IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
No longer use the external 'result' pointer internally to set up the
cached label. The callback _set_label_read_result() is now given the
internal label pointer directly
Callers that don't need the result are no longer required to pass a
label pointer into label_read().
If the data being requested is present in last_[extra_]devbuf,
return that directly instead of reading it from disk again.
Typical LVM2 access patterns request data within two adjacent 4k blocks
so we eliminate some read() system calls by always reading at least 8k.
Callers that read larger amounts of data now get a pointer to read-only
data directly without copying it through an intermediate buffer. This
data is owned by the device layer so the callers no longer free it.
If it obtains the data, it passes it into the supplied callback function
and returns 1. Otherwise the callback receives failed = 1.
Updated config_file_read_fd to use this and similarly return the data
via a callback fn of its own.
Dedicated functions are now used to process each piece of data obtained,
so the refactoring in this file gives us one for the vgsummary and one
for the metadata header. This new type of function takes two parameters
(for now), the obtained data plus a single struct (that must not
reference any data on the stack) that wraps up the entire context needed
to process it.
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
The creation of wrapped around metadata - where the start of metadata is
written up to the end of the buffer and the remainder follows back at
the start of the buffer - is now restricted to cases where writing the
metadata in one piece wouldn't fit. This shouldn't happen in 'normal'
usage so let's begin treating the code for this as a special case that
can be ignored when optimising 'normal' cases.
If there is sufficient space in the metadata area, align the next
metadata to a disk offset that is a multiple of 4096 bytes and
don't write it circularly. If it doesn't all fit at the end
of the metadata area, go back to the start and write it all there
contiguously.
If there is insufficient space to use the new stricter rules, revert to
the original behaviour, aligning on 512-byte boundaries wrapping around
the circular buffer as required.
Even after writing some metadata encountered problems, some commands
continue (rightly or wrongly) and attempt to make further changes.
Once an mda is marked MDA_FAILED, don't try to use it again.
This also applies when reverting, where one loop already skips
failed mdas but the other doesn't.
This fixes some device open_count warnings on relevant failure paths.
Use new ALIGN_ABSOLUTE macro when calculating the start location
of new metadata and adjust the end of buffer detection so that
there is no longer an imposed gap between old and new metadata.
Currently both start and offset should always be divisible by alignment,
so this should have no effect, but a later patch will increase alignment
so these variables can no longer be optimised out.
Although it doesn't look like it can be a measurable problem
and costs some time to flip priorities outside of activation window.
So just like with memory locking preserve priority until call
memlock_unlock() appears.
(addition to commit c086dfadc3).
Expand out the metadata wrapping calculations to prepare
to support a larger alignment.
The current alignment is 512 bytes so
(mdac_area_start + rlocn->offset) % alignment is zero.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
In case of failed legs, raid replaces those with
e.g. "vg-lv_rimage_0-missing_0_0" mapped to an error target.
Those errouneously remain on deactivation.
Fix by removing them on deactivation/removal of the RaidLV.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
If the recovery of the repleced leg(s) of a RaidLV created without
initial resynchronization (i.e. "lvcreate --nosync ...") got
interrupted, it can't be extended because of the < 100% sync rate.
In case caller passes in changed stripe size when reshaping raid4/5
to 1 stripe aiming to convert to raid1 and optionally to linear,
ignore it to prevent data corruption.
Use new 3rd. state of trace_pvmove_deps == 2.
In this state we know, we have already seen the node and can skip futher
testing. Remainging value 1 signals we want to track, and value 0
is for ignoring tracking, but node is still checking in this case.
Reduces large amount of duplicate ioctl queries.
Check also all snapshosts when resume is requested,
the origin volume is already resume, but possibly
some subLV or snapshot LV could be suspended if
we are still in critical_section.
When entering any critical section, lvm2 used to lock process memory
and raised task priority to avoid problem with page swapping and minimize
time of having non-resumed devices in table.
With this patch, memory locking which which is expensive is only used when
entering 'suspending' section as only in this section there is risk
lvm could be suspending a device which later can be needed for paging.
Raised priority is still kept for all section entrances as this is
low-cost operation and may accelerate table resumes - although the real
impact can be still considered later.
When pvmove is finished and metadata are updated, the code missed
to merge possible mergable segments - so add explicit merging
call after pvmoved volumes are unlocked.
This avoids weird results where i.e. lvs could have been reporting
non-matching segments as lvs upon metadata read is doing silent segment
merging while dm table left after pvmove was still preserving
non-merged segments.
ATM we want to support delayed resume purely in pvmove case.
So have libdm logic internal to recognize difference beween
pvmove and other targets that do use delayed resume.
This fixes problem introduced with commit aa68b898ff
for mirror-on-mirror or snapshot-on-mirror problem.
TODO: likely added new API call and let libdm user select
delayed nodes explicitely.
Use code which detectes handlers in a way, which is more
backward-compatible friendly.
Replace read of 'sysfs' uuid entry with dm ioctl call.
Use /sys/block/dm-X/holders path instead of
new path /sys/dev/block/major:minor/holders.
TODO:
There are few more occurencies of this logic around the code
so some abstract interface should be considered.
In some cases the message could be slightly misleading so use
here rather conditional.
TODO:
In future we may possibly further tune the message in case we are
certain the level of redundancy protection has not been reduced.
When pvmove is finished and does 'suspend/resume' on PVMOVE LV,
on resume path committed metadata are already showing 'standalone'
pvmove LV prepared just for removal.
However code should be able to 'resume' preloaded LV there were
participating in pvmove operation.
Previously this was all done in the 'tools' part of lvm2 code.
So the lvconvert upon pvmove finish had to explicitely call 'resume' on every such LV.
Now 'smarted' activation code is able to deduce and combine all information from
the active dm table and committed metadata so single call resolves
it all in one go.
Internally holders are detected by reading sysfs directory to capture
all needed UUID which are then looked in lvm2 metadata and all such
LVs are automatically collected into dmtree.
Replace complex code with standard lv_update_and_reload_origin().
Extra suspend should not be necessary.
(If they would be - dependency tree would have bug for fixing).
Only thin-pool with origin_only suspend is allowed to be not suspending anything.
In such case pairing resume will 'decrement' critical section counter.
Just like suspend handles preload for pvmove finish,
in similar way handle suspend of starting pvmove.
In this case the precommited metadata are checked for list of PVMOVEed
LVs and those are suspended in with committed metadata.
There is no need to differentiation between clustered VG and normal VG.
As the activation depends on locking type.
Use unconditionally locally exclusive activation for pvmove.
Whenever pvmove tree is going to be generated for suspend
and such LV has a user - use this 'using LV' to generate
correct dm tree holding all components.
LV is asked for resume, and its already resume and tool
is inside 'critical_section()' check if there is any suspended sub LV.
In that case 'resume' operation will not be skipped.
When activation of LVs fails prior pvmove start, try to deactivate
already activated LVs.
TODO: possibly remember which LVs where already activate and only those
take down - devices which are already in-use will stay active.