IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
While normally the 'mmap' file reading is better utilizing resources,
it has also its odd side with handling errors - so while we normally
use the mmap only for reading regular files from root filesystem
(i.e. lvm.conf) we can't prevent error to happen during the read
of these file - and such error unfortunately ends with SIGBUS error.
Maintaing signal handler would be compilated - so switch to slightly
less effiecient but more error resistant read() functinality.
reproducible steps:
1. vgcreate vg1 /dev/sda /dev/sdb
2. lvcreate --type raid0 -l 100%FREE -n raid0lv vg1
3. do remove the /dev/sdb action
4. lvdisplay show wrong 'LV Status'
After removing raid0 type LV underlying dev, lvdisplay still display
'available'. This is wrong status for raid0.
This patch add a new function raid_is_available(), which will handle
all raid case.
With this patch, lvdisplay will show
from:
LV Status available
to:
LV Status NOT available (partial)
Reviewed-by: Enzo Matsumiya <ematsumiya@suse.com>
Signed-off-by: Zhao Heming <heming.zhao@suse.com>
It's better to set most of option as 'commented' with some
documented defaults instead of providing strict values.
This has the advantage we can eventually 'change' defualts
and get them working in future. Otherwise once the setting
is stored in lvm.conf in /etc, such setting has strictly
defined value and that can be only change with file update.
Allow the optional '--type raid1' to be included in the lvconvert
command when adding or removing raid images with integrity.
It does not change the meaning of the command (specifying a type
that matches the current type is redundant but generally allowed.)
merge.c:_check_lv_segment() was checking regionsize vs. mirrored LV size on
any 'mirror/raid1/raid10' segment type including type 'mirrored' mirror logs.
Avoid the check only for 'mirrored' mirror logs to allow conversion from log
type 'disk' with regionsize > mirror log SubLV size.
As we disabled support for 'mirrored' mirror logs with
commit e82303fd6a which still conditionally
allows to enable it via global/support_mirrored_mirror_logs=1,
patch is mandatory for all distributions.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1712983
Currently lvm2 is not wiping signatures when creating 'metadata' volumes
and raid _rmeta was the only exception - so make the behavior consistent
with other metadata devices and drop wiping ATM.
Drop also some extra debug since they are now more explanatory in
wipe_lv() function.
Also note - although lvm2 now does not wipe signatures - the error
from such wipping used to be actually 'ignored' before wipe_lv()
started to return error (with recent commit) and raid creation
continued with 'unzeroed' metadata device.
TODO: Several issues to resolve:
1. We may want to flip to wipping with all LVs (in that case we need to
support passing --yet & --force).
2. Also we may want to clear whole metadata device - however current
function is also used for wipping i.e. snapshot COW device which
is likely not a good candidate for full device zeroing.
We may also need to think about better logic when extent size is
enforcing very large LVs, when only a small portion of LV is ever
being used.
3. Using TRIM instead of zeroing metadata device might be worth to
implement.
mm
When converting volume to pool LV use also wiping of other signatures.
For writecache & pool conversion support --yet and --force
to bypass prompting for signature wiping.
For writecache drop unneded zero_sectors.
Note: currently we have lvconvert doing convertion and prompting
for confirmation of conversion - and then again wipe_lv() prompts
for removing i.e. filesystem signature - we should unify this
prompting into 1 message - althought the 'filesystem' discovery
needs active volume - while the 1st. conversion prompt can
work without active converted volume.
To avoid polution of metadata with some 'garbage' content or eventualy
some leak of stale data in case user want to upload metadata somewhere,
ensure upon allocation the metadata device is fully zeroed.
Behaviour may slow down allocation of thin-pool or cache-pool a bit
so the old behaviour can be restored with lvm.conf setting:
allocation/zero_metadata=0
TODO: add zeroing for extension of metadata volume.
Failure in wiping/zeroing stop the command.
If user wants to avoid command abortion he should use -Zn or -Wn
to avoid wiping.
Note: there is no easy way to distinguish which kind of failure has
happend - so it's safe to not proceed any futher.
When initiated larger write request, it may have happened, bcache
got out of free chunks - fix the loop, that is supposed to wait
until next free chunk becomes avain available.
To create a new cache or writecache LV with a single command:
lvcreate --type cache|writecache
-n Name -L Size --cachedevice PVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, a new cachevol LV is created internally, using PVfast
specified by the cachedevice option.
- Then, the cachevol is attached to the main LV, converting the
main LV to type cache|writecache.
Include --cachesize Size to specify the size of cache|writecache
to create from the specified --cachedevice PVs, otherwise the
entire cachedevice PV is used. The --cachedevice option can be
repeated to create the cache from multiple devices, or the
cachedevice option can contain a tag name specifying a set of PVs
to allocate the cache from.
To create a new cache or writecache LV with a single command
using an existing cachevol LV:
lvcreate --type cache|writecache
-n Name -L Size --cachevol LVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, the cachevol LVfast is attached to the main LV, converting
the main LV to type cache|writecache.
In cases where more advanced types (for the main LV or cachevol LV)
are needed, they should be created independently and then combined
with lvconvert.
Example
-------
user creates a new VG with one slow device and one fast device:
$ vgcreate vg /dev/slow1 /dev/fast1
user creates a new 8G main LV on /dev/slow1 that uses all of
/dev/fast1 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1
-n main -L 8G vg /dev/slow1
Example
-------
user creates a new VG with two slow devs and two fast devs:
$ vgcreate vg /dev/slow1 /dev/slow2 /dev/fast1 /dev/fast2
user creates a new 8G main LV on /dev/slow1 and /dev/slow2
that uses all of /dev/fast1 and /dev/fast2 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1 --cachedevice /dev/fast2
-n main -L 8G vg /dev/slow1 /dev/slow2
Example
-------
A user has several slow devices and several fast devices in their VG,
the slow devs have tag @slow, the fast devs have tag @fast.
user creates a new 8G main LV on the slow devs with a
2G writecache on the fast devs:
$ lvcreate --type writecache -n main -L 8G
--cachedevice @fast --cachesize 2G vg @slow