pool fullness.
This patch makes the keyword combinations found in "lv_layout" and
"lv_role" much more understandable - there were some ambiguities
for some of the combinations which lead to confusion before.
Now, the scheme used is:
LAYOUTS ("how the LV is laid out"):
===================================
[linear] (all segments have number of stripes = 1)
[striped] (all segments have number of stripes > 1)
[linear,striped] (mixed linear and striped)
raid (raid layout always reported together with raid level, raid layout == image + metadata LVs underneath that make up raid LV)
[raid,raid1]
[raid,raid10]
[raid,raid4]
[raid,raid5] (exact sublayout not specified during creation - default one used - raid5_ls)
[raid,raid5,raid5_ls]
[raid,raid5,raid6_rs]
[raid,raid5,raid5_la]
[raid,raid5,raid5_ra]
[raid6,raid] (exact sublayout not specified during creation - default one used - raid6_zr)
[raid,raid6,raid6_zr]
[raid,raid6,raid6_nc]
[raid,raid6,raid6_ns]
[mirror] (mirror layout == log + image LVs underneath that make up mirror LV)
thin (thin layout always reported together with sublayout)
[thin,sparse] (thin layout == allocated out of thin pool)
[thin,pool] (thin pool layout == data + metadata volumes underneath that make up thin pool LV, not supposed to be used for direct use!!!)
[cache] (cache layout == allocated out of cache pool in conjunction with cache origin)
[cache,pool] (cache pool layout == data + metadata volumes underneath that make up cache pool LV, not supposed to be used for direct use!!!)
[virtual] (virtual layout == not hitting disk underneath, currently this layout denotes only 'zero' device used for origin,thickorigin role)
[unknown] (either error state or missing recognition for such layout)
ROLES ("what's the purpose or use of the LV - what is its role"):
=================================================================
- each LV has either of these two roles at least: [public] (public LV that users may use freely to write their data to)
[public] (public LV that users may use freely to write their data to)
[private] (private LV that LVM maintains; not supposed to be directly used by user to write his data to)
- and then some special-purpose roles in addition to that:
[origin,thickorigin] (origin for thick-style snapshot; "thick" as opposed to "thin")
[origin,multithickorigin] (there are more than 2 thick-style snapshots for this origin)
[origin,thinorigin] (origin for thin snapshot)
[origin,multithinorigin] (there are more than 2 thin snapshots for this origin)
[origin,extorigin] (external origin for thin snapshot)
[origin,multiextoriginl (there are more than 2 thin snapshots using this external origin)
[origin,cacheorigin] (cache origin)
[snapshot,thicksnapshot] (thick-style snapshot; "thick" as opposed to "thin")
[snapshot,thinsnapshot] (thin-style snapshot)
[raid,metadata] (raid metadata LV)
[raid,image] (raid image LV)
[mirror,image] (mirror image LV)
[mirror,log] (mirror log LV)
[pvmove] (pvmove LV)
[thin,pool,data] (thin pool data LV)
[thin,pool,metadata] (thin pool metadata LV)
[cache,pool,data] (cache pool data LV)
[cache,pool,metadata] (cache pool metadata LV)
[pool,spare] (pool spare LV - common role of LV that makes it used for both thin and cache repairs)
The 'lv_type' field name was a bit misleading. Better one is 'lv_role'
since this fields describes what's the actual use of the LV currently -
its 'role'.
Sort out the lvresize calculation code to handle size changes
specified as physical extents as well as logical extents
and to process mirror resizing and raid extensions correctly.
The 'approx alloc' option was masking the underlying problem.
The lv_type_name function is remnant from old code that reported
only single string for the LV type. LV types are now reported
in a more extended way as keyword list that describe the type
precisely (using lv_layout_and_type fn).
The lv_type_name was used in some error messages to display the
type of the LV so just reinstate the old messages back referencing
the type directly with a string - this is enough for error messages.
They don't need to display the LV type as precisely as it's used
on lvs output (which is optimized for selection anyway).
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg -wI-a----- linear linear
[pvmove0] vg p-C-aom--- mirror mirror,pvmove
(added "mirror" for pvmove LV)
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg ori------- linear external,multiple,origin,thin
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
lvol2 vg Vwi-a-tz-- thin snapshot,thin
lvol3 vg Vwi-a-tz-- thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg Twi-ao---- linear data,pool,thin
[pool_tmeta] vg ewi-ao---- linear metadata,pool,thin
(added "multiple" for external origin used for more than one
thin snapshot - lvol0 in the example above)
Thin snapshots having external origins missed the "snapshot" keyword for
lv_type field. Also, thin external origins which are thin devices (from
another pool) were not recognized properly.
For example, external origin itself can be either non-thin volume (lvol0
below) or it can be a thin volume from another pool (lvol3 below):
Before this patch:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin thin
lvol3 vg ori---tz-- pool unknown external,origin,thin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
- lvol2 as well as lvol4 have missing "snapshot" in type field
- lvol3 has unrecognized layout (should be "thin"), but has double
"thin" in lv_type which is incorrect
- (also there's double "for" in the internal error message)
With this patch applied:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin snapshot,thin
lvol3 vg ori---tz-- pool thin external,origin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
The maximum stripe size is equal to the volume group PE size. If that
size falls below the STRIPE_SIZE_MIN, the creation of RAID 4/5/6 volumes
becomes impossible. (The kernel will fail to load a RAID 4/5/6 mapping
table with a stripe size less than STRIPE_SIZE_MIN.) So, we report an
error if it is attempted.
This is very rare because reducing the PE size down that far limits the
size of the PV below that of modern devices.
metadata/lv_manip.c:269: warning: declaration of "snapshot_count" shadows a global declaration
There's existing function called "snapshot_count" so rename the
variable to "snap_count".
The lv_layout and lv_type fields together help with LV identification.
We can do basic identification using the lv_attr field which provides
very condensed view. In contrast to that, the new lv_layout and lv_type
fields provide more detialed information on exact layout and type used
for LVs.
For top-level LVs which are pure types not combined with any
other LV types, the lv_layout value is equal to lv_type value.
For non-top-level LVs which may be combined with other types,
the lv_layout describes the underlying layout used, while the
lv_type describes the use/type/usage of the LV.
These two new fields are both string lists so selection (-S/--select)
criteria can be defined using the list operators easily:
[] for strict matching
{} for subset matching.
For example, let's consider this:
$ lvs -a -o name,vg_name,lv_attr,layout,type
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tdata_rimage_0] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_1] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_2] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_3] vg iwi-aor--- linear image,raid
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rimage_0] vg iwi-aor--- linear image,raid
[pool_tmeta_rimage_1] vg iwi-aor--- linear image,raid
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
thin_vol1 vg Vwi-a-tz-- thin thin
thin_vol2 vg Vwi-a-tz-- thin multiple,origin,thin
Which is a situation with thin pool, thin volumes and thin snapshots.
We can see internal 'pool_tdata' volume that makes up thin pool has
actually a level10 raid layout and the internal 'pool_tmeta' has
level1 raid layout. Also, we can see that 'thin_snap1' and 'thin_snap2'
are both thin snapshots while 'thin_vol1' is thin origin (having
multiple snapshots).
Such reporting scheme provides much better base for selection criteria
in addition to providing more detailed information, for example:
$ lvs -a -o name,vg_name,lv_attr,layout,type -S 'type=metadata'
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
(selected all LVs which are related to metadata of any type)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={metadata,thin}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs which hold metadata related to thin)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={thin,snapshot}'
LV VG Attr Layout Type
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
(selected all LVs which are thin snapshots)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout=raid'
LV VG Attr Layout Type
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid layout, any raid layout)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout={raid,level1}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid level1 layout exactly)
And so on...
_pvcreate_check() has two missing requirements:
After refreshing filters there must be a rescan.
(Otherwise the persistent filter may remain empty.)
After wiping a signature, the filters must be refreshed.
(A device that was previously excluded by the filter due to
its signature might now need to be included.)
If several devices are added at once, the repeated scanning isn't
strictly needed, but we can address that later as part of the command
processing restructuring (by grouping the devices).
Replace the new pvcreate code added by commit
54685c20fc "filters: fix regression caused
by commit e80884cd080cad7e10be4588e3493b9000649426"
with this change to _pvcreate_check().
The filter refresh problem dates back to commit
acb4b5e4de "Fix pvcreate device check."
The message "Cannot deactivate remotely exclusive device locally." makes
sense only for clustered LV. If the LV is non-clustered, then it's
always exclusive by definition and if it's already deactivated, this
message pops up inappropriately as those two conditions are met.
So issue the message only if the conditions are met AND we have clustered VG.
Commit e80884cd08 tried to dump filters
for them to be reevaluated when creating a PV to avoid overwriting
any existing signature that may have been created after last
scan/filtering.
However, we need to call refresh_filters instead of
persistent_filter->dump since dump requires proper rescannig to fill
up the persistent filter again. However, this is true only for pvcreate
but not for vgcreate with PV creation where the scanning happens before
this PV creation and hence the next rescan (if not full scan), does not
fill the persistent filter.
Also, move refresh_filters so that it's called sooner and only for
pvcreate, vgcreate already calls lvmcache_label_scan(cmd, 2) which
then calls refresh_filters itself, so no need to reevaluate this again.
This caused the persistent filter (/etc/lvm/cache/.cache file) to be
wrong and contain only the PV just being processed with
vgcreate <vg_name> <pv_name_to_create>.
This regression caused other block devices to be filtered out in case
the vgcreate with PV creation was used and then the persistent filter
is used by any other LVM command afterwards.
Make lvresize -l+%FREE support approximate allocation.
Move existing "Reducing/Extending' message to verbose level
and change it to say 'up to' if approximate allocation is being used.
Replace it with a new message that gives the actual old and new size or
says 'unchanged'.
This is addendum to commit 2e82a070f3
which fixed these spurious messages that appeared after commit
651d5093ed ("avoid pv_read in
find_pv_by_name").
There was one more "not found" message issued in case the device
could not be found in device cache (commit 2e82a07 fixed this only
for PV lookup itself). But if we "allow_unformatted" for
find_pv_by_name, we should not issue this message even in case
the device can't be found in dev cache as we just need to know
whether there's a PV or not for the code to decide on next steps
and we don't want to issue any messages if either device itself
is not found or PV is not found.
For example, when we were creating a new PV (and so allow_unformatted = 1)
and the device had a signature on it which caused it to be filtered
by device filter (e.g. MD signature if md filtering is enabled),
or it was part of some other subsystem (e.g. multipath), this message
was issued on find_pv_by_name call which was misleading.
Also, remove misleading "stack" call in case find_pv_by_name
returns NULL in pvcreate_check - any error state is reported
later by pvcreate_check code so no need to "stack" here.
There's one more and proper check to issue "not found" message if
the device can't be found in device cache within pvcreate_check fn
so this situation is still covered properly later in the code.
Before this patch (/dev/sda contains MD signature and is therefore filtered):
$ pvcreate /dev/sda
Physical volume /dev/sda not found
WARNING: linux_raid_member signature detected on /dev/sda at offset 4096. Wipe it? [y/n]:
With this patch applied:
$ pvcreate /dev/sda
WARNING: linux_raid_member signature detected on /dev/sda at offset 4096. Wipe it? [y/n]:
Non-existent devices are still caught properly:
$ pvcreate /dev/sdx
Device /dev/sdx not found (or ignored by filtering).
Fix get_pool_params to only read params.
Add poolmetadataspare option to get_pool_params.
Move all profile code into update_pool_params.
Move recalculate code into pool_manip.c
Cache pools are similar as with thin pools.
Add (needs %s) - since cache has currently
a bit strange need for extra few kb over
our default 4M extent size so make it more obvious.
This is addendum for commit 6dc7b783c8.
LVM1 format stores the ALLOCATABLE flag directly in PV header, not
in VG metadata. So the code needs to be fixed further to work
properly for lvm1 format so that the correct PV header is written
(the flag is set only if the PV is in some VG, unset otherwise).
Before the patch:
$ lvs -o name,active vg/lvol1 --driverloaded n
WARNING: Activation disabled. No device-mapper interaction will beattempted.
LV Active
lvol1 active
With this patch applied:
$ lvs -o name,active vg/lvol1 --driverloaded n
WARNING: Activation disabled. No device-mapper interaction will be attempted.
LV Active
lvol1 unknown
The same for active_{locally,remotely,exclusively} fields.
Also, rename headings for these fields (ActLocal/ActRemote/ActExcl).
The get_lv_type_name helps with translating volume type
to human readable form (can be used in reports or
various messages if needed).
The lv_is_linear and lv_is_striped complete the set of
lv_is_* functions that identify exact volume types.
Mention parent LV as well as the LV triggering the warning.
Still leaves some confusing cases but its not worth fixing them
at the moment.
(Thin pool inactive but a thin volume active => deactivate thin vol.
Inactive mirror/raid with pvmove in progress => complete pvmove and
active&deactivate mirror/raid.
If new VG already exists it requires some LVs to be inactive
unnecessarily.)
Support remove of thin volumes With --force --force
when thin pools is damaged.
This way it's possible to remove thin pool with
unrepairable metadata without requiring to
manually edit lvm2 metadata.
lvremove -ff vg/pool
removes all thin volumes and pool even when
thin pool cannot be activated (to accept
removal of thin volumes in kernel metadata)
Since vg_name inside /lib function has already been ignored mostly
except for a few debug prints - make it and official internal API
feature.
vg_name is used only in /tools while the VG is not yet openned,
and when lvresize/lvcreate /lib function is called with VG pointer
already being used, then vg_name becomes irrelevant (it's not been
validated anyway).
So any internal user of lvcreate_params and lvresize_params does not
need to set vg_name pointer and may leave it NULL.
When creating pool's metadata - create initial LV for clearing with some
generic name and after the volume is create & cleared - rename it to
reserved name '_tmeta/_cmeta'.
We should not expose 'reserved' names for public LVs.
When repairing RAID LVs that have multiple PVs per image, allow
replacement images to be reallocated from the PVs that have not
failed in the image if there is sufficient space.
This allows for scenarios where a 2-way RAID1 is spread across 4 PVs,
where each image lives on two PVs but doesn't use the entire space
on any of them. If one PV fails and there is sufficient space on the
remaining PV in the image, the image can be reallocated on just the
remaining PV.
Previously, the seg_pvs used to track free and allocated space where left
in place after 'release_pv_segment' was called to free space from an LV.
Now, an attempt is made to combine any adjacent seg_pvs that also track
free space. Usually, this doesn't provide much benefit, but in a case
where one command might free some space and then do an allocation, it
can make a difference. One such case is during a repair of a RAID LV,
where one PV of a multi-PV image fails. This new behavior is used when
the replacement image can be allocated from the remaining space of the
PV that did not fail. (First the entire image with the failed PV is
removed. Then the image is reallocated from the remaining PVs.)
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
...to avoid using cached value (persistent filter) and therefore
not noticing any change made after last scan/filtering - the state
of the device may have changed, for example new signatures added.
$ lvm dumpconfig --type diff
allocation {
use_blkid_wiping=0
}
devices {
obtain_device_list_from_udev=0
}
$ cat /etc/lvm/cache/.cache | grep sda
$ vgscan
Reading all physical volumes. This may take a while...
Found volume group "fedora" using metadata type lvm2
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
$ parted /dev/sda mklabel gpt
Information: You may need to update /etc/fstab.
$ parted /dev/sda print
Model: QEMU QEMU HARDDISK (scsi)
Disk /dev/sda: 134MB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
====
Before this patch:
$ pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
With this patch applied:
$ pvcreate /dev/sda
Physical volume /dev/sda not found
Device /dev/sda not found (or ignored by filtering).
'lvs' would segfault if trying to display the "move pv" if the
pvmove was run with '--atomic'. The structure of an atomic pvmove
is different and requires us to descend another level in the
LV tree to retrieve the PV information.
In 'find_pvmove_lv', separate the code that searches the atomic
pvmove LVs from the code that searches the normal pvmove LVs. This
cleans up the segment iterator code a bit.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
The list of strings is used quite frequently and we'd like to reuse
this simple structure for report selection support too. Make it part
of libdevmapper for general reuse throughout the code.
This also simplifies the LVM code a bit since we don't need to
include and manage lvm-types.h anymore (the string list was the
only structure defined there).
When creating a cache LV with a RAID origin, we need to ensure that
the sub-LVs of that origin properly change their names to include
the "_corig" extention of the top-level LV. We do this by first
performing a 'lv_rename_update' before making the call to
'insert_layer_for_lv'.
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
When quering for dmeventd monitoring status, check first
if lvm2 is configured to monitor to avoid unwanted start
of dmeventd process for answering monitoring status.
Given a named mirror LV, vgsplit will look for the PVs that compose it
and move them to a new VG. It does this by first looking at the log
and then the legs. If the log is on the same device as one of the mirror
images, a problem occurs. This is because the PV is moved to the new VG
as the log is processed and thus cannot be found in the current VG when
the image is processed. The solution is to check and see if the PV we are
looking for has already been moved to the new VG. If so, it is not an
error.
Perform two allocation attempts with cling if maximise_cling is set,
first with then without positional fill.
Avoid segfaults from confusion between positional and sorted sequential
allocation when number of stripes varies as reported here:
https://www.redhat.com/archives/linux-lvm/2014-March/msg00001.html
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
When down-converting a RAID1 LV, if the user specifies too few devices,
they will get a confusing message.
Ex:
[root]# lvcreate -m 2 --type raid1 -n raid -L 500M taft
Logical volume "raid" created
[root]# lvconvert -m 0 taft/raid /dev/sdd1
Unable to extract enough images to satisfy request
Failed to extract images from taft/raid
This patch makes the error message a bit clearer by telling the user
the count they are trying to remove and the number of devices they
supplied.
[root@bp-01 lvm2]# lvcreate --type raid1 -m 3 -L 200M -n lv vg
Logical volume "lv" created
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sdb1
Unable to remove 3 images: Only 1 device given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bc]1
Unable to remove 3 images: Only 2 devices given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcd]1
[root@bp-01 lvm2]# lvs -a -o name,attr,devices vg
LV Attr Devices
lv -wi-a----- /dev/sde1(1)
This patch doesn't work in all cases. The user can specify the right
number of devices, but not a sufficient amount of devices from the LV.
This will produce the old error message:
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcf]1
Unable to extract enough images to satisfy request
Failed to extract images from vg/lv
However, I think this error message is sufficient for this case.
Since the usability problem were fixed, we can use this function.
Cleanup orphan LVs with TEMPORARY flags
(reduces couple blkid error reports, but couple of them
is still left...)
Since cache segment is purely virtual mapping, it has nothing for
discard. Discardable is cache origin here which is now
properly removed on 'delete' phase.
Plain lv_empty() call needs to only detach cache origin and leave
origin unchanged.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.