IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Replace some in-test use of lvs commands with their check
and get equivalent.
Advantage is these 'checking' commands are not necessarily always
valiadated via extensive valgrind testing and also the output noice
is significantly reduces since the output of check/get is suppressed.
lv_active_change will enforce proper activation.
Modification of activation was wrong and lead to misuse of
autoactivation. Fix allows to use proper local exclusive activation,
while the removed code turned this into just exclusive
activation (losing required local property).
lvm2_cluster_activation_red_hat.service.in -> lvm2_cluster_activation_systemd_red_hat.service.in
lvm2_clvmd_red_hat.service.in -> lvm2_clvmd_red_hat.service.in
Edit lvm2-cluster-activation reference on cmirror - take new
lvm2-cmirrord.service, it was just cmirrord(.service) before
as the old initscript was used in compatibility mode.
Also, use WantedBy=multi-user.target instead of sysinit.target
in lvm2-cluster-activation.service.
The commit splits original clvmd service in two new native services
for systemd enabled systems while original init scripts remain unaltered.
New systemd native services:
1) clvmd daemon itself (lvm2_clvmd_red_hat.service.in)
2) (de)activation of clustered VGs (lvm2_cluster_activation_red_hat.service.in)
There're several reasons to split it. First, there's no support for conditional
stop in systemd and AFAIK they don't plan to support it. In other words:
if the deactivation fails for some reason, systemd doesn't care and will simply
kill all remaining processes in original cgroup (by default). Killing the
remaining procs can be suppressed however it doesn't solve the following problem:
You can't repeat the stop command of a failed service. The repeated stop command
is simply not propagated to the service in a failed state. You would have to start
and then try to stop the service again. Unfortunately, this can't be done while
the daemon is still running (and we need the daemon to stay active until all
clustered VGs are deactivated properly).
In a separated setup we need only to restart the failed activation service and
that's fine.
No need to fork lvmetad when running under systemd.
Also, the "lvmetad -R" support has been removed in lvm2 v2.02.98
so remove the ExecReload line that called it on "systemctl reload".
The libblkid can detect DM_snapshot_cow signature and when creating
new LVs with blkid wiping used (allocation/use_blkid_wiping=1 lvm.conf
setting and --wipe y used at the same time - which it is by default).
Do not issue any prompts about this signature when new LV is created
and just wipe it right away without asking questions. Still keep the
log in verbose mode though.
gcc reports:
metadata/merge.c:229:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
metadata/merge.c:232:58: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
The DM_EVENT_GET_PARAMETERS requests the parameters under which
the running dmeventd is run and the it sends them to caller.
The parameters sent:
- the pid of the running dmeventd
- foreground state
- exec_method (currently either "direct" or "systemd")
The exact message sent back:
pid=<pid> daemon=<no/yes> exec_method=<direct/systemd>
Trying to restart dmeventd as a reload action is causing problems
under systemd environment. The systemd loses track of new dmeventd
this way. See also https://bugzilla.redhat.com/show_bug.cgi?id=1060134
for more info.
We need to call dmeventd -R directly instead of "systemctl reload dm-event.service"
that was used before (the reload is aimed at configuration reload anyway,
not stateful restart of the daemon - we did this before just because
there's no ExecRestart in systemd and there's only ExecStart and
ExecStop with which we'd lose the state).
Also, use ExecStart="dmeventd -f" to run dmeventd in foreground
(and let's rely on systemd to daemonize it) and change the
service type from "forking" to "simple".
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
A cache LV - from LVM's perpective - is a user accessible device that
links the cachepool LV and the origin LV. The following functions
were added to facilitate the creation and removal of this top-level
LV:
1) 'lv_cache_create' - takes a cachepool and an origin device and links
them into a new top-level LV of 'cache' segment type. No allocation
is necessary in this function, as the sub-LVs contain all of the
necessary allocated space. Only the top-level layer needs to be
created.
2) 'lv_cache_remove' - this function removes the top-level LV of a
cache LV - promoting the cachepool and origin sub-LVs to top-level
devices and leaving them exposed to the user. That is, the
cachepool is unlinked and free to be used with another origin to
form a new cache LV; and the origin is no longer cached.
(Currently, if the cache needs to be flushed, it is done in this
function and the function waits for it to complete before proceeding.
This will be taken out in a future patch in favor of polling.)
Cache pools require a data and metadata area (like thin pools). Unlike
thin pool, if 'cache_pool_metadata_require_separate_pvs' is not set to
'1', the metadata and data area will be allocated from the same device.
It is also done in a manner similar to RAID, where a single chunk of
space is allocated and then split to form the metadata and data device -
ensuring that they are together.
Building on the new DM function that parses DM cache status, we
introduce the following LVM level functions to aquire information
about cache devices:
- lv_cache_block_info: retrieves information on the cache's block/chunk usage
- lv_cache_policy_info: retrieves information on the cache's policy
I am reverting the commit below - removing the new 'dm_config_get_int'
function and simply calling 'dm_config_get_uint32' while casting the
'int *' pointer parameter.
Commit being reverted:
commit 94377dfd5e
Author: Jonathan Brassow <jbrassow@redhat.com>
Date: Mon Jan 27 05:26:19 2014 -0600
Misc: New function for reading lvm config file fields
Introduce 'dm_config_get_int', which will be used by the upcoming
cachepool segment type.
Avoid use of external origin with size unaligned/incompatible with
thin pool chunk size, since the last chunk is not correctly provisioned
when it is overwritten.
Avoid starting conversion of the LV to the thin pool and thin volume
at the same time. Since this is mostly a user mistake, do not try
to just convert to one of those type, since we cannot assume if the
user wanted LV to become thin volume or thin pool.
Before the fix tool reported pretty strange internal error:
Internal error: Referenced LV lvol1_tdata not listed in VG mvg.
Fixed output:
lvconvert --thinpool lvol0 -T mvg/lvol0
Can't use same LV mvg/lvol0 for thin pool and thin volume.
Since we are currently incapable of providing zeroes for
reextended thin volume area, let's disable extension of
such already reduce thin volumes.
(in-release change)