IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Also always clear the internal lvmcache after rescanning, and
reinstate a test for --trustcache so that 'pvs --trustcache'
(for example) avoids rescanning.
The old code made two loops through the PVs: in the first
loop it found the max PV and VG name lengths, and in the
second loop it printed each PV using the name lengths as
field widths for aligning columns.
The new code uses process_each_pv() which makes one loop
through the PVs. In the *first* call to pvscan_single(),
the max name lengths are found by looping through the
lvmcache entries which have been populated by the generic
process_each code prior to calling any _single functions.
Subsequent calls to pvscan_single() reuse the max lengths
that were found by the first call.
When lvm1 PVs are visible, and lvmetad is used, and the foreign
option was included in the reporting command, the reporting
command would fail after the 'pvscan all devs' function saw
the lvm1 PVs. There is no reason the command should fail
because of the lvm1 PVs; they should just be ignored.
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
If pvscan is run with device path instead of major:minor pair and this
device still exists in the system and the device is not visible anymore
(due to a filter that is applied), notify lvmetad properly about this.
This makes it more consistent with respect to existing pvscan with
major:minor which already notifies lvmetad about device that is gone
due to filters.
However, if the device is not in the system anymore, we're not able
to translate the original device path into major:minor pair which
lvmetad needs for its action (lvmetad_pv_gone fn). So in this case,
we still need to use major:minor pair only, not device path. But at
least make "pvscan --cache DevicePath" as near as possible to "pvscan
--cahce <major>:<minor>" functionality.
Also add a note to pvscan man page about this difference when using
pvscan --cache with DevicePath and major:minor pair.
There are actually three filter chains if lvmetad is used:
- cmd->lvmetad_filter used when when scanning devices for lvmetad
- cmd->filter used when processing lvmetad responses
- cmd->full_fiilter (which is just cmd->lvmetad_filter + cmd->filter chained together) used
for remaining situations
This patch adds the third one - "cmd->full_filter" - currently this is
used if device processing does not fall into any of the groups before,
for example, devices which does not have the PV label yet and we're just
creating a new one or we're processing the devices where the list of the
devices (PVs) is not returned by lvmetad initially.
Currently, the cmd->full_filter is used exactly in these functions:
- lvmcache_label_scan
- _pvcreate_check
- pvcreate_vol
- lvmdiskscan
- pvscan
- _process_each_label
If lvmetad is used, then simply cmd->full_filter == cmd->filter because
cmd->lvmetad_filter is NULL in this case.
Config variables that are processed during setup prior to calling into
particular tools must not be accessed directly afterwards in case the
values already got overridden.
_process_config() already used the tests I'm removing here to call
lvmetad_set_active() and set up lvmetad_used().
Since commit f12ee43f2e call destroy,
it start to check all VGs are unlocked. However when we become_daemon,
we simply reset locking (since lock is still kept by parent process).
So implement a simple 'reset' flag.
pvscan --uuid was broken since it was using only 128 char buffers
without checking any write size, so any longer device path leads to
crash.
Also ansure format is properly aligned into columns with this option.
This prevents numerous VG refreshes on each "pvscan --cache -aay" call
if the VG is found complete. We need to issue the refresh only if the PV:
- is new
- was gone before and now it reappears (device "unplug/plug back" scenario)
- the metadata has changed
If the refresh fails for any reason before autoactivation, let's not
make this a stopper for autoactivation itself - just log the error
message if it appears.
The reason is that in some rare situations, we can still hit the
problem with the suspend call to fail (as already described in
commit d8085edf65, also
https://bugzilla.redhat.com/show_bug.cgi?id=1027314). The refresh
itself is done for only one reason - to refresh any dm tables
for LVs for which the underlying PVs got unplugged/disconnected
and then plugged/connected back (see also
https://bugzilla.redhat.com/show_bug.cgi?id=954061 for more info).
In this case, the major:minor pair is changed and we need to
update dm tables for LVs accordingly.
Now if refresh fails, the error is still logged, but autoactivation
continues.
There's a tiny race when suspending the device which is part
of the refresh because when suspend ioctl is performed, the
dm kernel driver executes (do_suspend and dm_suspend kernel fn):
step 1: a check whether the dev is already suspended and
if yes it returns success immediately as there's
nothing to do
step 2: it grabs the suspend lock
step 3: another check whether the dev is already suspended
and if found suspended, it exits with -EINVAL now
The race can occur in between step 1 and step 2. To prevent
premature autoactivation failure, we're using a simple retry
logic here before we fail completely. For a complete solution,
we need to fix the locking so there's no possibility for suspend
calls to interleave each other to cause this kind of race.
This is just a workaround. Remove it and replace it with proper
locking once we have that in!
Before, pvscan recognized either:
pvscan --cache --major <major> --minor <minor>
or
pvscan --cache <DevicePath>
When the device is gone and we need to notify lvmetad about device
removal, only --major/--minor works as we can't translate DevicePath
into major/minor pair anymore. The device does not exist in the system
and we don't keep DevicePath index in lvmetad cache to make the
translation internally into original major/minor pair. It would be
useless to keep this index just for this one exact case.
There's nothing bad about using "--major <major> --minor <minor>",
but it makes our life a bit harder when trying to make an
interconnection with systemd units, mainly with instantiated services
where only one and only one arg can be passed (which is encoded in the
service name).
This patch tries to make this easier by adding support for recognizing
the "<major>:<minor>" as a shortcut for the longer form
"--major <major> --minor <minor>". The rule here is simple: if the argument
starts with "/", it's a DevicePath, otherwise it's a <major>:<minor> pair.
The commit 82d83a01ce
"autoactivation: refresh existing VG before autoactivation"
causes problems (dangling udev_sync cookies, slow processing
of the pvscan --cache --major --minor call from udev rules)
when the autoactivation handler is run in parallel on
several PVs that belong to the same VG. Revert this patch
until the exact source of the problem is found and then
properly fixed and handled.
When autoactivating a VG, there could be an existing VG with exactly
the same PV UUIDs. The PVs could be reappeared after previous
loss/disconnect (for example disconnecting and reconnecting iscsi).
Since there's no "autodeactivation" yet, the mappings for the LVs
from the VG were left in the system even if the device was disconnected.
These mappings also hold the major:minor of the underlying device.
So if the device reappears, it is assigned a different major:minor
pair (...and kernel name). We need to cope with this during
autoactivation so any existing mappings are corrected for any changes.
The VG refresh does that (the vgchange --refresh functionality) -
call this before VG autoactivation.
(If the VG does not exist yet, the VG refresh is NOP)
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
We need to call sync_local_dev_names directly as pvscan uses
VG_GLOBAL lock and this one *does not* cause the synchronization
(sync_dev_names) to be called on unlock (VG_GLOBAL is not a real VG):
define unlock_vg(cmd, vol)
do { \
if (is_real_vg(vol)) \
sync_dev_names(cmd); \
(void) lock_vol(cmd, vol, LCK_VG_UNLOCK); \
} while (0)
Without this fix, we end up without udev synchronization for the
pvscan --cache (mainly for -aay that causes the VGs/LVs to be
autoactivated) and also udev synchronization cookies are then left
in the system since they're not managed properly (code before sets
up udev sync cookies, but we have to call dm_udev_wait at least once
after that to do the wait and cleanup).
Calling pvscan --cache with -aay on a PV without an MDA would spuriously fail
with an internal error, because of an incorrect assumption that a parsed VG
structure was always available. This is not true and the autoactivation handler
needs to call vg_read to obtain metadata in cases where the PV had no MDAs to
parse. Therefore, we pass vgid into the handler instead of the (possibly NULL)
VG coming from the PV's MDA.
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.