IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If not using explicit --enable-blkid-wiping/--disable-blkid-wiping
configure option, the configure script tries to enable/disable blkid
wiping feature automatically based on blkid library version found.
The script incorrectly set default value for lvm.conf's
allocation/use_blkid_wiping" setting to "1" (enabled) if proper
blkid library version was not found or the version found was less
than the minimum required. It should be set to "0" in this case.
The extent size must fits all blocks in 4294967295 sectors
(in 512b units) this is 1/2 KiB less then 2TiB.
So while previous statement 'suggested' 2TiB is still acceptable value,
make it clear it's not.
As now we support any multiples of 128KB as extent size -
values like 2047G will still 'flow-in' otherwise the largest power-of-2
supported value is 1TiB.
With 1TiB user needs 8388608 extents for 8EiB device.
(FYI such device is already unusable with todays glibc-2.22.90-27)
4GiB extent size is currently the smallest extent size which allows
a user to create 8EiB devices (with 2GiB it's less then 8EiB).
TODO: lvm2 may possibly print amount of 'lost/unused space' on a PV,
since using such ridiculously sized extent size may result in huge
space being left unaccessible.
Since commit 2fc126b00d, the library
code requires udev to be initialised for device scanning and
clvmd can fail to find VGs if devices/external_device_info_source
is set to "udev".
There are two basic groups of fields for LV segment device reporting:
- related to LV segment's devices: devices and seg_pe_ranges
- related to LV segment's metadata devices: metadata_devices and seg_metadata_le_ranges
The devices and metadata_devices report devices in this format:
"device_name(extent_start)"
The seg_pe_ranges and seg_metadata_le_ranges report devices in
this format:
"device_name:extent_start-extent_end"
This patch reverts partly what commit 7f74a99502
(v 2.02.140) introduced in this area - it added [] for
hidden devices to mark them for all four fields mentioned above.
We won't be marking hidden devices in devices and metadata_devices
fields.
The seg_metadata_le_ranges field will have hidden devices marked -
it's new enough that we don't need to care about compatibility much
yet.
The seg_pe_ranges is old enough that we shouldn't be changing this
one - so we're reverting to not marking hidden devices here.
Instead, there's going to be a new field "seg_le_ranges" which
is going to replace the seg_pe_ranges and it will mark hidden devices -
this is going to be introduced in a patch later.
So in the end we'll end up with:
(LV segment's devices)
devices field with "device_name(extent_start)" format, not marking hidden devices
seg_pe_ranges field with "device_name:extent_start-extent_end" format, not marking hidden devices (deprecated, new seg_le_ranges should be used instead for standardized format)
seg_le_ranges field with "device_name:extent_start-extent_end" format, marking hidden devices
(LV segment's metadata devices)
metadata_devices field with "device_name:extent_start-extent_end" format, not marking hidden devices
seg_metadata_le_ranges field with "device_name:extent_start-extent_end" format, marking hidden devices
Also, both seg_le_ranges and seg_metadata_le_ranges will honour the
report/list_item_separator setting which can be used to configure
the delimiter used for list items.
So, to sum it up, we will recommend using the new seg_le_ranges and
seg_metadata_le_ranges fields because they display devices with
standard extent range format, they can mark hidden devices and they
honour the report/list_item_separator setting.
We'll be keeping devices,seg_pe_ranges and metadata_devices fields
for compatibility.
The associated devices,metadata_devices,seg_pe_ranges and
seg_metadata_le_ranges are reported as genuine string lists now.
This allows for using the items separately in -S|--select
(so searching for subsets etc.) and also it allows for
configuring the separator using report/list_item_separator
which may be useful in scripts (however, we'll enable this
only for seg_le_metadata_ranges and not for devices,seg_pe_ranges
and seg_metadata_devices for compatibility reasons - see following
patch).
Add a comment in _process_pvs_in_vg() to document the
place where there have been problems with processing
PVs twice.
For a while we had a hacky workaround here where we'd
skip processing a PV if its device wasn't found in
all_devices (and !is_missing_pv since we want to
process PVs with missing devices.). That workaround
was removed in commit 5cd4d46f because it was no
longer needed.
The workaround had originally been needed to prevent
a device from being processed twice when the PV had
no MDAs -- it would be processed once in its real VG
and then the workaround would prevent it from being
processed a second time in the orphan VG.
Wrongly appearing as an orphan likely happened because
lvmcache would consider the no-MDA PV an orphan unless
the real VG holding that PV was also in lvmcache.
This issue is also mentioned in pvchange where holding
the global lock allows VGs to remain in lvmcache so
PVs with 0 mdas are not considered orphans.
The workaround in _process_pvs_in_vg() was originally
intended for reporting commands, not for pvchange.
But, it was accidentally helping pvchange also because
the method described by the pvchange global lock
comment had been subverted by commit 80f4b4b8.
Commit 80f4b4b8 was found to be unnecessary, and was
reverted in commit e710bac0. This restored the
intended global lock lvmcache effect to pvchange, and
it no longer relied on the workaround in toollib.
When reporting on LVs, take the end of the range from the size of the
underlying (hidden) LV rather than the logical size of the current
segment (that PVs use).
Previously, pvmove used the function find_pv_in_vg() which did the
equivalent of process_each_pv() by doing:
find_pv_by_name() -> get_pvs() ->
get_pvs_internal() -> _get_pvs() -> get_vgids() ->
/* equivalent to process_each_pv */
dm_list_iterate_items(vgids)
vg = vg_read_internal()
dm_list_iterate_items(&vg->pvs)
With the found 'pv', it would do vg_read() on pv_vg_name(pv),
and then do the actual pvmove processing.
This commit simplifies by using process_each_pv() and putting
the actual pvmove processing into the "single" function.
This eliminates both find_pv_by_name() and the vg_read().
The processing code that followed vg_read remains the same.
The return code for the pvmove command is not based on the
process_each_pv return code, but is based on the success/fail
conditions in the existing code.
Make the lvb validation rules for convert match
those for unlock (even though it would be very
unlikely or impossible for convert to deal with
zero lvb.)
When an orphan PV is changed/resized, the
lvmlockd global lock is converted from sh
to ex. If the command is changing two
orphan PVs, the conversion to ex should
be done only once.
Existing cache_settings field displays the settings which are
saved in metadata. Add new kernel_cache_settings fields to display
the settings which are currently used by kernel, including fields
for which default values are used.
This way users have complete view of the set of cache settings
supported (and which they can set) and their values which are used
at the moment by kernel.
For example:
$ lvs -o name,cache_policy,cache_settings,kernel_cache_settings vg
LV Cache Policy Cache Settings KCache Settings
cached1 mq migration_threshold=1024,write_promote_adjustment=2 migration_threshold=1024,random_threshold=4,sequential_threshold=512,discard_promote_adjustment=1,read_promote_adjustment=4,write_promote_adjustment=2
cached2 smq migration_threshold=1024 migration_threshold=1024
cached3 smq migration_threshold=2048
Fix lvm2app to return either 0 or 1 for lvm_vg_is_{clustered,exported},
including internal functions pvseg_is_allocated and vg_is_resizeable
which are not yet exposed in lvm2app but make them consistent with the
rest.
This reverts e28e22b9e1
The problem that that commit was fixing (pytest failure)
no longer appears with the current code, so the commit is
not needed.
That commit is a problem for pvchange, because it prevents
lvmcache from retaining VG metadata even while the global
lock is held. pvchange holds the global lock to ensure
that VG metadata is kept in lvmcache throughout processing.
If the cache is not kept, a PV with zero MDAs will appear
first in its actual VG and then appear again in the orphan VG.
It wrongly appears a second time in the orphan VG only if
the actual VG is dropped from lvmcache.
Thin pool discard mode set in metadata can be different from the one
actually used if any device underneath does not support that mode. Add
kernel_discard report field to make it possible to see this difference.
Internal _alloc_init() is only called from allocate_extents(),
which already does prevent usage of virtual segments.
So mark as internal error early and do not process it any further.
Add new test for lv_is_snapshot().
Also move few other bitchecks into same place as remaining bit tests.
TODO: drop lv_is_merging_origin() and keep using lv_is_merging().