IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Fix the two-step writecache detach in commit c32d7fed4f.
In the case of uncache, the cachevol is removed after
detaching the writecache. When the detach is finished
in the second step, the remove must wait until then.
filters needing io weren't being run because bcache
wasn't set up. Read the first 4k of the device
before doing filtering or reading ondisk structs to
reduce reads.
It's possible for a machine with a non-4k page size
to create a PV with an mda_header at an offset other
than 4k. Fix pvck --dump to work with these other
mda offsets. pvck --repair will write a new first
mda at 4096 but lvm with other page sizes will work
with this.
The args for pvcreate/pvremove (and vgcreate/vgextend
when applicable) were not efficiently opened, scanned,
and filtered. This change reorganizes the opening
and filtering in the following steps:
- label scan and filter all devs
. open ro
. standard label scan at the start of command
- label scan and filter dev args
. open ro
. uses full md component check
. typically the first scan and filter of pvcreate devs
- close and reopen dev args
. open rw and excl
- repeat label scan and filter dev args
. using reopened rw excl fd
- wipe and write new headers
. using reopened rw excl fd
Since 'kilobytes' could be seen in 2 way - SI as '1000',
while all programmers sees it as '1024' - switch to
commonly acceptted KiB, MiB....
Resolves RHBZ 1496255.
Restructure the pvscan code, and add new temporary files
that list pvids in a VG, used for processing PVs that
have no metadata.
The new temp files, in /run/lvm/pvs_lookup/<vgname>, allow a
proper pvscan --cache to be done on PVs that have no metadata.
pvscan --cache <dev> is only supposed to read <dev>, but when
<dev> has no metadata, this had not been possible. The
command had to fall back to scanning all devices to read all
VG metadata to get the list of all PVIDs needed to check for
a complete VG. Now, the temp file can be used in place of
reading metadata from all PVs on the system.
cmd context has 'threaded' value that used be set
by clvmd - and allowed proper memory locking management.
Reuse same bit for dmeventd.
Since dmeventd is using 300KiB stack per thread,
we will ignore any user settings for allocation/reserved_stack
until some better solution is find.
This avoids crashing of dmevend when user changes this value
and because in most cases lvm2 should work ok with 64K stack
size, this change should not cause any problems.
When detaching a writecache, use the cleaner setting
by default to writeback data prior to suspending the
lv to detach the writecache. This avoids potentially
blocking for a long period with the device suspended.
Detaching a writecache first sets the cleaner option, waits
for a short period of time (less than a second), and checks
if the writecache has quickly become clean. If so, the
writecache is detached immediately. This optimizes the case
where little writeback is needed.
If the writecache does not quickly become clean, then the
detach command leaves the writecache attached with the
cleaner option set. This leaves the LV in the same state
as if the user had set the cleaner option directly with
lvchange --cachesettings cleaner=1 LV.
After leaving the LV with the cleaner option set, the
detach command will wait and watch the writeback progress,
and will finally detach the writecache when the writeback
is finished. The detach command does not need to wait
during the writeback phase, and can be canceled, in which
case the LV will remain with the writecache attached and
the cleaner option set. When the user runs the detach
command again it will complete the detach.
To detach a writecache directly, without using the cleaner
step (which has been the approach previously), add the
option --cachesettings cleaner=0 to the detach command.
Reorganize checking the device args for pvcreate/pvremove
to prepare for future changes. There should be no change
in behavior. Stop the inverted use of process_each_pv,
which pulled in a lot of unnecessary processing, and call
the check functions on each device directly.
LVM2 is distributed under GPLv2 only. The readline library changed its
license long ago to GPLv3. Given that those licenses are incompatible
and you follow the FSF in their interpretation that dynamically linking
creates a derivative work, distributing LVM2 linked against a current
readline version might be legally problematic.
Add support for the BSD licensed editline library as an alternative for
readline.
Link: https://thrysoee.dk/editline
There's a bug when lvpoll attempts to write new hints,
related to the fact that lvpoll does not follow the same
scanning process as standard commands.
Fix by disabling the use of hints in lvpoll. We may want
to renable hints in lvpoll in a way that they can be used,
if valid, but not updated if they don't exist or are invalid.
Add a "device index" (di) for each device, and use this
in the bcache api to the rest of lvm. This replaces the
file descriptor (fd) in the api. The rest of lvm uses
new functions bcache_set_fd(), bcache_clear_fd(), and
bcache_change_fd() to control which fd bcache uses for
io to a particular device.
. lvm opens a dev and gets and fd.
fd = open(dev);
. lvm passes fd to the bcache layer and gets a di
to use in the bcache api for the dev.
di = bcache_set_fd(fd);
. lvm uses bcache functions, passing di for the dev.
bcache_write_bytes(di, ...), etc.
. bcache translates di to fd to do io.
. lvm closes the device and clears the di/fd bcache state.
close(fd);
bcache_clear_fd(di);
In the bcache layer, a di-to-fd translation table
(int *_fd_table) is added. When bcache needs to
perform io on a di, it uses _fd_table[di].
In the following commit, lvm will make use of the new
bcache_change_fd() function to change the fd that
bcache uses for the dev, without dropping cached blocks.
Cow may not be a COW type, the return value of origin_from_cow(cow) may be NULL.
Reported-by: Wu Guanghao <wuguanghao3@huawei.com>
Reported-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Cow may not be a snapshot type, the return value of origin_from_cow(cow) may be NULL
Signed-off-by: Wu Guanghao <wuguanghao3@huawei.com>
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
LV may not be a snapshot type, the return value of find_snapshot(lv) may be NULL.
Here, we will call stack if LV is not a snapshot type.
Signed-off-by: Wu Guanghao <wuguanghao3@huawei.com>
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
The return value of top_level_lv_name() may be NULL, so we should
check return value of top_level_lv_name before calling
strcmp(lv->name, top_level_lv_name(vg, lv_name)).
Signed-off-by: Wu Guanghao <wuguanghao3@huawei.com>
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Use '0' for error and '1' as success.
Also drop INTERNAL_ERROR from path - as this error
is ATM used for invalid devices.
(i.e. test lvconvert-raid1-split-trackchanges.sh)
Since we declare dev_name in lib/device/device.h
and pvs in commands.h
rename local dev_name to device_name
and pvs to pvs_list to prevent shadowing warning.
m
Switch remaining zero sized struct to flexible arrays to be C99
complient.
These simple rules should apply:
- The incomplete array type must be the last element within the structure.
- There cannot be an array of structures that contain a flexible array member.
- Structures that contain a flexible array member cannot be used as a member of another structure.
- The structure must contain at least one named member in addition to the flexible array member.
Although some of the code pieces should be still improved.
Allow the optional '--type raid1' to be included in the lvconvert
command when adding or removing raid images with integrity.
It does not change the meaning of the command (specifying a type
that matches the current type is redundant but generally allowed.)
When converting volume to pool LV use also wiping of other signatures.
For writecache & pool conversion support --yet and --force
to bypass prompting for signature wiping.
For writecache drop unneded zero_sectors.
Note: currently we have lvconvert doing convertion and prompting
for confirmation of conversion - and then again wipe_lv() prompts
for removing i.e. filesystem signature - we should unify this
prompting into 1 message - althought the 'filesystem' discovery
needs active volume - while the 1st. conversion prompt can
work without active converted volume.
To create a new cache or writecache LV with a single command:
lvcreate --type cache|writecache
-n Name -L Size --cachedevice PVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, a new cachevol LV is created internally, using PVfast
specified by the cachedevice option.
- Then, the cachevol is attached to the main LV, converting the
main LV to type cache|writecache.
Include --cachesize Size to specify the size of cache|writecache
to create from the specified --cachedevice PVs, otherwise the
entire cachedevice PV is used. The --cachedevice option can be
repeated to create the cache from multiple devices, or the
cachedevice option can contain a tag name specifying a set of PVs
to allocate the cache from.
To create a new cache or writecache LV with a single command
using an existing cachevol LV:
lvcreate --type cache|writecache
-n Name -L Size --cachevol LVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, the cachevol LVfast is attached to the main LV, converting
the main LV to type cache|writecache.
In cases where more advanced types (for the main LV or cachevol LV)
are needed, they should be created independently and then combined
with lvconvert.
Example
-------
user creates a new VG with one slow device and one fast device:
$ vgcreate vg /dev/slow1 /dev/fast1
user creates a new 8G main LV on /dev/slow1 that uses all of
/dev/fast1 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1
-n main -L 8G vg /dev/slow1
Example
-------
user creates a new VG with two slow devs and two fast devs:
$ vgcreate vg /dev/slow1 /dev/slow2 /dev/fast1 /dev/fast2
user creates a new 8G main LV on /dev/slow1 and /dev/slow2
that uses all of /dev/fast1 and /dev/fast2 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1 --cachedevice /dev/fast2
-n main -L 8G vg /dev/slow1 /dev/slow2
Example
-------
A user has several slow devices and several fast devices in their VG,
the slow devs have tag @slow, the fast devs have tag @fast.
user creates a new 8G main LV on the slow devs with a
2G writecache on the fast devs:
$ lvcreate --type writecache -n main -L 8G
--cachedevice @fast --cachesize 2G vg @slow
To add a cache or writecache to a main LV with a single command:
lvconvert --type cache|writecache --cachedevice /dev/ssd vg/main
A cachevol LV will be allocated from the specified cache device,
then attached to the main LV. Include --cachesize to specify the
size of cachevol to create, otherwise the entire cachedevice is
used. The cachedevice option can be repeated to create a cachevol
from multiple devices.
Example
-------
A user has an existing main LV that they want to speed up
using a new ssd.
user adds the new ssd to the VG:
$ vgextend vg /dev/ssd
user attaches the new ssd their main LV:
$ lvconvert --type writecache --cachedevice /dev/ssd vg/main
Example
-------
A user has two existing main LVs that they want to speed up
with a new ssd.
user adds the new 16G ssd to the VG:
$ vgextend vg /dev/ssd
user attaches some of the new ssd to the first main LV,
using half of the space:
$ lvconvert --type writecache --cachedevice /dev/ssd
--cachesize 8G vg/main1
user attaches some of the new ssd to the second main LV,
using the other half of the space:
$ lvconvert --type writecache --cachedevice /dev/ssd
--cachesize 8G vg/main2
Example
-------
A user has an existing main LV that they want to speed up using
two new ssds.
user adds the new two ssds the VG:
$ vgextend vg /dev/ssd1
$ vgextend vg /dev/ssd2
user attaches both ssds their main LV:
$ lvconvert --type writecache
--cachedevice /dev/ssd1 --cachedevice /dev/ssd2 vg/main
Use libblkid to detect sector/block size of the fs on the LV.
Use this to choose a compatible writecache block size.
Enable attaching writecache to an active LV.
When lvconvert is used to remove raid images, we can
skip calling lv_add_integrity_to_raid(), which finds
nothing to do, but the the blocksize validation would
be called unnecessarily and trigger spurious errors.
pvck --dump headers reads the metadata text area
to compute the text metadata checksum to compare
with the mda_header checksum.
The new header_only will skip reading the metadata
text and not validate the mda_header checksum.
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m
lvm2 supports thin-pool to be later used by other tools doing
virtual volumes themself (i.e. docker) - in this case we
shall not validate transaction Id - is this is used by
other tools and lvm2 keeps value 0 - so the transationId
validation need to be skipped in this case.
Prevent attaching writecache to an active LV until
we can determine the block size of the fs on the LV,
and use that to enforce an appropriate writecache
block size. Changing the block size under a mounted
fs can cause panic/corruption.
Currently the error messages are not clear. This very easy to
guide user to execute "--removemissing --force", it is dangerous
and will make the LVs to be destroied.
Signed-off-by: Zhao Heming <heming.zhao@suse.com>