IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Udev daemon has recently introduced a limit on the number of udev
processes (there was no limit before). This causes a problem
when calling pvscan --cache -aay in lvmetad udev rules which
is supposed to activate the volumes. This activation is itself
synced with udev and so it waits for the activation to complete
before the pvscan finishes. The event processing can't continue
until this pvscan call is finished.
But if we're at the limit with the udev process count, we can't
instatiate any more udev processes, all such events are queued
and so we can't process the lvm activation event for which the
pvscan is waiting.
Then we're in a deadlock since the udev process with the
pvscan --cache -aay call waits for the lvm activation udev
processing to complete, but that will never happen as there's
this limit hit with the number of udev processes.
The process with pvscan --cache -aay actually times out eventually
(3min or 30sec, depends on the version of udev).
This patch makes it possible to run the pvscan --cache -aay
in the background so the udev processing can continue and hence
we can avoid the deadlock mentioned above.
The commit 82d83a01ce2cac77fec2e9b763061fbfb5f01ce8
"autoactivation: refresh existing VG before autoactivation"
causes problems (dangling udev_sync cookies, slow processing
of the pvscan --cache --major --minor call from udev rules)
when the autoactivation handler is run in parallel on
several PVs that belong to the same VG. Revert this patch
until the exact source of the problem is found and then
properly fixed and handled.
Simulate crash of the system and restarted pvmove after next VG
activation.
Test is catching regression introduced in 2.02.99 for partial tree
creation changes.
Function to create slower responsive device.
Useful for testing things which needs to happen something during on
going operation - with 'delayed' device - much smaller sizes of devices
are needed and its much more deterministic (though still not optimal)
Do not allow passing '' names to kernel.
This test was missing also in kernel, so it has allowed
to create device with '' name. This then confused dmsetup tool,
since such name is unexpected and unsupported. To remove
such name from table, user has to use -j -m to specify which device
should be removed.
This patch fixes the posibility to run this operation:
dmsetup rename existingdev ''
after this operation commands like 'dmsetup table' are failing.
This patch prohibits to use such name.
After enable_dev, the following commands were not
consistently seeing the pv on it.
Alasdair explained, "whenever enabling/disabling devs
outside the tools (and you aren't trying to test how
the tools cope with suddenly appearing/disappering
devices) use "vgscan""
Remove default "/tmp" as destination directory if no args
specified for lvm2-activation-generator. Require all the
args to be specified directly for proper functionality.
The original "check" target stays confined to a local device directory, while
check_full does 6 flavours, 3 with a local device directory and 3 with the
global /dev directory (the latter are prefixed with "s" for
"system"). I.e.: normal, cluster, lvmetad, snormal, scluster, slvmetad.
Patch includes RAID1,4,5,6,10 tests for:
- setting writemostly/writebehind
* syncaction changes (i.e. scrubbing operations)
- refresh (i.e. reviving devices after transient failures)
- setting recovery rate (sync I/O throttling)
while the RAID LVs are under a thin-pool (both data and metadata)
* not fully tested because I haven't found a way to force bad
blocks to be noticed in the testsuite yet. Works just fine
when dealing with "real" devices.
Test moving linear, mirror, snapshot, RAID1,5,10, thinpool, thin
and thin on RAID. Perform the moves along with a dummy LV and
also without the dummy LV by specifying a logical volume name as
an argument to pvmove.
The patch allows the user to also pvmove snapshots and origin logical
volumes. This means pvmove should be able to move all segment types.
I have, however, disallowed moving converting or merging logical volumes.
Top-level LVs (like RAID, mirror or thin) are ignored when determining which
portions of an LV to pvmove. If the user specified the name of an LV to
move and it was one of the above types, it would be skipped. The code would
never move on to check whether its sub-LVs needed moving because their names
did not match what the user specified.
The solution is to check whether a sub-LVs is part of the LV whose name was
specified by the user - not just if there was a name match.
In stacked environment where we have a PV layered on top of a
snapshot LV and then removing the LV, lvmetad still keeps information
about the PV:
[0] raw/~ $ pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
[0] raw/~ $ vgcreate vg /dev/sda
Volume group "vg" successfully created
[0] raw/~ $ lvcreate -L32m vg
Logical volume "lvol0" created
[0] raw/~ $ lvcreate -L32m -s vg/lvol0
Logical volume "lvol1" created
[0] raw/~ $ pvcreate /dev/vg/lvol1
Physical volume "/dev/vg/lvol1" successfully created
[0] raw/~ $ lvremove -ff vg/lvol1
Logical volume "lvol1" successfully removed
[0] raw/~ $ pvs
No device found for PV BdNlu2-7bHV-XcIp-mFFC-PPuR-ef6K-yffdzO.
PV VG Fmt Attr PSize PFree
/dev/sda vg lvm2 a-- 124.00m 92.00m
[0] raw/~ $ pvscan --cache --major 253 --minor 3
Device 253:3 not found. Cleared from lvmetad cache.
This is because of the reactivation that is done just before
snapshot removal as part of the process (vg/lvol1 from the example above).
This causes a CHANGE event to be generated, but any scan done
on the LV does not see the original data anymore (in this case
the stacked PV label on top) and consequently the ID_FS_TYPE="LVM2_member"
(provided by blkid scan) is not stored in udev db anymore for the LV.
Consequently, the pvscan --cache is not run anymore as the dev is not
identified as LVM PV by the "LVM2_member" id - lvmetad loses this info
and still keeps records about the PV.
We can run into a very similar problem with erasing the PV label directly:
[0] raw/~ $ lvcreate -L32m vg
Logical volume "lvol0" created
[0] raw/~ $ pvcreate /dev/vg/lvol0
Physical volume "/dev/vg/lvol0" successfully created
[0] raw/~ $ dd if=/dev/zero of=/dev/vg/lvol0 bs=1M
dd: error writing '/dev/vg/lvol0': No space left on device
33+0 records in
32+0 records out
33554432 bytes (34 MB) copied, 0.380921 s, 88.1 MB/s
[0] raw/~ $ pvs
PV VG Fmt Attr PSize PFree
/dev/sda vg lvm2 a-- 124.00m 92.00m
/dev/vg/lvol0 lvm2 a-- 32.00m 32.00m
[0] raw/~ $ pvscan --cache --major 253 --minor 2
No PV label found on /dev/vg/lvol0.
This patch adds detection of this change from ID_FS_LABEL="LVM2_member"
to ID_FS_LABEL="<whatever_else>" and hence informing the lvmetad
about PV being gone.
These test the toollib functions that select
vgs/lvs to process based on command line args:
empty, vg name(s), lv names(s), vg tag(s),
lv tags(s), and combinations of all.
This patch allows pvmove to operate on RAID, mirror and thin LVs.
The key component is the ability to avoid moving a RAID or mirror
sub-LV onto a PV that already has another RAID sub-LV on it.
(e.g. Avoid placing both images of a RAID1 LV on the same PV.)
Top-level LVs are processed to determine which PVs to avoid for
the sake of redundancy, while bottom-level LVs are processed
to determine which segments/extents to move.
This approach does have some drawbacks. By eliminating whole PVs
from the allocation list, we might miss the opportunity to perform
pvmove in some senarios. For example, if we have 3 devices and
a linear uses half of the first, a RAID1 uses half of the first and
half of the second, and a linear uses half of the third (FIGURE 1);
we should be able to pvmove the first device (FIGURE 2).
FIGURE 1:
[ linear ] [ -RAID- ] [ linear ]
[ -RAID- ] [ ] [ ]
FIGURE 2:
[ moved ] [ -RAID- ] [ linear ]
[ moved ] [ linear ] [ -RAID- ]
However, the approach we are using would eliminate the second
device from consideration and would leave us with too little space
for allocation. In these situations, the user does have the ability
to specify LVs and move them one at a time.
The pool metadata LV must be accounted for when determining what PVs
are in a thin-pool. The pool LV must also be accounted for when
checking thin volumes.
This is a prerequisite for pvmove working with thin types.
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
Do not print success status for lvm2-activation-generator:
"LVM: Activation generator successfully completed."
"LVM: Logical Volume autoactivation enabled." (if use_lvmetad=1)
Though this information is quite useful during boot, it may
be confusing for users if it happens anytime later and it
actually happens if systemd reloads. This is usually on package
update to update the systemd state and load any new units that are
newly installed in the system. The systemd reload is global and
so any existing generators are rerun at that moment too.
This is a regression caused by commit 3bd90488545a4ad5374b4e0f1daba6cf16ae6ae8.
The error message added with that commit "mpath major %d is not dm major %d" is
superfluous.
When scanning for mpath components, we're looking for a parent device.
But this parent device is not necessarily an mpath device (so the dm device)
if it exists - it can be any other device layered on top (e.g. an MD RAID device).
The bug addressed by this patch manifested itself during testing
by showing a mirror that never became 'in-sync' after creation.
The bug is isolated to distributions that do not have support
for openAIS checkpointing (i.e. > RHEL6, > F16).
When a node joins a group that is managing a mirror log, the other
machines in the group send it a checkpoint representing the current
state of the bitmap. More than one machine can send a checkpoint,
but only the initial one should be imported. Once the bitmap state
has been imported from the initial checkpoint, operations (such
as resync, mark, and clear operations) can begin. When subsequent
checkpoints are allowed to be imported, it has the effect of erasing
all the log operations between the initial checkpoint and the ones
that follow.
When cmirrord was updated to handle the absence of openAIS
checkpointing (commit 62e38da133d9801cdf36b0f2aaec615ce14b9000),
the new import_checkpoint() function failed to honor the 'no_read'
parameter. This parameter was designed to avoid reading all but
the initial checkpoint. Honoring this parameter has solved the
issue of corrupting bitmap data with secondary checkpoints.
Recent kernels allow messages to respond with a string.
Add dm_task_get_message_response() to libdevmapper to perform some
basic sanity checks and return this.
Have 'dmsetup message' display any response.
DM statistics will make extensive use of this.
(From Mikulas.)
If loop device is first configured on systems where /dev/loop-control
is used to dynamically create the loop device itself, there's an
ADD+CHANGE even generated. But next time the existing /dev/loop[0-9]*
is reused, there's only a CHANGE event since the device representing
it is already present in kernel (so no ADD event in this case).
We can't ignore this CHANGE event for loop devices! This is a regression
caused by 756bcabbfe297688ba240a880bc2b55265ad33f0. We already had
a similar problem with MD devices which was fixed by
2ac217d408470dcecb69b83d9cbf7a254747fa5b (but that one was
only an intra-release fix).
libdm-common.c:883:42: warning: pointer/integer type mismatch in conditional expression
define log_sys_error(x, y) log_err("%s%s%s failed: %s", y, *y ? ": " : "", x, strerror(errno))
So the "y" which was 'path ? : "SELinux context reset"' from
previous commit did not quite fit the other "? :" in the log_sys_macro.