IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
we don't want to fail properly set pvmove after metadata
update. failure to copy id components could end with dangling
mirror moving PV segments but no monitoring from lvmpolld or
classical polldaemon.
lvpoll now process passed LV name properly. It respects
LVM_VG_NAME env. variable and is able to process LV name
passed in various formats:
- VG/LV
- LV name only (with LVM_VG_NAME set)
- /dev/mapper/VG-LV
- /dev/VG/LV
In process_each_{vg,lv,pv} when no vgname args are given,
the first step is to get a list of all vgid/vgname on the
system. This is exactly what lvmetad returns from a
vg_list request. The current code is doing a vg_lookup
on each VG after the vg_list and populating lvmcache with
the info for each VG. These preliminary vg_lookup's are
unnecessary, because they will be done again when the
processing functions call vg_read. This patch eliminates
the initial round of vg_lookup's, which can roughly cut in
half the number of lvmetad requests and save a lot of extra work.
querying future lvmpolld with zero wait time is highly undesirable
and can cause serious performance drop of the future daemon. The new
wrapper function may avoid immediate return from syscal by
introducing minimal wait time on demand.
Routines responsible for polling of in-progress pvmove, snapshot merge
or mirror conversion each used custom lookup functions to find vg and
lv involved in polling.
Especially pvmove used pvname to lookup pvmove in-progress. The future
lvmpolld will poll each operation by vg/lv name (internally by lvid).
Also there're plans to make pvmove able to move non-overlaping ranges
of extents instead of single PVs as of now. This would also require
to identify the opertion in different manner.
The poll_operation_id structure together with daemon_parms structure they
identify unambiguously the polling task.
Waiting even after _check_lv_status returned success and
'finished' flag was set to true doesn't make much sense.
Note that while we skip the wait() we also skip the
init_full_scan_done(0) inside the routine. This should
have no impact as long as the code after _wait_for_single_lv
doesn't presume anything about the state of the cache.
as a part of bigger effort to unify polling intefaces
poll_get_copy_lv should be able to look up LVs based
on theirs lv->status field.
Effective after pvmove starts using poll_get_copy_lv
fn as well.
This patch adds supporting code for handling deprecated settings.
Deprecated settings are not displayed by default in lvmconfig output
(except for --type current and --type diff). There's a new
"--showdeprecated" lvmconfig option to display them if needed.
Also, when using lvmconfig --withcomments, the comments with info
about deprecation are displayed for deprecated settings and with
lvmconfig --withversions, the version in which the setting was
deprecated is displayed in addition to the version of introduction.
If using --atversion with a version that is lower than the one
in which the setting was deprecated, the setting is then considered
as not deprecated (simply because at that version it was not
deprecated).
For example:
$ lvmconfig --type default activation
activation {
...
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated
activation {
...
mirror_region_size=512
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated --withversions
activation {
...
# Available since version 1.0.0.
# Deprecated since version 2.2.99.
mirror_region_size=512
# Available since version 2.2.99.
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated --withcomments
activation {
...
# Configuration option activation/mirror_region_size.
# This has been replaced by the activation/raid_region_size
# setting.
# Size (in KB) of each copy operation when mirroring.
# This configuration option is deprecated.
mirror_region_size=512
# Configuration option activation/raid_region_size.
# Size in KiB of each raid or mirror synchronization region.
# For raid or mirror segment types, this is the amount of
# data that is copied at once when initializing, or moved
# at once by pvmove.
raid_region_size=512
...
}
$ lvmconfig --type default activation --withcomments --atversion 2.2.98
activation {
...
# Configuration option activation/mirror_region_size.
# Size (in KB) of each copy operation when mirroring.
mirror_region_size=512
...
}
These settings are in the "unsupported" group:
devices/loopfiles
log/activate_file
metadata/disk_areas (section)
metadata/disk_areas/<disk_area> (section)
metadata/disk_areas/<disk_area>/size
metadata/disk_areas/<disk_area>/id
These settings are in the "advanced" group:
devices/dir
devices/scan
devices/types
global/proc
activation/missing_stripe_filler
activation/mlock_filter
metadata/pvmetadatacopies
metadata/pvmetadataignore
metadata/stripesize
metadata/dirs
Also, this patch causes the --ignoreunsupported and --ignoreadvanced
switches to be honoured for all config types (lvmconfig --type).
By default, the --type current and --type diff display unsupported
settings, the other types ignore them - this patch also introduces
--showunsupported switch for all these other types to display even
unsupported settings in their output if needed.
lvmconfig --type list displays plain list of configuration settings.
Some of the existing decorations can be used (--withsummary and
--withversions) as well as existing options/switches (--ignoreadvanced,
--ignoreunsupported, --ignorelocal, --atversion).
For example (displaying only "config" section so the list is not long):
$lvmconfig --type list config
config/checks
config/abort_on_errors
config/profile_dir
$ lvmconfig --type list --withsummary config
config/checks - If enabled, any LVM configuration mismatch is reported.
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found.
config/profile_dir - Directory where LVM looks for configuration profiles.
$ lvmconfig -l config
config/checks - If enabled, any LVM configuration mismatch is reported.
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found.
config/profile_dir - Directory where LVM looks for configuration profiles.
$ lvmconfig --type list --withsummary --withversions config
config/checks - If enabled, any LVM configuration mismatch is reported. [2.2.99]
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found. [2.2.99]
config/profile_dir - Directory where LVM looks for configuration profiles. [2.2.99]
Example with --atversion (displaying global section):
$ lvmconfig --type list global
global/umask
global/test
global/units
global/si_unit_consistency
global/suffix
global/activation
global/fallback_to_lvm1
global/format
global/format_libraries
global/segment_libraries
global/proc
global/etc
global/locking_type
global/wait_for_locks
global/fallback_to_clustered_locking
global/fallback_to_local_locking
global/locking_dir
global/prioritise_write_locks
global/library_dir
global/locking_library
global/abort_on_internal_errors
global/detect_internal_vg_cache_corruption
global/metadata_read_only
global/mirror_segtype_default
global/raid10_segtype_default
global/sparse_segtype_default
global/lvdisplay_shows_full_device_path
global/use_lvmetad
global/thin_check_executable
global/thin_dump_executable
global/thin_repair_executable
global/thin_check_options
global/thin_repair_options
global/thin_disabled_features
global/cache_check_executable
global/cache_dump_executable
global/cache_repair_executable
global/cache_check_options
global/cache_repair_options
global/system_id_source
global/system_id_file
$ lvmconfig --type list global --atversion 2.2.50
global/umask
global/test
global/units
global/suffix
global/activation
global/fallback_to_lvm1
global/format
global/format_libraries
global/segment_libraries
global/proc
global/locking_type
global/wait_for_locks
global/fallback_to_clustered_locking
global/fallback_to_local_locking
global/locking_dir
global/library_dir
global/locking_library
'lvm dumpconfig' now does a lot more than just dumping configuration
information and is no longer only a support tool. Users now need
to run it to find out about configuration information that has been
removed from the lvm.conf man page so we need to promote this to full
command line status as 'lvmconfig'. Also accept 'lvm config' and mention
it in the usage information of lvmconf (which should also get merged in
eventually).
With use_lvmetad=0, duplicate PVs /dev/loop0 and /dev/loop1,
where in this example, /dev/loop1 is the cached device
referenced by pv->dev, the command 'pvs /dev/loop0' reports:
Failed to find physical volume "/dev/loop0".
This is because the duplicate PV detection by pvid is
not working because _get_all_devices() is not setting
any dev->pvid for any entries. This is because the
pvid information has not yet been saved in lvmcache.
This is fixed by calling _get_vgnameids_on_system()
before _get_all_devices(), which has the effect of
caching the necessary pvid information.
With this fix, running pvs /dev/loop0, or pvs /dev/loop1,
produces no error and one line of output for the PV (the
device printed is the one cached in pv->dev, in this
example /dev/loop1.)
Running 'pvs /dev/loop0 /dev/loop1' produces no error
and two lines of output, with each device displayed
on one of the lines.
Running 'pvs -a' shows two PVs, one with loop0 and one
with loop1, and both shown as a member of the same VG.
Running 'pvs' shows only one of the duplicate PVs,
and that shows the device cached in pv->dev (loop1).
The above output is what the duplicate handling code
was previously designed to output in commits:
b64da4d8b5 toollib: search for duplicate PVs only when needed
3a7c47af0e toollib: pvs -a should display VG name for each duplicate PV
57d74a45a0 toollib: override the PV device with duplicates
c1f246fedf toollib: handle duplicate pvs in process_in_pv
As a further step after this, we may choose to change
some of those.
For all of these commands, a warning is printed about
the existence of the duplicate PVs:
Found duplicate PV ...: using /dev/loop1 not /dev/loop0
Add support for 2 new envvars for internal lvm2 test suite
(though it could be possible usable for other cases)
LVM_LOG_FILE_EPOCH
Whether to add 'epoch' extension that consist from
the envvar 'string' + pid + starttime in kernel units
obtained from /proc/self/stat.
LVM_LOG_FILE_UNLINK_STATUS
Whether to unlink the log depending on return status value,
so if the command is successful the log is automatically
deleted.
API is still for now experimental to catch various issue.
--withfullcomments prints all comment lines for each config option.
--withcomments prints only the first comment line, which should be
a short one-line summary of the option.
sharing connection between parent command and background
processes spawned from parent could lead to occasional failures
due to unexpected corruption in daemon responses sent to either child
or a parent.
lvmetad issued warning about duplicate config values in request.
LVM commands occasionaly failed w/ internal error after receving
corrupted response.
lvmetad connection is renewed when needed after explicit disconnect
in child
spawning a background polling from within the lv_change_activate
fn went to two problems:
1) vgchange should not spawn any background polling until after
the whole activation process for a VG is finished. Otherwise
it could lead to a duplicite request for spawning background
polling. This statement was alredy true with one exception of
mirror up-conversion polling (fixed by this commit).
2) due to current conditions in lv_change_activate lvchange cmd
couldn't start background polling for pvmove LVs if such LV was
about to get activated by the command in the same time.
This commit however doesn't alter the lvchange cmd so that it works same as
vgchange with regard to not to spawn duplicate background pollings per
unique LV.
If the user provides '-m #' (# > 0) with mappings
raid4/5/6, the command silently creates
'#mirrors * #stripes + #parity' image component pairs.
Patch rejects '-m #' altogether for those mappings
in order to avoid LV creation with unexpected layout.
- resolves bz#1209445
If the device name is not found in our metadata,
we cannot call strdup few lines later with NULL name.
More intersting story goes behind how it happens -
pvmove removal is unfortunatelly 'multi-state' process
and at some point (for now) we have in lvm2 metadata
LV pvmove0 as stripe and mirror image as error.
If such metadata are left - we fail with any further removal.
we do not allow 0 interval for pvmove command issued
without parameters with classical polldaemon. It would
query the kernel too often with possibly many pvmoves
in-progress.
So far pvmove_update_metadata (originaly _update_metadata) was
used for both initial and subsequent metadata updates during polling.
With a new polldaemon (lvmpolld) all operations that require polling
have to be split in two parts: The initiating one and the polling one.
The later step will be used from lvm command spawned by lvmpolld to
monitor and advance the mirror on next segment if required.
1) The initiation part is _update_metadata in pvmove.c which performs
only the first update, setting up the pvmove itself in metadata.
2) pvmove_update_metadata in pvmove_poll.c now handles all other
subsequent metadata updates except the last one.
Due to the split we could remove some code. Also some functions were
moved back to pvmove.c as they were suited for initialisation of pvmove
only.
This commit has no impact on functionality. Code required to
be visible outside lvconvert.c is just moved into new file
lvconvert_poll.c and some calls are made non-static and
declared in new header file lvconvert.h
This commit has no impact on functionality. Code required to
be visible outside pvmove.c is just moved into new file
pvmove_poll.c and some calls are made non-static and declared in
new header file pvmove.h
_check_lv_status was called from within dm_list_iterate_items cycle.
This was utterly wrong! _check_lv_status may remove more than one LV from
vg->lvs list we iterated in the same time.
In some scenarios this could lead to deadlock iterationg over same LV
indefinitely or segfault depending on the circumstances.
Fixed by moving the _check_lv_status outside iterating the vg->lvs
list.
Note that commit 6e7b24d34f was not enough
as _check_lv_status may result in removal of more than one LV from the list.
Do not keep dangling LVs if they're removed from the vg->lvs list and
move them to vg->removed_lvs instead (this is actually similar to already
existing vg->removed_pvs list, just it's for LVs now).
Once we have this vg->removed_lvs list indexed so it's possible to
do lookups for LVs quickly, we can remove the LV_REMOVED flag as
that one won't be needed anymore - instead of checking the flag,
we can directly check the vg->removed_lvs list if the LV is present
there or not and to say if the LV is removed or not then. For now,
we don't have this index, but it may be implemented in the future.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).
When we're iterating over LVs in _poll_vg fn, we need to use the safe
version of iteration - the LV can be removed from the list which we're
just iterating over if we're finishing or aborting pvmove operation.
There is no reason to support persistent major/minor numbers
for pool volumes - it's only meant to be supported for filesystems
(since i.e. nfs may need to keep volume on a persistent device node.)
Support for pools is now explicitely disabled and documented.
When lvm1 PVs are visible, and lvmetad is used, and the foreign
option was included in the reporting command, the reporting
command would fail after the 'pvscan all devs' function saw
the lvm1 PVs. There is no reason the command should fail
because of the lvm1 PVs; they should just be ignored.
Though vgremove operates per VG by definition, internally, it
actually means iterating over each LV it contains to do the
remove.
So we need to direct selection a bit in this case so that the
selection is done per-VG, not per-LV.
That means, use processing handle with void_handle.internal_report_for_select=0
for the process_each_lv_in_vg that is called later in vgremove_single fn.
We need to disable internal selection for process_each_lv_in_vg
here as selection is already done by process_each_vg which calls
vgremove_single. Otherwise selection would be done per-LV and not
per-VG as we intend!
An intra-release fix for commit 00744b053f.
Set ACCESS_NEEDS_SYSTEM_ID VG status flag whenever there is
a non-lvm1 system_id set. Prevents concurrent access from
older LVM2 versions.
Not set on VGs that bear a system_id only due to conversion
from lvm1 metadata.
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
"!dev_cache_get(argv[i], cmd->full_filter) && !rescan_done" --> "!rescan_done && !dev_cache_get(argv[i], cmd->full_filter)
Check the simple condition first (variable), then the function return value
(which in this case certainly takes more time to evaluate) - save some time.
Two problems fixed by this patch:
- PV tags were not recognized at all when using them with pvs
report that has only label fields (regression since 2.02.105)
- incorrect persistent .cache file to be generated after pvs
report that has only label fields (regression since 2.02.106)
These bugs come from the transition from process_each_pv to
process_each_label introduced by commit
67a7b7a87d and commit
490226fc47 and related.
Commands that can never use foreign VGs begin with
cmd->error_foreign_vgs = 1. This tells the vg_read
lib layer to print an error as soon as a foreign VG
is read.
The toollib process_each layer also prints an error if a
foreign VG is read, but is more selective about it. It
won't print an error if the command did not explicitly
name the foreign VG. We want to silently ignore foreign VGs
unless a command attempts to use one explicitly.
So, foreign VG errors are printed from two different layers:
vg_read (lower layer) and process_each (upper layer).
Commands that use toollib process_each, only want errors from
the process_each layer, not from both layers. So, process_each
disables the lower layer vg_read error message by setting
error_foreign_vgs = 0.
Commands that do not use toollib process_each, want errors
from the vg_read layer, otherwise they would get no error
message. The original cmd->error_foreign_vgs setting
enables this error.
(Commands that are allowed to operate on foreign VGs always
begin with cmd->error_foreign_vgs = 0, and all the commands
in this group use toollib process_each with the selective
error reporting.)
If an LV is already rw but still ro in the kernel, allow -prw to issue a
refresh to try to change the kernel state to rw.
Intended for use after clearing activation/read_only_volume_list in
lvm.conf.
The only realistic way for a host to have active LVs in a
foreign VG is if the host's system_id (or system_id_source)
is changed while LVs are active.
In this case, the active LVs produce an warning, and access
to the VG is implicitly allowed (without requiring --foreign.)
This allows the active LVs to be deactivated.
In this case, rescanning PVs for the VG offers no benefit.
It is not possible that rescanning would reveal an LV that
is active but wasn't previously in the VG metadata.
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
A foreign VG should be silently ignored by a reporting/display
command like 'vgs'. If the reporting/display command specifies
a foreign VG by name on the command line, it should produce an
error message.
Scanning commands pvscan/vgscan/lvscan are always allowed to
read and update caches from all PVs, including those that belong
to foreign VGs.
Other non-report/display/scan commands always ignore a foreign
VG, or report an error if they attempt to use a foreign VG.
vgimport should always invalidate the lvmetad cache because
lvmetad likely holds a pre-vgexported copy of the VG.
(This is unrelated to using foreign VGs; the pre-vgexported
VG may have had no system_id at all.)
Add --foreign to the remaining reporting and display commands plus
vgcfgbackup.
Add a NEEDS_FOREIGN_VGS flag for vgimport to always set --foreign.
If lvmetad is being used with --foreign, scan foreign VGs (currently
implemented as a full PV scan).
Handle these things centrally in lvmcmdline.c.
Also allow lvchange and vgchange -an/-aln to deactivate any foreign
LVs that happen to be active if something went wrong.
Remember to set the system ID when creating a new VG in vgsplit.
When checking whether the system ID permits access to a VG, check for
each permitted situation first, and only then issue the appropriate
error message. Always issue a message for now. (We'll try to
suppress some of those later when the VG concerned wasn't explicitly
requested.)
Add more messages to try to ensure every return code is checked and
every error path (and only an error path) contains a log_error().
Add self-correction to vgchange -c to deal with situations where
the cluster state and system ID state are out-of-sync (e.g. if
old tools were used).
Dop unused value assignments.
Unknown is detected via other combination
(!linear && !striped).
Also change the log_error() message into a warning,
since the function is not really returning error,
but still keep the INTERNAL_ERROR.
Ret value is always set later.
(This reverts patch #d95c6154)
Filter complete device list through full_filter unconditionally when
we're getting the list of *all* devices even in case we're interested
only in fraction of those devices - the PVs, not the other devices
which are not PVs yet (e.g. pvs vs. pvs -a).
We need to do this full filtering whenever we're handling *complete*
list of devices, we need to be safe here, mainly if there are any
future changes and we'd forgot to change to use proper filtering then.
Also properly preventing duplicates if there are any block subsystem
components used (mpath, MD ...).
Thing here is that (under use_lvmetad=1), cmd->filter can be used
only if we're sure that the list of devices we're filtering contains
only PVs. We have to use cmd->full_filter otherwise (like it is in
case of _get_all_devices fn which acquires complete list of devices,
no matter if it is a PV or not).
Of course, cmd->full_filter is more extensive than cmd->filter
which is only a subset of full_filter.
We could optimize this in a way that if we're interested in PVs only
during process_each_pv processing (e.g. using pvs in contrast to pvs -a),
we'd get the list of PV devices directly from lvmetad from the
lvmcache_seed_infos_from_lvmetad fn call which currently updates
lvmcache only. We'd add an additional output arg for this fn to get
the list of PV devices directly in addition, without a need to iterate
over all devices which include non-PVs which we're not interested in
anyway, hence we could use only cmd->filter, not the cmd->full_filter.
So the code would look something like this:
static int _get_all_devices(....)
{
struct device_id_list *dil;
if (interested_in_pvs_only)
lvmcache_seed_infos_from_lvmetad(cmd, &dil); /* new "dil" arg */
/* the "dil" list would be filtered through cmd->filter inside lvmcache_seed_infos_from_lvmetad */
else {
lvmcache_seed_infos_from_lvmetad(cmd, NULL);
dev_iter_create(cmd->full_filter)
while (dev = dev_iter_get ...) {
dm_list_add(all_devices, &dil->list);
}
}
}
It's cleaner this way - do not mix static and dynamic
(init_processing_handle) initializers. Use the dynamic one everywhere.
This makes it easier to manage the code - there are no "exceptions"
then and we don't need to take care about two ways of initializing the
same thing - just use one common initializer throughout and it's clear.
Also, add more comments, mainly in the report_for_selection fn explaining
what is being done and why with respect to the processing_handle and
selection_handle.
Invalid devices no longer included in the counters printed at the end.
May now need to use --ignoreskippedcluster if relying upon exit status.
If more than one change is requested per-PV, attempt to perform them
all. Note that different arguments still handle exit status
differently.
We still need to get the list as the calls underneath process_each_pv
rely on this list. But still keep the change related to the filters -
if we're processing all devices, we need to use cmd->full_filter.
If we're processing only PVs, we can use cmd->filter only to save
some time which would be spent in filtering code.
When lvmetad is used and at the same time we're getting list of all
PV-capable devices, we can't use cmd->filter (which is used to filter
out lvmetad responses - so we're sure that the devices are PVs already).
To get the list of PV-capable devices, we're bypassing lvmetad (since
lvmetad only caches PVs, not all the other devices which are not PVs).
For this reason, we have to use the "full_filter" filter chain (just
like we do when we're running without lvmetad).
Example scenario:
- sdo and sdp components of MD device md0
- sdq, sdr and sds components of mpatha multipath device
- mpatha multipath device partitioned
- vda device partitioned
=> sdo,sdp,sdr,sds, mpatha and vda should be filtered!
$ lsblk -o NAME,TYPE
NAME TYPE
sdn disk
sdo disk
`-md0 raid0
sdp disk
`-md0 raid0
sdq disk
`-mpatha mpath
`-mpatha1 part
sdr disk
`-mpatha mpath
`-mpatha1 part
sds disk
`-mpatha mpath
`-mpatha1 part
vda disk
|-vda1 part
`-vda2 part
|-fedora-swap lvm
`-fedora-root lvm
Before this patch:
==================
use_lvmetad=0 (correct behaviour!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
use_lvmetad=1 (incorrect behaviour - sdo,sdp,sdq,sdr,sds and mpatha not filtered!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/sdo --- 0 0
/dev/sdp --- 0 0
/dev/sdq --- 0 0
/dev/sdr --- 0 0
/dev/sds --- 0 0
/dev/vda --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
With this patch applied:
========================
use_lvmetad=1
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
List of all devices is only needed if we want to process devices
which are not PVs (e.g. pvs -a). But if this is not the case, it's
useless to get the list of all devices and then discard it without
any use, which is exactly what happened in process_each_pv where
the code was never reached and the list was unused if we were
processing just PVs, not all PV-capable devices:
int process_each_pv(...)
{
...
process_all_devices = process_all_pvs &&
(cmd->command->flags & ENABLE_ALL_DEVS) &&
arg_count(cmd, all_ARG);
...
/*
* If the caller wants to process all devices (not just PVs), then all PVs
* from all VGs are processed first, removing them from all_devices. Then
* any devs remaining in all_devices are processed.
*/
_get_all_devices(cmd, &all_devices);
...
ret = _process_pvs_in_vgs(...);
...
if (!process_all_devices)
goto out;
ret = _process_device_list(cmd, &all_devices, handle, process_single_pv);
...
}
This patch adds missing check for "process_all_devices" and it gets the
list of all (including non-PV) devices only if needed:
This is a followup patch for previous patchset that enables selection in
process_each_* fns to fix an issue where field prefixes are not
automatically used for fields in selection criteria.
Use initial report type that matches the intention of each process_each_* functions:
- _process_pvs_in_vg - PVS
- process_each_vg - VGS
- process_each_lv and process_each_lv_in_vg - LVS
This is not normally needed for the selection handle init, BUT we would
miss the field prefix matching, e.g.
lvchange -ay -S 'name=lvol0'
The "name" above would not work if we didn't initialize reporting with
the LVS type at its start. If we pass proper init type, reporting code
can deduce the prefix automatically ("lv_name" in this case).
This report type is then changed further based on what selection criteria we
have. When doing pure selection, not report output, the final report type
is purely based on combination of this initial report type and report types
of the fields used in selection criteria.
We already allowed -S|--select with {vg,lv,pv}display -C (which
was then equal to {vg,lv,pv}s command. Since we support selection
in toolib now, we can support -S also without using -C in *display
commands now.
pvchange is an exception that does not use toollib yet for iterating
over the list of PVs (process_each_pv) so intialize the
processing_handle and use just like it's used in toollib.
We have 3 input report types:
- LVS (representing "_select_match_lv")
- VGS (representing "_select_match_vg")
- PVS (representing "_select_match_pv")
The input report type is saved in struct selection_handle's "orig_report_type"
variable.
However, users can use any combination of fields of different report types in
selection criteria - the resulting report type can thus differ. The struct
selection_handle's "report_type" variable stores this resulting report type.
The resulting report_type can end up as one of:
- LVS
- VGS
- PVS
- SEGS
- PVSEGS
This patch adds logic to report_for_selection based on (sensible) combination
of orig_report_type and report_type and calls appropriate reporting functions
or iterates over multiple items that need reporting to determine the selection
result.
The report_for_selection does the actual "reporting for selection only".
The selection status will be saved in struct selection_handle's "selected"
variable.
The code to determine final report type based on combination of input
report type (determined from fields used for reporting to output and selection)
can be reused for pure reporting for selection - factor out this code into
_get_final_report_type function.
This applies to:
- process_each_lv_in_vg - the VG is selected only if at least one of its LVs is selected
- process_each_segment_in_lv - the LV is selected only if at least one of its LV segments is selected
- process_each_pv_in_vg - the VG is selected only if at least one of its PVs is selected
- process_each_segment_in_pv - the PV is selected only if at least one of its PV segments is selected
So this patch causes the selection result to be properly propagated up to callers.
Call _init_processing_handle, _init_selection_handle and
_destroy_processing_handle in process_each_* and related functions to
set up and destroy handles used while processing items.
The init_processing_handle, init_selection_handle and
destroy_processing_handle are helper functions that allocate and
initialize the handles used when processing items in process_each_*
and related functions.
The "struct processing_handle" contains handles to drive the selection/matching
so pass it to the _select_match_* functions which are entry points to the
selection mechanism used in process_each_* and related functions.
This is revised and edited version of former Dave Teigland's patch which
provided starting point for all the select support in process_each_* fns.
The new "report_init_for_selection" is just a wrapper over
dm_report_init_with_selection that initializes reporting for selection
only. This means we're not going to do the actual reporting to output
for display and as such we intialize reporting as if no fields are reported
or sorted. The only fields "reported" are taken from the selection criteria
string and all such fields are marked as hidden automatically (FLD_HIDDEN flag).
These fields are used solely for selection criteria matching.
Also, modify existing report_object function that was used for reporting to
output for display. Now, it can either cause reporting to output or reporting
for selection only. The selection result is stored in struct selection_handle's
"selected" variable which can be handled further by any report_object caller.
This patch replaces "void *handle" with "struct processing_handle *handle"
in process_each_*, process_single_* and related functions.
The struct processing_handle consists of two handles inside now:
- the "struct selection_handle *selection_handle" used for
applying selection criteria while processing process_each_*,
process_single_* and related functions (patches using this
logic will follow)
- the "void* custom_handle" (this is actually the original handle
used before this patch - a pointer to custom data passed into
process_each_*, process_single_* and related functions).
Once LVM_COMMAND_PROFILE environment variable is specified, the profile
referenced is used just like it was specified using "<lvm command> --commandprofile".
If both --commandprofile cmd line option and LVM_COMMAND_PROFILE env
var is used, the --commandprofile cmd line option gets preference.
After commit 158e998876 where we may
start to readlv_attr with a 'shared' ioctl call for a single lvs line
we where obtaing single status for thin pools.
However this is not properly reflecting lvm2 reality.
Correcting this by reading lv status from layered thin pool, but lv info
from non-layered (linear) mapped device which is maintained for proper
cluster locking.
When repairing thin pool or swapping thin pool metadata,
preserve chunk_size property and avoid to be automatically changed
later in the code to better match thin pool metadata size.
Add separate LVSINFOSTATUS field type for fields which display both
dm info-like and dm status-like information.
The internal interface is there with the introduction of LVSSTATUS
field type which can cope with the combination of LVSSTATUS
and LVSINFO field types (several fields).
However, till now, we considered that *single* field can display
either LVSINFO or LVSSTATUS, but not both at the same time.
Till now, we haven't had single field which needs both - hence
add LVSINFOSTATUS field type for such fields as we currently
need this for the lv_attr field which requires combination of
info and status.
This patch just adds interface for an ability to register such fields
(the code that copes with this is already in).
A full search for duplicate PVs in the case of pvs -a
is only necessary when duplicates have previously been
detected in lvmcache. Use a global variable from lvmcache
to indicate that duplicate PVs exist, so we can skip the
search for duplicates when none exist.
Previously, 'pvs -a' displayed the VG name for only the device
associated with the cached PV (pv->dev), and other duplicate
devices would have a blank VG name. This commit displays the
VG name for each of the duplicate devices. The cost of doing
this is not small: for each PV processed, the list of all
devices must be searched for duplicates.
When multiple duplicate devices are specified on the
command line, the PV is processed once for each of them,
but pv->dev is the device used each time.
This overrides the PV device to reflect the duplicate
device that was specified on the command line. This is
done by hacking the lvmcache to replace pv->dev with the
device of the duplicate being processed. (It would be
preferable to override pv->dev without munging the content
of the cache, and without sprinkling special cases throughout
the code.)
This override only applies when multiple duplicate devices are
specified on the command line. When only a single duplicate
device of pv->dev is specified, the priority is to display the
cached pv->dev, so pv->dev is not overridden by the named
duplicate device.
In the examples below, loop3 is the cached device referenced
by pv->dev, and is given priority for processing. Only after
loop3 is processed/displayed, will other duplicate devices
loop0/loop1 appear (when requested on the command line.)
With two duplicate devices, loop0 and loop3:
# pvs
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs -o+dev_size /dev/loop0 /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
With three duplicate devices, loop0, loop1, loop3:
# pvs -o+dev_size
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3 /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3 /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0 /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0 /dev/loop1 /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
Processes a PV once for each time a device with its PV ID
exists on the command line.
This fixes a regression in the case where:
. devices /dev/sdA and /dev/sdB where clones (same PV ID)
. the cached VG references /dev/sdA
. before the regression, the command: pvs /dev/sdB
would display the cached device clone /dev/sdA
. after the regression, pvs /dev/sdB would display nothing,
causing vgimportclone /dev/sdB to fail.
. with this fix, pvs /dev/sdB displays /dev/sdA
Also, pvs /dev/sdA /dev/sdB will report two lines, one for each
device on the command line, but /dev/sdA is displayed for each.
This only works without lvmetad.
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
API for seg reporting is breaking internal lvm coding - it cannot
use vgmem mem pool for allocation of reported value.
So use separate pool instead of 'vgmem' for non vg related allocations
Add consts for many function params - but still many other are left
for now as non-const - needs deeper level of change even on libdm side.
If pvscan is run with device path instead of major:minor pair and this
device still exists in the system and the device is not visible anymore
(due to a filter that is applied), notify lvmetad properly about this.
This makes it more consistent with respect to existing pvscan with
major:minor which already notifies lvmetad about device that is gone
due to filters.
However, if the device is not in the system anymore, we're not able
to translate the original device path into major:minor pair which
lvmetad needs for its action (lvmetad_pv_gone fn). So in this case,
we still need to use major:minor pair only, not device path. But at
least make "pvscan --cache DevicePath" as near as possible to "pvscan
--cahce <major>:<minor>" functionality.
Also add a note to pvscan man page about this difference when using
pvscan --cache with DevicePath and major:minor pair.
When processing PVs specified on the command line, the arg
name was being matched against pv_dev_name, which will not
always work:
- The PV specified on the command line could be an alias,
e.g. /dev/disk/by-id/...
- The PV specified on the command line could be any random
path to the device, e.g. /dev/../dev/sdb
To fix this, first resolve the named PV args to struct device's,
then iterate through the devices for processing.
The {pv,vg,lv}display *do* use reporting in case "-C|--columns" is used.
The man page was correct, the recognition for the --binary was missing
in the code though!
The call to dm_config_destroy can derefence result->mem
while result is still NULL:
struct dm_config_tree *get_cachepolicy_params(struct cmd_context *cmd)
{
...
int ok = 0;
...
if (!(result = dm_config_flatten(current)))
goto_out;
...
ok = 1;
out:
if (!ok) {
dm_config_destroy(result)
...
}
...
}
ignore_vg now returns 0 for the FAILED_CLUSTERED case,
so all the ignore_vg 1 cases will return vg's with an
empty vg->pvs, so we do not need to iterate through
vg->pvs to remove the entries from the devices list.
Clean up whitespace problems in that area from the
previous commit.
- Fix problems with recent changes related to skipping in:
. _process_vgnameid_list
. _process_pvs_in_vgs
- Undo unnecessary changes to the code structure and readability.
- Preserve valid but minor changes:
. testing FAILED bit values in ignore_vg
. using "skip" value from ignore_vg instead of "ret" value
. applying the sigint check to the start of all loops
. setting stack backtrace when ECMD_PROCESSED is not returned,
i.e. apply the following pattern:
ret = process_foo();
if (ret != ECMD_PROCESSED)
stack;
if (ret > ret_max)
ret_max = ret;
Extend/fix d8923457b8 commit.
'skip'-ed VG is not holding any lock - so don't unlock such VG.
At the same time simplify the code around and relase VG at a single
place and unlock only not skiped and not ignored VGs.
Rework ignore_vg() API so it properly handles
multiple kind of vg_read_error() states.
Skip processing only otherwise valid VG.
Always return ECMD_FAILED when break is detected.
Check sigint_caught() in front of dm iterator loop.
Add stack for _process failing ret codes.
Move common code into shared internal fn so the logic for getting the
LV info as well LV segment status is not scattered around - call common
_do_info_and_status to gather required parts in reporting handlers.
- Add separate lv_status fn (if we're interested only in seg status,
but not lv info at the same time as it is with existing
lv_info_with_seg_status fn). So we 3 fns:
- lv_info (existing one, runs only info ioctl, fills in struct lvinfo only)
- lv_status (new one, runs status ioctl, fills in struct lv_seg_status only)
- lv_info_with_seg_status (existing one, runs status ioctl, fills
in struct lvinfo as well as lv_seg_status)
- Add more comments in the code explaining the difference between lv_info,
lv_status and lv_info_with_seg_status and their return values.
- Move decision whether lv_info_with_seg_status needs to call only
status ioctl (in case the segment for which we require status is from
the LV for which we require info) or separate status and info ioctl
(in case the segment for which we require status is from different
LV that the one for which we require info) into
lv_info_with_seg_status fn so caller doesn't need to bother about
this at all.
- Cleanup internal interface for this seg status so it's more readable.
LVM2.2.02.112/tools/toollib.c:1991: leaked_storage: Variable "iter" going out of scope leaks the storage it points to.
LVM2.2.02.112/lib/filters/filter-usable.c:89: leaked_storage: Variable "f" going out of scope leaks the storage it points to.
LVM2.2.02.112/lib/activate/dev_manager.c:1874: leaked_handle: Handle variable "fd" going out of scope leaks the handle.
Similar to LVSINFO type which gathers LV + its DM_DEVICE_INFO, the
new LVSSTATUS/SEGSSTATUS report type will gather LV/segment + its
DM_DEVICE_STATUS.
Since we can report status only for certain segment, in case
of LVSSTATUS we need to choose which segment related to the LV
should be processed that represents the "LV status". In case of
SEGSSTATUS type it's clear - the status is reported for the
segment just processed.
The former struct lv_with_info is renamed to lv_with_info_and_seg_status as it can
hold more than just "info", there's lv's segment status now in addition:
struct lv_with_info_and_seg_status {
struct logical_volume *lv;
struct lvinfo *info;
struct lv_seg_status *seg_status;
}
Where struct lv_seg_status is:
struct lv_seg_status {
struct dm_pool *mem;
struct lv_segment lv_seg;
lv_seg_status_type_t type;
void *status; /* struct dm_status_* */
}
Where lv_seg points to lv's segment that is being reported or
processed in general.
New struct lv_seg_status keeps the information about segment status -
the status retrieved via DM_DEVICE_STATUS ioctl. This information will
be used for reporting dm device target status for the LV segment
specified.
So this patch introduces third level of LV information that is
kept for reuse while reporting fields within one reporting line,
causing only one DM_DEVICE_STATUS ioctl call per LV segment line
reported (otherwise we'd need to call the DM_DEVICE_STATUS for each
segment status field in one LV segment/reporting line which is not
efficient).
This is following exactly the same principle as already introduced
by commit ecb2be5d16.
So currently we have three levels of information that can be used
to report an LV/LV segment:
- LV metadata itself (struct logical_volume *lv)
- LV's DM_DEVICE_INFO ioctl result (struct lvinfo *info)
- LV's segment DM_DEVICE_STATUS ioctl result (this status must be
bound to a segment, not the whole LV as the whole LV may be
composed of several segments of course)
(this is the new struct lv_seg_status *seg_status)
Let's use this function for more activations in the code.
'needs_exlusive' will enforce exlusive type for any given LV.
We may want to activate LV in exlusive mode, even when we know
the LV (as is) supports non-exlusive activation as well.
lvcreate -ay -> exclusive & local
lvcreate -aay -> exclusive & local
lvcreate -aly -> exclusive & local
lvcreate -aey -> exclusive (might be on any node).
LVSINFO is just a subtype of LVS report type with extra "info" ioctl
called for each LV reported (per output line) so include its processing
within "case LVS" switch, not as completely different kind of reporting
which may be misleading when reading the code.
There's already the "lv_info_needed" flag set in the _report fn, so
call the approriate reporting function based on this flag within the
"case LVS" switch line.
Actually the same is already done for LV is reported per segments
within the "case SEGS" switch line. So this patch makes the code more
consistent so it's processed the same way for all cases.
Also, this is a preparation for another and new subtype that will
be introduced later - the "LVSSTATUS" and "SEGSSTATUS" report type.
Tool will use internal activation of unused cache pool to
clear metadata area before next use of cache-pool.
So allow to deactivation unused pool in case some error
case happend and we were not able to deactivation pool
right after metadata wipe.
New size_mb_arg_with_percent is able to read size_mb_arg
but also it's able to read % values.
Percent parsing is share with int_arg_with_sign_and_percent.
If root has locales with different decimal point then '.'
(i.e. Czech with ',') lets be tolerant and retry with
"C" locales in the case '.' is found during parse of number.
Locales are then restored back.