IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This patch adds a new implementation of locking function instead
of mlockall() that may lock way too much memory (>100MB).
New function instead uses mlock() system call and selectively locks
memory areas from /proc/self/maps trying to avoid locking areas
unused during lock-ed state.
Patch also adds struct cmd_context to all memlock() calls to have
access to configuration.
For backward compatibility functionality of mlockall()
is preserved with "activation/use_mlockall" flag.
As a simple check, locking and unlocking counts the amount of memory
and compares whether values are matching.
lvm2 devices have always UUID set even if imported from lvm1 metadata.
Patch removes name argument from dev_manager_info call and converts
all activation related calls to use query by UUID.
Also it simplifies mknode call (which is the only user on mknodes parameter).
"snapshot-merge" target based on whether the LV is a merging snapshot.
When activating a snapshot-merge target do not attempt to monitor the
LV for events; the polldaemon will monitor the snapshot as it is
merged.
Allow "snapshot-merge" target's usage to be parsed via standard
"snapshot" methods.
NOTE: follow on fixes to the _percent_run change are still needed
pvmove suspends all moved LVs + pvmoveX mirrored LV itself.
This suspends even underlying pvmoveX and following explicit
suspend call is just noop.
But in resume the pvmoveX volume is no longer underlying
device for moved LVs, so it performs full resume with memlock
decrease.
Code must call memlock_inc() if suspend is requested, volume
is already suspended and error is not requested.
lv_deactivate now returns always success, because tree deactivation
functions (see dm_tree_deactivate_children) always returns success.
Because code should return failure in lv_deactivate at least,
fix it by checking for device existence after real deactivation call.
(After discussion this was prefered solution to dm tree function rewrite
which affects snapshots and mirrors.)
During vgreduce is failed mirror image replaced with error segment,
this segmant type has always area_count == 0.
Current code expects that there is at least one area with device,
patch fixes it by additional check (fixes segfault during vgreduce).
Also do not calculate readahead in every lv_info call, we only need
to cache PV readahead before activation calls which locks memory.
When we are stacking LV over device, which has for some reason
increased read_ahead (e.g. MD RAID), the read_ahead hint
for libdevmapper is wrong (it is zero).
If the calculated read_ahead hint is zero, patch uses read_ahead of underlying device
(if first segment is PV) when setting DM_READ_AHEAD_MINIMUM_FLAG.
Because we are using dev-cache, it also store this value to cache for future use
(if several LVs are over one PV, BLKRAGET is called only once for underlying device.)
This should fix all the reamining problems with readahead mismatch reported
for DM over MD configurations (and similar cases).
Current code, when need to ensure that volume is not
active on remote node, it need to try to exclusive
activate volume.
Patch adds simple clvmd command which queries all nodes
for lock for given resource.
The lock type is returned in reply in text.
(But code currently uses CR and EX modes only.)
The vg->lv_count parameter now includes always number of visible
logical volumes.
Note that virtual snapshot volume (snapshotX) is never visible,
but it is stored in metadata with visible flag.
Using argv[] list in exec_cmd() to allow more params for external commands.
Fsadm does not allow checking mounted filesystem.
Fsadm no longer accepts 'any other key' as 'no' answer to y/n.
Fsadm improved handling of command line options.
Handles non-clustered as well as clustered. For clustered,
the best we can do is try exclusive local activation. If this
succeeds, we know it is not active elsewhere in the cluster.
Otherwise, we assume it is active elsewhere.