IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is a temporary hacky workaround to the problem of
reads going through bcache and writes not using bcache.
The write path wants to read parts of data that it is
incrementally writing to disk, but the reads (using
bcache) don't work because the writes are not in the
bcache. For now, add a dev to bcache before each attempt
to read it in case it's being used on the write path.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
In the same way as the other process_each functions.
In the common case all the info that's needed can be
used from lvmcache after a label scan. But this means
that unchosen devs for duplicate PVs need to be handled
explicitly.
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
When process_each_pv() calls vg_read() on the orphan VG, the
internal implementation was doing an unnecessary
lvmcache_label_scan() and two unnecessary label_read() calls
on each orphan. Some of those unnecessary label scans/reads
would sometimes be skipped due to caching, but the code was
always doing at least one unnecessary read on each orphan.
The common format_text case was also unecessarily calling into
the format-specific pv_read() function which actually did nothing.
By analyzing each case in which vg_read() was being called on
the orphan VG, we can say that all of the label scans/reads
in vg_read_orphans are unnecessary:
1. reporting commands: the information saved in lvmcache by
the original label scan can be reported. There is no advantage
to repeating the label scan on the orphans a second time before
reporting it.
2. pvcreate/vgcreate/vgextend: these all share a common
implementation in pvcreate_each_device(). That function
already rescans labels after acquiring the orphan VG lock,
which ensures that the command is using valid lvmcache
information.
The old code was doing unnecessary label scans when
checking to see if the new VG name exists. A single
label_scan is sufficient if it is done after the
new VG lock is held.
When lvmlockd indicates that the lvmetad cache is out of
date because of changes by another node, lvmetad_pvscan_vg()
rescans the devices in the VG to update lvmetad. Use the
new label_scan in this function to use the common code and
take advantage of the new aio and reduced reads.
This fixes the use of lvmcache_label_rescan_vg() in the previous
commit for the special case of independent metadata areas.
label scan is about discovering VG name to device associations
using information from disks, but devices in VGs with
independent metadata areas have no information on disk, so
the label scan does nothing for these VGs/devices.
With independent metadata areas, only the VG metadata found
in files is used. This metadata is found and read in
vg_read in the processing phase.
lvmcache_label_rescan_vg() drops lvmcache info for the VG devices
before repeating the label scan on them. In the case of
independent metadata areas, there is no metadata on devices, so the
label scan of the devices will find nothing, so will not recreate
the necessary vginfo/info data in lvmcache for the VG. Fix this
by setting a flag in the lvmcache vginfo struct indicating that
the VG uses independent metadata areas, and label rescanning should
be skipped.
In the case of independent metadata areas, it is the metadata
processing in the vg_read phase that sets up the lvmcache
vginfo/info information, and label scan has no role.
Move the location of scans to make it clearer and avoid
unnecessary repeated scanning. There should be one scan
at the start of a command which is then used through the
rest of command processing.
Previously, the initial label scan was called as a side effect
from various utility functions. This would lead to it being called
unnecessarily. It is an expensive operation, and should only be
called when necessary. Also, this is a primary step in the
function of the command, and as such it should be called prominently
at the top level of command processing, not as a hidden side effect
of a utility function. lvm knows exactly where and when the
label scan needs to be done. Because of this, move the label scan
calls from the internal functions to the top level of processing.
Other specific instances of lvmcache_label_scan() are still called
unnecessarily or unclearly by specific commands that do not use
the common process_each functions. These will be improved in
future commits.
During the processing phase, rescanning labels for devices in a VG
needs to be done after the VG lock is acquired in case things have
changed since the initial label scan. This was being done by way
of rescanning devices that had the INVALID flag set in lvmcache.
This usually approximated the right set of devices, but it was not
exact, and obfuscated the real requirement. Correct this by using
a new function that rescans the devices in the VG:
lvmcache_label_rescan_vg().
Apart from being inexact, the rescanning was extremely well hidden.
_vg_read() would call ->create_instance(), _text_create_text_instance(),
_create_vg_text_instance() which would call lvmcache_label_scan()
which would call _scan_invalid() which repeats the label scan on
devices flagged INVALID. lvmcache_label_rescan_vg() is now called
prominently by _vg_read() directly.
To do label scanning, lvm code calls lvmcache_label_scan().
Change lvmcache_label_scan() to use the new label_scan()
based on bcache.
Also add lvmcache_label_rescan_vg() which calls the new
label_scan_devs() which does label scanning on only the
specified devices. This is for a subsequent commit and
is not yet used.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.