IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The pool metadata LV must be accounted for when determining what PVs
are in a thin-pool. The pool LV must also be accounted for when
checking thin volumes.
This is a prerequisite for pvmove working with thin types.
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
The PREFERRED allocation mechanism requires the number of areas in the
previous LV segment to match the number in the new segment being
allocated. If they do not match, the code may crash.
E.g. https://bugzilla.redhat.com/989347
Introduce A_AREA_COUNT_MATCHES and when not set avoid referring
to the previous segment with the contiguous and cling policies.
Three fixme's addressed in this commit:
1) lib/metadata/lv_manip.c:_calc_area_multiple() - this could be
safely changed to a comment explaining that currently because
RAID10 can only have a 2-way mirror, we don't need to know the
number of stripes. However, we will need to know that in the
future if RAID10 is to support more than 2-way mirroring.
2) lib/metadata/mirror.c:_delete_lv() - should have been calling
_activate_lv_like_model() with 'mirror_lv'. This is because
'mirror_lv' is the LV that the overall operation is being
performed on. We need to use this LV as the basis for
determining whether to activate locally, or across the
cluster, etc.
3) tools/lvcreate.c:_lvcreate_params() - Minor clean-up. If
'-m 0' is given, treat it as though the mirroring argument
was not given (i.e. as though the requested segment type
was 'stripe' and not mirror).
Pool creation involves clearing of metadata device
which triggers udev watch rule we cannot udev synchronize with
in current code.
This metadata devices needs to be activated localy,
so in cluster mode deactivation and reactivation
is always needed.
However for non-clustered mode we may reload table
via suspend/resume path which avoids collision with
udev watch rule which was occasionaly triggering
retry deactivation loop.
Code has been also split into 2 separate code paths
for thin pools and thin volumes which improved readability
of the code as well.
Deactivation has been moved out of extend_pool() and
decision is now in _lv_create_an_lv() which knows
the change mode.
Remove backup() call from update_pool_lv() as it's been there
duplicated and preperly order backup() call after lvresize,
so there is just one such call.
If the thin pool is known to be active, messages can be passed
to the pool even when the created thin volume is not going to be
activated.
So we do not need to stack large list of message and validate
and catch creation errors earlier in this case.
Replace the test for valid activation combination with simpler list of
deactivation combinations.
The activation/auto_set_activation_skip enables/disables automatic
adding of the ACTIVATION_SKIP LV flag. By default thin snapshots
are flagged to be skipped during activation.
And by default, the auto_set_activation_skip is enabled.
Also add -k/--setactivationskip y/n and -K/--ignoreactivationskip
options to lvcreate.
The --setactivationskip y sets the flag in metadata for an LV to
skip the LV during activation. Also, the newly created LV is not
activated.
Thin snapsots have this flag set automatically if not specified
directly by the --setactivationskip y/n option.
The --ignoreactivationskip overrides the activation skip flag set
in metadata for an LV (just for the run of the command - the flag
is not changed in metadata!)
A few examples for the lvcreate with the new options:
(non-thin snap LV => skip flag not set in MDA + LV activated)
raw/~ $ lvcreate -l1 vg
Logical volume "lvol0" created
raw/~ $ lvs -o lv_name,attr vg/lvol0
LV Attr
lvol0 -wi-a----
(non-thin snap LV + -ky => skip flag set in MDA + LV not activated)
raw/~ $ lvcreate -l1 -ky vg
Logical volume "lvol1" created
raw/~ $ lvs -o lv_name,attr vg/lvol1
LV Attr
lvol1 -wi------
(non-thin snap LV + -ky + -K => skip flag set in MDA + LV activated)
raw/~ $ lvcreate -l1 -ky -K vg
Logical volume "lvol2" created
raw/~ $ lvs -o lv_name,attr vg/lvol2
LV Attr
lvol2 -wi-a----
(thin snap LV => skip flag set in MDA (default behaviour) + LV not activated)
raw/~ $ lvcreate -L100M -T vg/pool -V 1T -n thin_lv
Logical volume "thin_lv" created
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg
LV Attr
pool twi-a-tz-
thin_lv Vwi-a-tz-
thin_snap Vwi---tz-
(thin snap LV + -K => skip flag set in MDA (default behaviour) + LV activated)
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap -K
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg/thin_lv
LV Attr
thin_lv Vwi-a-tz-
(thins snap LV + -kn => no skip flag in MDA (default behaviour overridden) + LV activated)
[0] raw/~ # lvcreate -s vg/thin_lv -n thin_snap -kn
Logical volume "thin_snap" created
[0] raw/~ # lvs -o name,attr vg/thin_snap
LV Attr
thin_snap Vwi-a-tz-
Start separating the validation from the action in the basic lvresize
code moved to the library.
Remove incorrect use of command line error codes from lvresize library
functions. Move errors.h to tools directory to reinforce this,
exporting public versions of the error codes in lvm2cmd.h for dmeventd
plugins to use.
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
If "vgcreate/lvcreate --profile <profile_name>" is used, the profile
name is automatically stored in metadata for making it possible to
load it automatically next time the VG/LV is used.
Since reduce the message has informational character and doesn't lead
to exit of the command - reduce the log level to info print as we
use for other similar types.
Reindent next print message.
The special suspend/resume code in lv_remove for LVM1 snapshots was interpsersed
with a vg_commit call. However, while with LVM1 metadata, vg_commit is
technically a no-op, the activation code relied on the ondisk and incore
metadata being the same, since on LVM1, a "commit" happens in vg_write
already. Since the "ondisk" metadata was previously not available with format1
(and incore was silently used instead, via lvmcache), the problem was masked.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
There is no point in creation of 2chunks snapshot,
since the snapshot is invalidated immeditelly with the first write
as there is no free chunk for COW blocks
(2 chunks are used by the snap header and the 1st. metadata chunk).
Enhance error message about the lowest usable size.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
Support for exclusive activation of snapshots revealed some problems.
When snapshot is created, COW LV is activated first (for clearing) and
then it's transformed into snapshot's COW LV, but it has left the lock
for such LV active in cluster and this lock could not have been removed
from dlm, unless snapshot has been removed within same dlm session.
If the user tried to remove snapshot after rebooting node, the lock was
missing, and COW LV could not have been detached.
Patch modifes the approach in this way:
Always deactivate COW LV for clustered vg after clearing (so it's
activated again via imlicit snapshot activation rule when snapshot is activated).
When snapshot is removed, activate COW LV as independend LV, so the lock
will exist for such LV, but only when the snapshot is active.
Also add test case for testing snapshot removal after cluster reboot.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
We have been using 'mirror_region_size' in lvm.conf as the default region
size for RAID logical volumes as well as mirror logical volumes. Since,
"raid" is more inclusive and representative than "mirror", I have changed
the name of this setting. We must still check for the old setting and warn
the user if we are overriding it with the new setting if both happen to be
present.
Commit bf2741376d started to use
lv_is_active() instead of call for lv_info & info.exists so
we cover also cluster activated devices.
For snapshost the conversion was not correct and introduced
regression by blocking creation of snapshot of inactive LV.
Fix it by assigning lv_is_active() directly.
Note: we still have minor issue to fix - to make
lv_is_???? function able to return error states since
lv_info() may fail.
The 'copy_percent' function takes the 'extents_copied' field from each
segment in an LV to create the numerator for the ratio that is to
become the copy_percent. (Otherwise known as the 'sync' percent for
non-pvmove uses, like mirror LVs and RAID LVs.) This function safely
works on RAID - not just mirrors - so it is better to have it in
lv_manip.c rather than mirror.c.
There's a lot of different functions that do a lot of different things
in lv_manip.c, so I placed the function near a function in lv_manip.c
that it was close to in metadata-exported.h. Different placement in the
file or a different name for the function may be useful.
Use log_warn to print non-fatal warning messages.
Use of log_error would confuse checker for testing
whether proper error has been reported for some real error.
A message is printed when the region_size of a RAID LV is adjusted
to allow for large (> ~1TB) LVs. The message wasn't very clear.
Hopefully, this is better.
It would be possible to activate a RAID LV exclusively in a cluster
volume group, but for now we do not allow RAID LVs to exist in a
clustered volume group at all. This has two components:
1) Do not allow RAID LVs to be created in a clustered VG
2) Do not allow changing a VG from single-machine to clustered
if there are RAID LVs present.
MD's bitmaps can handle 2^21 regions at most. The RAID code has always
used a region_size of 1024 sectors. That means the size of a RAID LV was
limited to 1TiB. (The user can adjust the region_size when creating a
RAID LV, which can affect the maximum size.) Thus, creating, extending or
converting to a RAID LV greater than 1TiB would result in a failure to
load the new device-mapper table.
Again, the size of the RAID LV is not limited by how much space is allocated
for the metadata area, but by the limitations of the MD bitmap. Therefore,
we must adjust the 'region_size' to ensure that the number of regions does
not exceed the limit. I've added code to do this when extending a RAID LV
(which covers 'create' and 'extend' operations) and when up-converting -
specifically from linear to RAID1.
It is necessary when creating a RAID LV to clear the new metadata areas.
Failure to do so could result in a prepopulated bitmap that would cause
the new array to skip syncing portions of the array. It is a requirement
that the metadata LVs be activated and cleared in the process of creating.
However in test mode, this requirement should be lifted - no new LVs should
be created or written to.
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
This patch adds support for RAID10. It is not the default at this
stage. The user needs to specify '--type raid10' if they would like
RAID10 instead of stacked mirror over stripe.
Commit 8767435ef8 allowed RAID 4/5/6
LV to be extended properly, but introduced a regression in device
replacement - a critical component of fault tolerance.
When only 1 or 2 drives are being replaced, the 'area_count' needed
can be equal to the parity_count. The 'area_multiple' for RAID 4/5/6
was computed as 'area_count - parity_devs', which could result in
'area_multiple' being 0. This would ultimately lead to a division by
zero error. Therefore, in calc_area_multiple, it is important to take
into account the number of areas that are being requested - just as
we already do in _alloc_init.
Reducing a RAID 4/5/6 LV or extending it with a different number of
stripes is still not implemented. This patch covers the "simple" case
where the LV is extended with the same number of stripes as the orginal.
If _alloc_parallel_area for raid devices chooses an area already used
up, it doesn't notice that it has no space left in it and leaves
later code trying to place a zero-length area into the LV.
https://bugzilla.redhat.com/832596
One can use "lvcreate --aay" to have the newly created volume
activated or not activated based on the activation/auto_activation_volume_list
this way.
Note: -Z/--zero is not compatible with -aay, zeroing is not used in this case!
When using lvcreate -aay, a default warning message is also issued that zeroing
is not done.
Update release_lv_segment_area not to discard any PV extents,
as it also gets used when moving extents between LVs.
Instead, call a new function release_and_discard_lv_segment_area() in
the two places where data should be discarded - lv_reduce() and
remove_mirrors_from_segments().
When mirrors are up-converted, a transient mirror layer is put in so that
only the new devices are sync'ed. That transient layer must carry the tags
of the original mirror LV, otherwise it will fail to activate when activation
is regulated by lvm.conf:activation/volume_list. The conversion would then
fail.
The fix is to do exactly the same thing that is being done for linear ->
mirror converting (lib/metadata/mirror.c:_init_mirror_log()). We copy the
tags temporarily for the new LV and remove them after the activation.
Snapshots of RAID logical volumes are allowed (including "raid1"). However,
snapshots of "mirror" logical volumes has been disallowed due to unsolvable
issues inherent to the design. The fact that mirroring (dm-raid1.c) must
stop all I/O as the result of a failure and wait for userspace intervention
can lead to a circular dependency if userspace is simultaneously waiting for
snapshots (on mirrors) to make an I/O update before proceeding.
Various snapshot on mirror tests have been removed as a result.
If the thin pool has disabled zeroing (created with -Zn), we at least
clear initial 4KiB of such thin volume (provisions 1st block).
If lvcreate is executed with '-an' command will abort (same way like we for
normal LV - however for normal LV option -Zn may skip clearing completely,
for thin volumes this option is not supported (applies only for pools).
The code fail to account for the case where we just need a single device
in a RAID 4/5/6 array. There is no good way to tell the allocation functions
that we don't need parity devices when we are allocating just a single device.
So, I've used a bit of a hack. If we are allocating an area_count that is <=
the parity count, then we can assume we are simply allocating a replacement
device (i.e. no need to include parity devices in the calculations). This
should make sense in most cases. If we need to allocate replacement devices
due to failure (or moving), we will never allocate more than the parity count;
or we would cause the array to become unusable. If we are creating a new device,
we should always create more stripes than parity devices.
Read lvm.conf setting for monitoring for each command. So we should not
activate monitoring if the default compilation is set to monitor during
lvconvert commnads.
Patch also removes check for clustered VG and allows to disable monitoring
for clustered VG with the assumption, the problem with monitoring and dmeventd
flag passing for INGNORE is already fixed.