IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Set LVM_TEST_THIN_REPAIR_CMD to /bin/false for test which
doesn't need it.
This way - even if on the system there is no such tool present,
test will not result with warning about missing tool.
Also remove from Makefile settings of TEST vars which are set in
through /lib/paths - this also allows to override them in test.
Use 64bit arithmentic for PV size calculation (Coverity).
Also remove sector shift for compared PV size, since all
values are already held in sectors.
This fixes validatio of PV size when restoring PV
from vg metadata backup file.
Introduce LVM_TEST_LVMETAD_DEBUG_OPTS to allow to override
default debug opts for lvmetad.
However could be still overloaded on command line:
make check_lvmetad LVM_TEST_LVMETAD_DEBUG_OPTS="-l all"...
Better name for aux function.
First use normal -TERM, and only after a while use -KILL
(leaving some time to correctly finish)
Print INFO about killed processes.
some tests left dangling bg processes originating in
lvm2 commands being able to spawn any bg polling process
(lvchange, vgchange, pvmove, lvconvert...)
Initial fn 'add_to_kill_list' should collect processes with
specific parameters (proc's command line and parent processes ID).
After testing finishes the fn kill_listed_processes should remove these
listed by 'add_to_kill_list'.
Unfortunately it proved to be prone to an error especially in scenarios
where cmd line of initiating command contained characters required to
be espaced before passing to shell script to make it work correctly.
(Or if cmd spawned more than one bg process with same cmd line. i.e.:
vgchange or lvchange).
The new implementation is much simpler. It uses env. variable (LVM_TEST_TAG)
for marking a process desired to be killed later or during test env. teardown.
(i.e.: LVM_TEST_TAG=kill_me_$PREFIX to kill only processes related to
current test environment)
Put in pvmove background process into list quickly.
Update API for aux add_to_kill_list()/kill_listed_processes().
Run on 'background' (&) only non-background pvmoves.
Since now we have metadata parts running with normal speed,
we could avoid reinitilising delayed dev for every test.
(Saving seconds on cookie waits...)
We cannot print TEST WARNING within test shell script
(since it's running in debug mode and thus always prints it)
Use 'should false' trick let the string printed in this case.
So 'non cluster cases' should now end properly.
If the kernel has 'new lcm()' (3.19) it provides wrong
optimal_io_size value for dm device so lvm2 command cannot
create properly aligned devices.
Use 'should' for this case - so test ends with 'TEST WARNING'.
Improve testing for condition that pvmove0 is already running in the
table (so we do not kill pvmove while it has loaded target, but
it's not yet Live).
Also delay_dev for 200ms.
There is no reason to support persistent major/minor numbers
for pool volumes - it's only meant to be supported for filesystems
(since i.e. nfs may need to keep volume on a persistent device node.)
Support for pools is now explicitely disabled and documented.
Metadata areas which are marked as ignored should not be scanned
and read during pvscan --cache. Otherwise, this can cause lvmetad
to cache out-of-date metadata in case other PVs with fresh metadata
are missing by chance.
Make this to work like in non-lvmetad case where the behaviour would
be the same as if the PV was orphan (in case we have no other PVs
with valid non-ignored metadata areas).
Simplify the function usage and clean up parameter parsing.
There were 2 significant changes made in the test itself
(they passed before because of incorrect shell string handling)
-pvs_sel 'tags="pv_tag1"' "$dev1 $dev2"
+sel pv 'tags="pv_tag1"' "$dev1" "$dev6"
-lvs_sel '(lv_name=vol1 || lv_name=vol2) || vg_tags=vg_tag1' "vol1 vol2
abc orig snap"
+sel lv '(lv_name=vol1 || lv_name=vol2) || vg_tags=vg_tag1' vol1 vol2
orig snap xyz
The string reported by uname -n may include characters
that lvm omits from the system id (like parens, as seen
on a test machine.) Check against the final system id
string that lvm uses.
Though vgremove operates per VG by definition, internally, it
actually means iterating over each LV it contains to do the
remove.
So we need to direct selection a bit in this case so that the
selection is done per-VG, not per-LV.
That means, use processing handle with void_handle.internal_report_for_select=0
for the process_each_lv_in_vg that is called later in vgremove_single fn.
We need to disable internal selection for process_each_lv_in_vg
here as selection is already done by process_each_vg which calls
vgremove_single. Otherwise selection would be done per-LV and not
per-VG as we intend!
An intra-release fix for commit 00744b053f.
pvchange now uses process_each_pv so uncomment parts of the test
which check proper functionality of intersection between selection
result and PVs or PV tags directly provided on command line. This
didn't work properly before when pvchange was not using process_each_pv.
For example:
pvchange -u -S 'pv_name=/dev/sda' /dev/sdb
..changes nothing since clearly the intersection of /dev/sda and
/dev/sdb is empty set. The same applies for tags:
pvchange -u -S 'pv_name=/dev/sda' @some_tag
..changes nothing if /dev/sda is not tagged with some_tag.
When repairing thin pool or swapping thin pool metadata,
preserve chunk_size property and avoid to be automatically changed
later in the code to better match thin pool metadata size.
When raid leg is extracted, now the preload code handles this state
correctly and put proper new table entry into dm tree,
so the activation of extracted leg and removed metadata works
after commit.
It's not an error if the device is filtered out and hence cleared from
lvmetad cache - "pvscan --cache DevPath" has now the same behaviour in
this case as "pvscan --cache major:minor" (which is more consistent).
Before, the tests expected failure return code for "pvscan --cache DevicePath"
if the device was filtered (which is a different situation if the device
is missing in the system completely!).
Normally, if there are partitions defined on top of device-mapper
device, there should be a device-mapper device created for each
partiton on top of the old one and once the underlying DM device
is used by another devices (partition mappings in this case),
it can't be used as a PV anymore.
However, sometimes, it may happen the partition mappings are
missing - either the partitioning tool is not creating them if
it does not contain full support for device-mapper devices or
the mappings were removed.
Better safe than sorry - check for partition header on DM devs
and filter them out as unsuitable for PVs in case the check is
positive. Whatever the user is doing, let's do our best to prevent
unwanted corruption (...by running pvcreate on top of such device
that would corrupt the partition header).
We have to use empty list, not NULL if we want to denote that the list
has no items. Otherwise, the code further can segfault as it expects
there's always a sane value (= some list), including empty list,
but never NULL.
When we split leg from raid - we take a proper new lock for a new LV.
However for now activation checks only 'existince' of device UUID,
but it's not validating device has a proper name.
As a quick fix call suspend()/resume() to rename after split mirror.
When chunk size needs to be estimated, the code missed to round
to proper 64kb boundaries (or power of 2 for older thin pool driver).
So for some data and metadata size (i.e. 10GB and 4MB) it resulted
in incorrect chunk size (not being a multiple of 64KB)
Fix it by adding proper rounding and also use 1 routine for 2 places
where the same calculation is made.
Fix also incorrect printed warning that has used 'ffs()'
(which returns first 'least significant' bit in word)
and it was not really giving any useful size info and replace it
with properly estimated chunk size.
Since we support device stack of pools over pool
(thin-pool with cache data volume) the existing code
is no longer able to detect orphan _pmspare.
So instead do a _pmspare check after volume removal,
and remove spare afterwards.
Fixed syntax parsing means that some commands that used to work are now
failing. Particullary this case:
$ invalid lvcreate -l1 --type thin vg/pool
> Needs to fail becase thin type LV needs --virtualsize
$ invalid lvcreate --type snapshot vg/lv1
> Needs to fail because old-snapshot segment type needs --size
Some reported error messages have been also updated.
If we want to support conversion of VG to clustered type,
we currently need to relock active LV to get proper DLM lock.
So add extra loop after change of VG clustered attribute
to exlusively activate all active top level LVs.
When doing change -cy -> -cn we should validate LVs are not
active on other cluster nodes - we could be sure about this only
when with local exclusive activation - for other types
we require user to deactivate volumes first.
As a workaround for this limitation there is always
locking_type = 0 which amongs other skip the detection
of active LVs.
FIXME:
clvmd should handle looks for cluster locking type all the time.
While we could probably reacquire some type of lock when
going from non-clustered to clustered vg, we don't have any
single road back to drop the lock and keep LV active.
For now keep it safe and prohibit conversion when LV
is active in the VG.
We used to print an error message whenever we tried to deal with devices that
lvmetad knew about but were rejected by a client-side filter. Instead, we now
check whether the device is actually absent or only filtered out and only print
a warning in the latter case.
Commit 5ebff6cc9f seemed to introduce
new 'for' loop but the mode is not yet used.
But the access to /dev dir needs to go through $DM_DEV_DIR
and whole path needs to be in "".
Since the type passed LV is changed and content of data detroyed,
query user with prompt to confirm this operation.
Also add a proper wiping of header.
Using '--yes' will skip this prompt:
lvconvert -s --yes vg/lv vg/lvcow
Commit 33d69162e4 reduced the number of
PVs to a level where the test could not function. (It is impossible
to replace 3 PVs of a 4-way RAID1 LV if there are only 5 PVs.)
When repairing RAID LVs that have multiple PVs per image, allow
replacement images to be reallocated from the PVs that have not
failed in the image if there is sufficient space.
This allows for scenarios where a 2-way RAID1 is spread across 4 PVs,
where each image lives on two PVs but doesn't use the entire space
on any of them. If one PV fails and there is sufficient space on the
remaining PV in the image, the image can be reallocated on just the
remaining PV.
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
If a RAID LV has images that are spread across more than one PV
and you allocate a new image that requires more than one PV,
parallel_areas is only honored for one segment. This commit
adds a test for this condition.
Fix gcc warnings:
libdm-report.c:1952:5: warning: "end_op_flag_hit" may be used uninitialized in this function [-Wmaybe-uninitialized]
libdm-report.c:2232:28: warning: "custom" may be used uninitialized in this function [-Wmaybe-uninitialized]
And snap_percent is not 0% in dm < 1.10.0 so
don't test comparison with 0% here.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
With recent changes introduced with the report selection support,
the content of lv_modules field is of string list type (before
it was just string type).
String list elements are always ordered now so update lvcreate-thin
test to expect the elements to be ordered.
When creating a cache LV with a RAID origin, we need to ensure that
the sub-LVs of that origin properly change their names to include
the "_corig" extention of the top-level LV. We do this by first
performing a 'lv_rename_update' before making the call to
'insert_layer_for_lv'.
Instead of rereading device list via cat - keep
the list in bash array. (Also solves problem
with spaces in device path)
Move usage of "$path" out of lvm shell usage,
since we don't support such thing there...
When directly corrupting RAID images for the purpose of testing,
we must use direct I/O (or a 'sync' after the 'dd') to ensure that
the writes are not caught in the buffer cache in a way that is not
reachable by the top-level RAID device.
Unsure if this is feature or bug of syncaction,
but it needs to be present physically on the media
and it ignores content of buffer cache...
(maybe lvchange should implicitely fsync all disks
that are members of raid array before starting test??)
Check we know how to handle same UUID
Test currently does NOT work on lvmetad
(or it's unclear it even should - thus test error
is currently lowered to 'test warning')
TODO: replace lib/test with a better shell script name