IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Before:
thin_disabled_features = ""
Now:
thin_disabled_features = []
Which is a more correct and consistent way of specifying void array
though parses can handle both forms.
The global/suffix was missing from example lvm.conf but it can
be very useful when using lvm in scripts and now in profiles as well
Let's expose it more.
Users can create several profiles for how the tools report
the output very easily and then just use
<lvm reporting command> --profile <report_profile_name>
Let's do this the other way round - this makes more logic than commit b995f06.
So let's allow empty values for global/thin_disabled_features where
such an empty value now means "none of this features are disabled".
The global/thin_disabled_features should be marked as having no default
value. Otherwise the output from 'lvm dumpconfig --type default' would
have 'thin_disabled_features=""' which will produce an error message
'Ignoring empty string in config file ...' if such output is feed
back to lvm.
We can't use mempool for temporary variable for configuration path inside
find_config_tree_* functions since these functions can use the mempool
themselves deeper in the code and we can free mempool chunks only from
top to bottom which is not the case here (some default string
configuration values can be allocated from the mempool).
The same as for allocation/thin_pool_chunk_size - the default value
used is just a starting point. The calculation continues using the
properties of the devices actually used.
The allocation/thin_pool_chunk_size is a bit more complex. It's default
value is evaluated in runtime based on selected thin_pool_chunk_size_policy.
But the value is just a starting point. The calculation then continues
with dependency on the properties of the devices used. Which means for
such a default value, we know only the starting value.
If the config setting is defined as having no default value, but it's
still not NULL, it means such a value acts as a *hint* only
(e.g. a starting value from which the default value is calculated).
The new "cfg_def_get_default_value_hint" will always return the value
as defined in config_settings.h.
The original "cfg_def_get_default_value" will always return 0/NULL if
the config setting is defined with CFG_DEFAULT_UNDEFINED flag (hence
ignoring the hint).
This is needed for proper distiction between a correct default value
and the value which is just a hint or a starting point in calculation,
but it's not the final value (yes, we do have such settings!).
The devices/cache and devices/cache_dir are evaluated in runtime this way:
- if devices/cache is set, use it
- if devices_cache/dir or devices/cache_file_prefix is set, make up a
path out of that for devices/cache in runtime, taking into account
the LVM_SYSTEM_DIR environment variable if set
- otherwise make up the path out of default which is:
<LVM_SYSTEM_DIR>/<cache_dir>/<cache_file_prefix>.cache
With the runtime defaults, we can encode this easily now. Also, the lvm
dumpconfig can show proper and exact information about this setting then
(the variant that shows default values).
Previously, we declared a default value as undefined ("NULL") for
settings which require runtime context to be set first (e.g. settings
for paths that rely on SYSTEM_DIR environment variable or they depend
on any other setting in some way).
If we want to output default values as they are really used in runtime,
we should make it possible to define a default value as function which
is evaluated, not just providing a firm constant value as it was before.
This patch defines simple prototypes for such functions. Also, there's
new helper macros "cfg_runtime" and "cfg_array_runtime" - they provide
exactly the same functionality as the original "cfg" and "cfg_array"
macros when defining the configuration settings in config_settings.h,
but they don't set the constant default value. Instead, they automatically
link the configuration setting definition with one of these functions:
typedef int (*t_fn_CFG_TYPE_BOOL) (struct cmd_context *cmd, struct profile *profile);
typedef int (*t_fn_CFG_TYPE_INT) (struct cmd_context *cmd, struct profile *profile);
typedef float (*t_fn_CFG_TYPE_FLOAT) (struct cmd_context *cmd, struct profile *profile);
typedef const char* (*t_fn_CFG_TYPE_STRING) (struct cmd_context *cmd, struct profile *profile);
typedef const char* (*t_fn_CFG_TYPE_ARRAY) (struct cmd_context *cmd, struct profile *profile);
(The new macros actually set the CFG_DEFAULT_RUNTIME flag properly and
set the default value link to the function accordingly).
Then such configuration setting requires a function of selected type to
be defined. This function has a predefined name:
get_default_<id>
...where the <id> is the id of the setting as defined in
config_settings.h. For example "backup_archive_dir_CFG" if defined
as a setting with default value evaluated in runtime with "cfg_runtime"
will automatically have "get_default_backup_archive_dir_CFG" function
linked to this setting to get the default value.
Using mempool is much safer than using the global static variable.
The global variable would be rewritten on each find_config_tree_* call
and we need to be very careful not to get into this problem (we don't
do now, but we can with the patches for "runtime defaults" that will follow).
These settings don't have any default value predefined:
log/file
log/activate_file
global/library_dir
This settings has default value but not yet declared in config_settings.h:
global/locking_library (default is DEFAULT_LOCKING_LIB)
To make "lvm dumpconfig --type default" output to be usable like any
other config, we need to comment out lines that have no default value
defined. Otherwise, we'd have the output with config options
with blank or zero values which is not the same as when the value
is not defined! And such configuration can't be feed into lvm again
without further edits. So let's fix this.
Currently this covers these configuration options exactly:
devices/loopfiles
devices/preferred_names
devices/filter
devices/global_filter
devices/types
allocation/cling_tag_list
global/format_libraries
global/segment_libraries
activation/volume_list
activation/auto_activation_volume_list
activation/read_only_volume_list
activation/mlock_filter
metadata/dirs
metadata/disk_areas
metadata/disk_areas/<disk_area>
metadata/disk_areas/<disk_area>/start_sector
metadata/disk_areas/<disk_area>/size
metadata/disk_areas/<disk_area>/id
tags/<tag>
tags/<tag>/host_list
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
Cache pools require a data and metadata area (like thin pools). Unlike
thin pool, if 'cache_pool_metadata_require_separate_pvs' is not set to
'1', the metadata and data area will be allocated from the same device.
It is also done in a manner similar to RAID, where a single chunk of
space is allocated and then split to form the metadata and data device -
ensuring that they are together.
The metadata/disk_areas setting was incorrectly registered as
"string" configuration option but it's a section where each area
is defined in its own subsection with "start_sector", "size" and "id"
setting.
This setting is not officialy supported, it's undocumented and it's
used solely for debugging.
Note: At this moment, it does not seem to be working with lvmetad!
There is a problem with the way mirrors have been designed to handle
failures that is resulting in stuck LVM processes and hung I/O. When
mirrors encounter a write failure, they block I/O and notify userspace
to reconfigure the mirror to remove failed devices. This process is
open to a couple races:
1) Any LVM process other than the one that is meant to deal with the
mirror failure can attempt to read the mirror, fail, and block other
LVM commands (including the repair command) from proceeding due to
holding a lock on the volume group.
2) If there are multiple mirrors that suffer a failure in the same
volume group, a repair can block while attempting to read the LVM
label from one mirror while trying to repair the other.
Mitigation of these races has been attempted by disallowing label reading
of mirrors that are either suspended or are indicated as blocking by
the kernel. While this has closed the window of opportunity for hitting
the above problems considerably, it hasn't closed it completely. This is
because it is still possible to start an LVM command, read the status of
the mirror as healthy, and then perform the read for the label at the
moment after a the failure is discovered by the kernel.
I can see two solutions to this problem:
1) Allow users to configure whether mirrors can be candidates for LVM
labels (i.e. whether PVs can be created on mirror LVs). If the user
chooses to allow label scanning of mirror LVs, it will be at the expense
of a possible hang in I/O or LVM processes.
2) Instrument a way to allow asynchronous label reading - allowing
blocked label reads to be ignored while continuing to process the LVM
command. This would action would allow LVM commands to continue even
though they would have otherwise blocked trying to read a mirror. They
can then release their lock and allow a repair command to commence. In
the event of #2 above, the repair command already in progress can continue
and repair the failed mirror.
This patch brings solution #1. If solution #2 is developed later on, the
configuration option created in #1 can be negated - allowing mirrors to
be scanned for labels by default once again.
Some code has been added recently which makes it impossible to compile
when "configure --disable-devmapper" is used. This patch just shuffles
the code around so it's under proper #ifdef DEVMAPPER_SUPPORT.
Add allocation/thin_pool_chunk_size_calculation lvm.conf
option to select a method for calculating thin pool chunk
sizes and define two possible values - "default" and "performance".
Add internal devtypes reporting command to display built-in recognised
block device types. (The output does not include any additional
types added by a configuration file.)
> lvm devtypes -o help
Device Types Fields
-------------------
devtype_all - All fields in this section.
devtype_name - Name of Device Type exactly as it appears in /proc/devices.
devtype_max_partitions - Maximum number of partitions. (How many device minor numbers get reserved for each device.)
devtype_description - Description of Device Type.
> lvm devtypes
DevType MaxParts Description
aoe 16 ATA over Ethernet
ataraid 16 ATA Raid
bcache 1 bcache block device cache
blkext 1 Extended device partitions
...
gcc -O2 v4.8 on 32 bit architecture is causing a bug in parameter
passing. It does not happen with -01 nor -O0.
The problematic part of the code was strlen use in config.c in
the config_def_check fn and the call for _config_def_check_tree in it:
<snip>
rplen = strlen(rp);
if (!_config_def_check_tree(handle, vp, vp + strlen(vp), rp, rp + rplen, CFG_PATH_MAX_LEN - rplen, cn, cmd->cft_def_hash)) ...
</snip>
If compiled with -O0 (correct):
Breakpoint 1, config_def_check (cmd=0x819b050, handle=0x81a04f8) at config/config.c:775
(gdb) p vp
$1 = 0x8189ee0 <_cfg_path> "config"
(gdb) p strlen(vp)
$2 = 6
(gdb)
_config_def_check_tree (handle=0x81a04f8, vp=0x8189ee0 <_cfg_path>
"config", pvp=0x8189ee6 <_cfg_path+6> "", rp=0xbfffe1e8 "config",
prp=0xbfffe1ee "", buf_size=58, root=0x81a2568, ht=0x81a65
48) at config/config.c:680
(gdb) p vp
$4 = 0x8189ee0 <_cfg_path> "config"
(gdb) p pvp
$5 = 0x8189ee6 <_cfg_path+6> ""
If compiled with -O2 (incorrect):
Breakpoint 1, config_def_check (cmd=cmd@entry=0x8183050, handle=0x81884f8) at config/config.c:775
(gdb) p vp
$1 = 0x8172fc0 <_cfg_path> "config"
(gdb) p strlen(vp)
$2 = 6
(gdb) p vp + strlen(vp)
$3 = 0x8172fc6 <_cfg_path+6> ""
(gdb)
_config_def_check_tree (handle=handle@entry=0x81884f8, pvp=0x8172fc7
<_cfg_path+7> "host_list", rp=rp@entry=0xbffff190 "config",
prp=prp@entry=0xbffff196 "", buf_size=buf_size@entry=58, ht=0x
818e548, root=0x818a568, vp=0x8172fc0 <_cfg_path> "config") at
config/config.c:674
(gdb) p pvp
$4 = 0x8172fc7 <_cfg_path+7> "host_list"
The difference is in passing the "pvp" arg for _config_def_check_tree.
While in the correct case, the value of _cfg_path+6 is passed
(the result of vp + strlen(vp) - see the snippet of the code above),
in the incorrect case, this value is increased by 1 to _cfg_path+7,
hence totally malforming the string that is being processed.
This ends up with incorrect validation check and incorrect warning
messages are issued like:
"Configuration setting "config/checks" has invalid type. Found integer, expected section."
To workaround this issue, remove the "static" qualifier from the
"static char _cfg_path[CFG_PATH_MAX_LEN]". This causes the optimalizer
to be less aggressive (also shuffling the arg list for
_config_def_check_tree call helps).