IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Try to enforce consistent macro usage along these lines:
lv_is_mirror - mirror that uses the original dm-raid1 implementation
(segment type "mirror")
lv_is_mirror_type - also includes internal mirror image and log LVs
lv_is_raid - raid volume that uses the new dm-raid implementation
(segment type "raid")
lv_is_raid_type - also includes internal raid image / log / metadata LVs
lv_is_mirrored - LV is mirrored using either kernel implementation
(excludes non-mirror modes like raid5 etc.)
lv_is_pvmove - internal pvmove volume
Use lv_is_* macros throughout the code base, introducing
lv_is_pvmove, lv_is_locked, lv_is_converting and lv_is_merging.
lv_is_mirror_type no longer includes pvmove.
Fix rename operation for snapshot (cow) LV.
Only the snapshot's origin has the lock and by mistake suspend
and resume has been called for the snapshot LV.
This further made volumes unusable in cluster.
So instead of suspend and resuming list of LVs,
we need to just suspend and resume origin.
As the sequence write/suspend/commit/resume
is widely used in lvm2 code base - move it to
new lv_update_and_reload function.
The 'lv_type' field name was a bit misleading. Better one is 'lv_role'
since this fields describes what's the actual use of the LV currently -
its 'role'.
Sort out the lvresize calculation code to handle size changes
specified as physical extents as well as logical extents
and to process mirror resizing and raid extensions correctly.
The 'approx alloc' option was masking the underlying problem.
The lv_type_name function is remnant from old code that reported
only single string for the LV type. LV types are now reported
in a more extended way as keyword list that describe the type
precisely (using lv_layout_and_type fn).
The lv_type_name was used in some error messages to display the
type of the LV so just reinstate the old messages back referencing
the type directly with a string - this is enough for error messages.
They don't need to display the LV type as precisely as it's used
on lvs output (which is optimized for selection anyway).
The lv_layout and lv_type fields together help with LV identification.
We can do basic identification using the lv_attr field which provides
very condensed view. In contrast to that, the new lv_layout and lv_type
fields provide more detialed information on exact layout and type used
for LVs.
For top-level LVs which are pure types not combined with any
other LV types, the lv_layout value is equal to lv_type value.
For non-top-level LVs which may be combined with other types,
the lv_layout describes the underlying layout used, while the
lv_type describes the use/type/usage of the LV.
These two new fields are both string lists so selection (-S/--select)
criteria can be defined using the list operators easily:
[] for strict matching
{} for subset matching.
For example, let's consider this:
$ lvs -a -o name,vg_name,lv_attr,layout,type
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tdata_rimage_0] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_1] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_2] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_3] vg iwi-aor--- linear image,raid
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rimage_0] vg iwi-aor--- linear image,raid
[pool_tmeta_rimage_1] vg iwi-aor--- linear image,raid
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
thin_vol1 vg Vwi-a-tz-- thin thin
thin_vol2 vg Vwi-a-tz-- thin multiple,origin,thin
Which is a situation with thin pool, thin volumes and thin snapshots.
We can see internal 'pool_tdata' volume that makes up thin pool has
actually a level10 raid layout and the internal 'pool_tmeta' has
level1 raid layout. Also, we can see that 'thin_snap1' and 'thin_snap2'
are both thin snapshots while 'thin_vol1' is thin origin (having
multiple snapshots).
Such reporting scheme provides much better base for selection criteria
in addition to providing more detailed information, for example:
$ lvs -a -o name,vg_name,lv_attr,layout,type -S 'type=metadata'
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
(selected all LVs which are related to metadata of any type)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={metadata,thin}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs which hold metadata related to thin)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={thin,snapshot}'
LV VG Attr Layout Type
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
(selected all LVs which are thin snapshots)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout=raid'
LV VG Attr Layout Type
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid layout, any raid layout)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout={raid,level1}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid level1 layout exactly)
And so on...
Fix get_pool_params to only read params.
Add poolmetadataspare option to get_pool_params.
Move all profile code into update_pool_params.
Move recalculate code into pool_manip.c
The get_lv_type_name helps with translating volume type
to human readable form (can be used in reports or
various messages if needed).
The lv_is_linear and lv_is_striped complete the set of
lv_is_* functions that identify exact volume types.
Since vg_name inside /lib function has already been ignored mostly
except for a few debug prints - make it and official internal API
feature.
vg_name is used only in /tools while the VG is not yet openned,
and when lvresize/lvcreate /lib function is called with VG pointer
already being used, then vg_name becomes irrelevant (it's not been
validated anyway).
So any internal user of lvcreate_params and lvresize_params does not
need to set vg_name pointer and may leave it NULL.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
Create a separate function to validation snapshot min chunk value
and relocate code into snapshot_manip file.
This function will be shared with lvconvert then.
Start to convert percentage size handling in lvresize to the new
standard. Note in the man pages that this code is incomplete.
Fix a regression in non-percentage allocation in my last check in.
This is what I am aiming for:
-l<extents>
-l<percent> LV/ORIGIN
sets or changes the LV size based on the specified quantity
of logical logical extents (that might be backed by
a higher number of physical extents)
-l<percent> PVS/VG/FREE
sets or changes the LV size so as to allocate or free the
desired quantity of physical extents (that might amount to a
lower number of logical extents for the LV concerned)
-l+50%FREE - Use up half the remaining free space in the VG when
carrying out this operation.
-l50%VG - After this operation, this LV should be using up half the
space in the VG.
-l200%LV - Double the logical size of this LV.
-l+100%LV - Double the logical size of this LV.
-l-50%LV - Reduce the logical size of this LV by half.
Remove 'skip' argument passed into the function.
We always used '0' - as this is the only supported
option (-K) and there is no complementary option.
Also add some testing for behaviour of skipping.
Introduce a new parameter called "approx_alloc" that is set when the
desired size of a new LV is specified in percentage terms. If set,
the allocation code tries to get as much space as it can but does not
fail if can at least get some.
One of the practical implications is that users can now specify 100%FREE
when creating RAID LVs, like this:
~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
A cache LV - from LVM's perpective - is a user accessible device that
links the cachepool LV and the origin LV. The following functions
were added to facilitate the creation and removal of this top-level
LV:
1) 'lv_cache_create' - takes a cachepool and an origin device and links
them into a new top-level LV of 'cache' segment type. No allocation
is necessary in this function, as the sub-LVs contain all of the
necessary allocated space. Only the top-level layer needs to be
created.
2) 'lv_cache_remove' - this function removes the top-level LV of a
cache LV - promoting the cachepool and origin sub-LVs to top-level
devices and leaving them exposed to the user. That is, the
cachepool is unlinked and free to be used with another origin to
form a new cache LV; and the origin is no longer cached.
(Currently, if the cache needs to be flushed, it is done in this
function and the function waits for it to complete before proceeding.
This will be taken out in a future patch in favor of polling.)
Building on the new DM function that parses DM cache status, we
introduce the following LVM level functions to aquire information
about cache devices:
- lv_cache_block_info: retrieves information on the cache's block/chunk usage
- lv_cache_policy_info: retrieves information on the cache's policy
Avoid use of external origin with size unaligned/incompatible with
thin pool chunk size, since the last chunk is not correctly provisioned
when it is overwritten.
This patch adds the new cachepool segment type - the first of two
necessary to eventually create 'cache' logical volumes. In addition
to the new segment type, updates to makefiles, configure files, the
lv_segment struct, and some necessary libdevmapper flags.
The cachepool is the LV and corresponding segment type that will hold
all information pertinent to the cache itself - it's size, cachemode,
cache policy, core arguments (like migration_threshold), etc.
In preparation for other segment types that create and use "pools", we
s/create_thin_pool/create_pool/. This way it is not awkward when creating
a cachepool, for example, to use "create_thin_pool".
Introduce FMT_OBSOLETE to identify pool metadata and use it and FMT_MDAS
instead of hard-coded format names.
Explain device accesses on pvscan --cache man page.
Replacement of pv_read by find_pv_by_name in commit
651d5093edde3e0ebee9d75be1c9834efc152d91 caused spurious
error messages when running pvcreate or vgextend against an
unformatted device.
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Physical volume /dev/loop4 not found
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Volume group "vg1" successfully extended
Optimize and cleanup recently introduced new function wipe_lv.
Use compound literals to get nicely initialized wipe_params struct.
Pass in lv as explicit argument for wipe_lv.
Use cmd from lv structure.
Initialize only non-null members so it's easy to see what
is the special arg.
Drop find_merging_snapshot() function. Use find_snapshot()
called after check for lv_is_merging_origin() which
is the commonly used code path - so we avoid duplicated
tests and potential risk of derefering NULL point
in unhandled error path.
Use common wipe_lv (former set_lv) fn to do zeroing as well as signature
wiping if needed. Provide new struct wipe_lv_params to define the
functionality.
Bind "lvcreate -W/--wipesignatures y" with proper wipe_lv call.
Also, add "yes" and "force" to lvcreate_params so it's possible
to apply them for the prompt: "WARNING: %s detected on %s. Wipe it? [y/n]".