IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.
Use proper vgmem memory pool for allocation of LV name in the vg
and check if new renamed LV is a valid name.
TODO: validation should really use also VG name, othewise we are not
able to tell "vgname-lvname" will be valid.
Create a separate function to validation snapshot min chunk value
and relocate code into snapshot_manip file.
This function will be shared with lvconvert then.
When we create thin-pool we have used trick to keep
volume active, but since we now support TEMPORARY flag,
we could just localy active & deactive metadata LV,
and let the thinpool through normal activation process.
When pool_has_message() is queried with NULL lv and 0 device_id
it should just return 'true' when there is any message queued.
So it needs to return negative value dm_list_empty().
Since there is no user for this code path in code currently,
this bug has not been triggered.
The same as for allocation/thin_pool_chunk_size - the default value
used is just a starting point. The calculation continues using the
properties of the devices actually used.
The allocation/thin_pool_chunk_size is a bit more complex. It's default
value is evaluated in runtime based on selected thin_pool_chunk_size_policy.
But the value is just a starting point. The calculation then continues
with dependency on the properties of the devices used. Which means for
such a default value, we know only the starting value.
Move flags for segments to segtype header where it seems more closely
related as the features are related to segtype and not activation.
Use unsigned #define - since it's more common in lvm2 source code
for bit flags.
Condition was swapped - however since it's been based on 'random'
memory content it's been missed as attribute has not been set.
So now we have quite a few possible results when testing.
We have old status without separate metadata and
we have kernels with fixed snapshot leak bug.
(in-release update)
Code uses target driver version for better estimation of
max size of COW device for snapshot.
The bug can be tested with this script:
VG=vg1
lvremove -f $VG/origin
set -e
lvcreate -L 2143289344b -n origin $VG
lvcreate -n snap -c 8k -L 2304M -s $VG/origin
dd if=/dev/zero of=/dev/$VG/snap bs=1M count=2044 oflag=direct
The bug happens when these two conditions are met
* origin size is divisible by (chunk_size/16) - so that the last
metadata area is filled completely
* the miscalculated snapshot metadata size is divisible by extent size -
so that there is no padding to extent boundary which would otherwise
save us
Signed-off-by:Mikulas Patocka <mpatocka@redhat.com>
While stripe size is twice the physical extent size,
the original code will not reduce stripe size to maximum
(physical extent size).
Signed-off-by: Zhiqing Zhang <zhangzq.fnst@cn.fujitsu.com>
Start to convert percentage size handling in lvresize to the new
standard. Note in the man pages that this code is incomplete.
Fix a regression in non-percentage allocation in my last check in.
This is what I am aiming for:
-l<extents>
-l<percent> LV/ORIGIN
sets or changes the LV size based on the specified quantity
of logical logical extents (that might be backed by
a higher number of physical extents)
-l<percent> PVS/VG/FREE
sets or changes the LV size so as to allocate or free the
desired quantity of physical extents (that might amount to a
lower number of logical extents for the LV concerned)
-l+50%FREE - Use up half the remaining free space in the VG when
carrying out this operation.
-l50%VG - After this operation, this LV should be using up half the
space in the VG.
-l200%LV - Double the logical size of this LV.
-l+100%LV - Double the logical size of this LV.
-l-50%LV - Reduce the logical size of this LV by half.
Parsing vg structure during supend/commit/resume may require a lot of
memory - so move this into vg_write.
FIXME: there are now multiple cache layers which our doing some thing
multiple times at different levels. Moreover there is now different
caching path with and without lvmetad - this should be unified
and both path should use same mechanism.
Several fixes for the recent changes that treat allocation percentages
as upper limits.
Improve messages to make it easier to see what is happening.
Fix some cases that failed with errors when they didn't need to.
Fix crashes when first_seg() returns NULL.
Remove a couple of log_errors that were actually debugging messages.
Remove 'skip' argument passed into the function.
We always used '0' - as this is the only supported
option (-K) and there is no complementary option.
Also add some testing for behaviour of skipping.
When an origin exists and the 'lvcreate' command is used to create
a cache pool + cache LV, the table is loaded into the kernel but
never instantiated (suspend/resume was never called). A user running
LVM commands would never know that the kernel did not have the
proper state unless they also ran the dmsetup 'table/status' command.
The solution is to suspend/resume the cache LV to make the loaded
tables become active.
Introduce a new parameter called "approx_alloc" that is set when the
desired size of a new LV is specified in percentage terms. If set,
the allocation code tries to get as much space as it can but does not
fail if can at least get some.
One of the practical implications is that users can now specify 100%FREE
when creating RAID LVs, like this:
~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
Users now have the ability to convert their existing logical volumes
into cached logical volumes. A cache pool LV must be specified using
the '--cachepool' argument. The cachepool is the small, fast LV used
to cache the large, slow LV that is being converted.
lv_active_change will enforce proper activation.
Modification of activation was wrong and lead to misuse of
autoactivation. Fix allows to use proper local exclusive activation,
while the removed code turned this into just exclusive
activation (losing required local property).
The libblkid can detect DM_snapshot_cow signature and when creating
new LVs with blkid wiping used (allocation/use_blkid_wiping=1 lvm.conf
setting and --wipe y used at the same time - which it is by default).
Do not issue any prompts about this signature when new LV is created
and just wipe it right away without asking questions. Still keep the
log in verbose mode though.
gcc reports:
metadata/merge.c:229:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
metadata/merge.c:232:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
A cache LV - from LVM's perpective - is a user accessible device that
links the cachepool LV and the origin LV. The following functions
were added to facilitate the creation and removal of this top-level
LV:
1) 'lv_cache_create' - takes a cachepool and an origin device and links
them into a new top-level LV of 'cache' segment type. No allocation
is necessary in this function, as the sub-LVs contain all of the
necessary allocated space. Only the top-level layer needs to be
created.
2) 'lv_cache_remove' - this function removes the top-level LV of a
cache LV - promoting the cachepool and origin sub-LVs to top-level
devices and leaving them exposed to the user. That is, the
cachepool is unlinked and free to be used with another origin to
form a new cache LV; and the origin is no longer cached.
(Currently, if the cache needs to be flushed, it is done in this
function and the function waits for it to complete before proceeding.
This will be taken out in a future patch in favor of polling.)