IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
. Define a prototype for every lvm command.
. Verify every user command matches one.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --test, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB,
--test
ID: lvresize_by_pv
DESC: Resize an LV by a specified PV.
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB,
--test
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize the metadata SubLV of a pool LV.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. "usage" text is also
generated, so it is always in sync with the definitions.
Example of the corresponding generated structure in
command-lines.h for the first lvresize prototype
(these structures are never edited directly):
commands[78].name = "lvresize";
commands[78].command_line_id = "lvresize_by_size";
commands[78].command_line_enum = lvresize_by_size_CMD;
commands[78].fn = lvresize;
commands[78].ro_count = 1;
commands[78].rp_count = 1;
commands[78].oo_count = 22;
commands[78].op_count = 1;
commands[78].desc = "DESC: Resize an LV by a specified size.";
commands[78].usage = "lvresize --size Number[m|unit] LV"
" [ --alloc contiguous|cling|normal|anywhere|inherit,
--autobackup y|n, --nofsck, --nosync, --reportformat String,
--resizefs, --stripes Number, --stripesize Number[k|unit],
--poolmetadatasize Number[m|unit] ]"
" [ PV ... ]";
commands[78].usage_common =
" [ --commandprofile String, --config String, --debug,
--driverloaded y|n, --help, --profile String, --quiet,
--verbose, --version, --yes, --force, --test, --noudevsync ]";
commands[78].required_opt_args[0].opt = size_ARG;
commands[78].required_opt_args[0].def.val_bits = val_enum_to_bit(sizemb_VAL);
commands[78].required_pos_args[0].pos = 1;
commands[78].required_pos_args[0].def.val_bits = val_enum_to_bit(lv_VAL);
commands[78].optional_opt_args[0].opt = commandprofile_ARG;
commands[78].optional_opt_args[0].def.val_bits = val_enum_to_bit(string_VAL);
commands[78].optional_opt_args[1].opt = config_ARG;
commands[78].optional_opt_args[1].def.val_bits = val_enum_to_bit(string_VAL);
commands[78].optional_opt_args[2].opt = debug_ARG;
commands[78].optional_opt_args[3].opt = driverloaded_ARG;
commands[78].optional_opt_args[3].def.val_bits = val_enum_to_bit(bool_VAL);
commands[78].optional_opt_args[4].opt = help_ARG;
commands[78].optional_opt_args[5].opt = profile_ARG;
commands[78].optional_opt_args[5].def.val_bits = val_enum_to_bit(string_VAL);
commands[78].optional_opt_args[6].opt = quiet_ARG;
commands[78].optional_opt_args[7].opt = verbose_ARG;
commands[78].optional_opt_args[8].opt = version_ARG;
commands[78].optional_opt_args[9].opt = yes_ARG;
commands[78].optional_opt_args[10].opt = alloc_ARG;
commands[78].optional_opt_args[10].def.val_bits = val_enum_to_bit(alloc_VAL);
commands[78].optional_opt_args[11].opt = autobackup_ARG;
commands[78].optional_opt_args[11].def.val_bits = val_enum_to_bit(bool_VAL);
commands[78].optional_opt_args[12].opt = force_ARG;
commands[78].optional_opt_args[13].opt = nofsck_ARG;
commands[78].optional_opt_args[14].opt = nosync_ARG;
commands[78].optional_opt_args[15].opt = noudevsync_ARG;
commands[78].optional_opt_args[16].opt = reportformat_ARG;
commands[78].optional_opt_args[16].def.val_bits = val_enum_to_bit(string_VAL);
commands[78].optional_opt_args[17].opt = resizefs_ARG;
commands[78].optional_opt_args[18].opt = stripes_ARG;
commands[78].optional_opt_args[18].def.val_bits = val_enum_to_bit(number_VAL);
commands[78].optional_opt_args[19].opt = stripesize_ARG;
commands[78].optional_opt_args[19].def.val_bits = val_enum_to_bit(sizekb_VAL);
commands[78].optional_opt_args[20].opt = test_ARG;
commands[78].optional_opt_args[21].opt = poolmetadatasize_ARG;
commands[78].optional_opt_args[21].def.val_bits = val_enum_to_bit(sizemb_VAL);
commands[78].optional_pos_args[0].pos = 2;
commands[78].optional_pos_args[0].def.val_bits = val_enum_to_bit(pv_VAL);
commands[78].optional_pos_args[0].def.flags = ARG_DEF_FLAG_MAY_REPEAT;
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command, e.g.:
$ lvresize --help
lvresize - Resize a logical volume
Resize an LV by a specified size.
lvresize --size Number[m|unit] LV
[ --alloc contiguous|cling|normal|anywhere|inherit,
--autobackup y|n,
--nofsck,
--nosync,
--reportformat String,
--resizefs,
--stripes Number,
--stripesize Number[k|unit],
--poolmetadatasize Number[m|unit] ]
[ PV ... ]
Resize an LV by a specified PV.
lvresize LV PV ...
[ --alloc contiguous|cling|normal|anywhere|inherit,
--autobackup y|n,
--nofsck,
--nosync,
--reportformat String,
--resizefs,
--stripes Number,
--stripesize Number[k|unit] ]
Resize the metadata SubLV of a pool LV.
lvresize --poolmetadatasize Number[m|unit] LV_thinpool
[ --alloc contiguous|cling|normal|anywhere|inherit,
--autobackup y|n,
--nofsck,
--nosync,
--reportformat String,
--stripes Number,
--stripesize Number[k|unit] ]
[ PV ... ]
Common options:
[ --commandprofile String,
--config String,
--debug,
--driverloaded y|n,
--help,
--profile String,
--quiet,
--verbose,
--version,
--yes,
--force,
--test,
--noudevsync ]
(Use --help --help for usage notes.)
$ lvresize --poolmetadatasize 4
Failed to find a matching command definition.
Closest command usage is:
lvresize --poolmetadatasize Number[m|unit] LV_thinpool
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing implementation.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
So, this first phase validates every user-entered command
against the set of command prototypes, then calls the existing
implementation. The second phase can associate an implementation
function with each definition, and take further advantage of the
known operation to avoid the complicated option analysis.
Reload of thin-pool origin_only is designed to only post messages
to a thin-pool. It's not intended to be used for reload of thin-pool
table. Fix it by using standard call 'lv_update_and_reload()'.
Allow RAID scrubbing on cache origin sub-LV
This patch adds the ability to perform RAID scrubbing on the cache
origin sub-LV (https://bugzilla.redhat.com/1169495). Cache origin
operations are restricted to non-clustered RAID LVs until there can
be further testing in a cluster (even for exclusive activation).
User can either specify directly _corig LV
or he can specify cache LV and operation --syncation is
passed ONLY to _corig LV.
If users wants to manipulation with cache-pool devices - he
needs to specify this object name.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
'lvchange --resync LV' or 'lvchange --syncaction repair LV' request the
RAID layout specific parity blocks in raid4/5/6 to be recreated or the
mirrored blocks to be copied again from the master leg/copy for raid1/10,
thus not allowing a rebuild of a particular PV.
Introduce repeatable option '--[raid]rebuild PV' to allow to request
rebuilds of specific PVs in a RaidLV which are known to contain corrupt
data (e.g. rebuild a raid1 master leg).
Add test lvchange-rebuild-raid.sh to test/shell doing rebuild
variations on raid1/10 and 5; add aux function check_status_chars
to support the new test.
- Resolves rhbz1064592
Resync attempts on raid0/raid0_meta via 'lvchange --resync ...'
cause segfaults.
'lvchange --syncaction ...' doesn't get rejected either.
Prohibit both on raid0/raid0_meta LVs.
- resolves rhbz1354656
In the same way that process_each_vg() can be passed
a single VG name to process, also allow process_each_lv()
to be passed a single VG name and LV name to process.
Add support for active cache LV.
Handle --cachemode args validation during command line processing.
Rework some lvm2 internal to use lvm2 defined CACHE_MODE enums
indepently on libdm defines and use enum around the code instead
of passing and comparing strings.
The lvmetad connection is created within the
init_connections() path during command startup,
rather than via the old lvmetad_active() check.
The old lvmetad_active() checks are replaced
with lvmetad_used() which is a simple check that
tests if the command is using/connected to lvmetad.
The old lvmetad_set_active(cmd, 0) calls, which
stopped the command from using lvmetad (to revert to
disk scanning), are replaced with lvmetad_make_unused(cmd).
Change logic and naming of some internal API functions.
cache_set_mode() and cache_set_policy() both take segment.
cache mode is now correctly 'masked-in'.
If the passed segment is 'cache' segment - it will automatically
try to find 'defaults' according to profiles if the are NOT
specified on command line or they are NOT already set for cache-pool.
These defaults are never set for cache-pool.
The vgchange/lvchange activation commands read the VG, and
don't write it, so they acquire a shared VG lock from lvmlockd.
When other commands fail to acquire a shared VG lock from
lvmlockd, a warning is printed and they continue without it.
(Without it, the VG metadata they display from lvmetad may
not be up to date.)
vgchange/lvchange -a shouldn't continue without the shared
lock for a couple reasons:
. Usually they will just continue on and fail to acquire the
LV locks for activation, so continuing is pointless.
. More importantly, without the sh VG lock, the VG metadata
used by the command may be stale, and the LV locks shown
in the VG metadata may no longer be current. In the
case of sanlock, this would result in odd, unpredictable
errors when lvmlockd doesn't find the expected lock on
disk. In the case of dlm, the invalid LV lock could be
granted for the non-existing LV.
The solution is to not continue after the shared lock fails,
in the same way that a command fails if an exclusive lock fails.
Keep policy name separate from policy settings and avoid
to mangling and demangling this string from same config tree.
Ensure policy_name is always defined.
spawning a background polling from within the lv_change_activate
fn went to two problems:
1) vgchange should not spawn any background polling until after
the whole activation process for a VG is finished. Otherwise
it could lead to a duplicite request for spawning background
polling. This statement was alredy true with one exception of
mirror up-conversion polling (fixed by this commit).
2) due to current conditions in lv_change_activate lvchange cmd
couldn't start background polling for pvmove LVs if such LV was
about to get activated by the command in the same time.
This commit however doesn't alter the lvchange cmd so that it works same as
vgchange with regard to not to spawn duplicate background pollings per
unique LV.
There is no reason to support persistent major/minor numbers
for pool volumes - it's only meant to be supported for filesystems
(since i.e. nfs may need to keep volume on a persistent device node.)
Support for pools is now explicitely disabled and documented.
If an LV is already rw but still ro in the kernel, allow -prw to issue a
refresh to try to change the kernel state to rw.
Intended for use after clearing activation/read_only_volume_list in
lvm.conf.
The only realistic way for a host to have active LVs in a
foreign VG is if the host's system_id (or system_id_source)
is changed while LVs are active.
In this case, the active LVs produce an warning, and access
to the VG is implicitly allowed (without requiring --foreign.)
This allows the active LVs to be deactivated.
In this case, rescanning PVs for the VG offers no benefit.
It is not possible that rescanning would reveal an LV that
is active but wasn't previously in the VG metadata.
Add --foreign to the remaining reporting and display commands plus
vgcfgbackup.
Add a NEEDS_FOREIGN_VGS flag for vgimport to always set --foreign.
If lvmetad is being used with --foreign, scan foreign VGs (currently
implemented as a full PV scan).
Handle these things centrally in lvmcmdline.c.
Also allow lvchange and vgchange -an/-aln to deactivate any foreign
LVs that happen to be active if something went wrong.
Remember to set the system ID when creating a new VG in vgsplit.
This patch replaces "void *handle" with "struct processing_handle *handle"
in process_each_*, process_single_* and related functions.
The struct processing_handle consists of two handles inside now:
- the "struct selection_handle *selection_handle" used for
applying selection criteria while processing process_each_*,
process_single_* and related functions (patches using this
logic will follow)
- the "void* custom_handle" (this is actually the original handle
used before this patch - a pointer to custom data passed into
process_each_*, process_single_* and related functions).
Let's use this function for more activations in the code.
'needs_exlusive' will enforce exlusive type for any given LV.
We may want to activate LV in exlusive mode, even when we know
the LV (as is) supports non-exlusive activation as well.
lvcreate -ay -> exclusive & local
lvcreate -aay -> exclusive & local
lvcreate -aly -> exclusive & local
lvcreate -aey -> exclusive (might be on any node).
Tool will use internal activation of unused cache pool to
clear metadata area before next use of cache-pool.
So allow to deactivation unused pool in case some error
case happend and we were not able to deactivation pool
right after metadata wipe.
Instead of segtype->ops->name() introduce lvseg_name().
This also allows us to leave name() function 'empty' for default
return of segtype->name.
TODO: add functions for rest of ops->
We need to use proper filter chain when we disable lvmetad use
explicitly in the code by calling lvmetad_set_active(0) while
overriding existing configuration. We need to reinitialize filters
in this case so proper filter chain is used. The same applies
for the other way round - when we enable lvmetad use explicitly in
the code (though this is not yet used).