IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The new standard in the storage industry is to default alignment of data
areas to 1MB. fdisk, parted, and mdadm have all been updated to this
default.
Update LVM to align the PV's data area start (pe_start) to 1MB. This
provides a more useful default than the previous default of 64K (which
generally ended up being a 192K pe_start once the first metadata area
was created).
Before this patch:
# pvs -o name,vg_mda_size,pe_start
PV VMdaSize 1st PE
/dev/sdd 188.00k 192.00k
After this patch:
# pvs -o name,vg_mda_size,pe_start
PV VMdaSize 1st PE
/dev/sdd 1020.00k 1.00m
The heuristic for setting the default alignment for LVM data areas is:
- If the default value (1MB) is a multiple of the detected alignment
then just use the default.
- Otherwise, use the detected value.
In practice this means we'll almost always use 1MB -- that is unless:
- the alignment was explicitly specified with --dataalignment
- or MD's full stripe width, or the {minimum,optimal}_io_size exceeds
1MB
- or the specified/detected value is not a power-of-2
Introduce --norestorefile to allow user to override the new requirement.
This can also be overridden with "devices/require_restorefile_with_uuid"
in lvm.conf -- however the default is 1.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
We can already detect MD devices internally. But when using MD partitions,
these have "block extended major" (blkext) assigned (259). Blkext major
is also used in general, so we need to check whether the original device
is an MD device actually.
An incorrect fix on July 13, 2010 for an annoyance has caused a regression.
The offending check-in was part of the 2.02.71 release of LVM. That
check-in caused any PVs specified on the command line to be ignored when
performing a mirror split.
This patch reverses the aforementioned check-in (solving the regressions)
and posits a new solution to the list reversal problem. The original
problem was that we would always take the lowest mimage LVs from a mirror
when performing a split, but what we really want is to take the highest
mimage LVs. This patch accomplishes that by working through the list in
reverse order - choosing the higher numbered mimages first. (This also
reduces the amount of processing necessary.)
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Reviewed-by: Takahiro Yasui <takahiro.yasui@hds.com>
corruption bug in cmirror. 'dm_bit' is only ever used as a boolean operation
within LVM, but it can return a range of values. If the bit is set, a power of
2 is returned. If the bit is unset, 0 is returned.
'log_test_bit' (a function in the cluster mirror log daemon code) has switched
to using the dm bit operations in rhel6. There are two places in the daemon
code where 'log_test_bit' is not used merely as a boolean, but rather the
return value is used as the return value for the log functions 'is_clean' and
'in_sync' - having assumed that 'dm_bit' was returning 0 or 1 only.
One place the 'in_sync' function is utilized is in 'dm_rh_get_state' - a
function that informs the mirroring code how to treat I/O and which devices to
read/write from. 'dm_rh_get_state' was checking if the return value of
'in_sync' was 1 to determine if the region was DM_RH_CLEAN. Since 'dm_bit'
(and by extension 'log_test_bit' and 'in_sync') was returning powers of 2,
DM_RH_CLEAN was rarely being reported as it should have been. Thinking the
region was out-of-sync, the mirroring code would write only to the primary
device. When the primary device was failed, all of those writes were lost -
leaving the entire mirror corrupted.
udev_sync feature requires semaphores (part of System V IPC) to be configured
in kernel (CONFIG_SYSVIPC). Check whether it is supported and if not, give
a warning message and disable udev synchronisation code automatically to
avoid any further error states and associated problems.
One should use the kernel with System V IPC support enabled or libdevmapper
with udev_sync feature disabled.
all but one mirror leg.
<patch header>
To handle a double failure of a mirrored log, Jon's two patches are
commited, however, lvconvert command can't still handle an error
when mirror leg and mirrored log got failure at the same time.
[Patch]: Handle both devices of a mirrored log failing (bug 607347)
posted: https://www.redhat.com/archives/lvm-devel/2010-July/msg00009.html
commit: https://www.redhat.com/archives/lvm-devel/2010-July/msg00027.html
[Patch]: Handle both devices of a mirrored log failing (bug 607347) -
additional fix
posted: https://www.redhat.com/archives/lvm-devel/2010-July/msg00093.html
commit: https://www.redhat.com/archives/lvm-devel/2010-July/msg00101.html
In the second patch, the target type of mirrored log is replaced with
error target when remove_log is set to 1, but this procedure should be
also used in other cases such as the number of mirror leg is 1. This
patch relocates the procedure to the main path.
In addition, I added following three changes.
- Removed tmp_orphan_lvs handling procedure
It seems that _delete_lv() can handle detached_log_lv properly
without adding mirror legs in mirrored log to tmp_orphan_lvs.
Therefore, I removed the procedure.
- Removed vg_write()/vg_commit()
Metadata is saved by vg_write()/vg_commit() just after detached_log_lv
is handled. Therefore, I removed vg_write()/vg_commit().
- With Jon's second patch, we think that we don't have to call
remove_mirror_log() in _lv_update_mirrored_log() because will be
handled remove_mirror_images() in _lvconvert_mirrors_repaire().
</patch header>
Signed-off-by: Takahiro Yasui <takahiro.yasui@hds.com>
Reviewed-by: Petr Rockai <prockai@redhat.com>
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
The cluster log daemon (cmirrord) is not multi-threaded and
can handle only one request at a time. When a log is stacked
on top of a mirror (which itself contains a 'core' log), it
creates a situation that cannot be solved without threading.
When the top level mirror issues a "resume", the log daemon
attempts to read from the log device to retrieve the log
state. However, the log is a mirror which, before issuing
the read, attempts to determine the 'sync' status of the
region of the mirror which is to be read. This sync status
request cannot be completed by the daemon because it is
blocked on a read I/O to the very mirror requesting the
sync status.
With mirror_log_fault_policy of 'remove' and mirror_image_fault_policy
of 'allocate', the log type of the mirror volume is converted from
'disk' or 'mirrored' to 'core' when all mirror legs but one in a mirror
volume broke.
Keep new_log_count as a number of valid log devices by using log_count
variable for a temporary usage in the first phase of error recovery
in _lvconvert_mirrors_repair().
Signed-off-by: Takahiro Yasui <takahiro.yasui@hds.com>
Reviewed-by: Petr Rockai <prockai@redhat.com>
There was missing "revert" call in _create_and_load_v4 fn while the preparation
for table load ends up with failure in create/load/resume sequence. Otherwise
we could end up with a device being created, but not table-loaded nor resumed.
Even though the table is not loaded and the device is not resumed at this
stage, we still need to synchronize with udev when calling the revert
"remove" ioctl - there's still a remove uevent generated! The "revert"
code does exactly that.