IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Commit 02f6f4902f introduced a bug that caused
RAID devices to fail to activate if the device for a single sub-LV failed.
The special case of LVM mirror was handled, but not LVM RAID.
EXAMPLE:
[root@bp-01 ~]# devices vg
LV Copy% Devices
lv 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] /dev/sde1(1)
[lv_rimage_1] /dev/sdh1(1)
[lv_rmeta_0] /dev/sde1(0)
[lv_rmeta_1] /dev/sdh1(0)
[root@bp-01 ~]# vgchange -an vg
0 logical volume(s) in volume group "vg" now active
[root@bp-01 ~]# off.sh sdh
Turning off sdh
[root@bp-01 ~]# vgchange -ay vg --partial
Partial mode. Incomplete logical volumes will be processed.
Couldn't find device with uuid fbI0YO-GX7x-firU-Vy5o-vzwx-vAKZ-feRxfF.
Cannot activate vg/lv_rimage_1: all segments missing.
0 logical volume(s) in volume group "vg" now active
AFTER this patch:
[root@bp-01 ~]# vgchange -ay vg --partial
Partial mode. Incomplete logical volumes will be processed.
Couldn't find device with uuid fbI0YO-GX7x-firU-Vy5o-vzwx-vAKZ-feRxfF.
1 logical volume(s) in volume group "vg" now active
[root@bp-01 ~]# devices vg
Couldn't find device with uuid fbI0YO-GX7x-firU-Vy5o-vzwx-vAKZ-feRxfF.
LV Copy% Devices
lv 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] /dev/sde1(1)
[lv_rimage_1] unknown device(1)
[lv_rmeta_0] /dev/sde1(0)
[lv_rmeta_1] unknown device(0)
[root@bp-01 ~]# dmsetup table vg-lv; dmsetup status vg-lv
0 1024000 raid raid1 3 0 region_size 1024 2 253:2 253:3 - -
0 1024000 raid raid1 2 AD 1024000/1024000
No WHATSNEW update necessary because this is an intrarelease fix.
brassow
Count number of error and existing areas and if there is no existing area
for the LV avoid its activation.
Always disable partial activatio for thin volumes.
For mirrors currently put in hack to let it pass with a special name
since current mirror code needs to activate such LV during some operations.
For reading % of mapped size of thin volume use as origin for
old style snapshot '-real' device needs to be queried.
Fix log_error report given for lvs -a in this case.
Pass in the origin_only flag also for thin volumes - but curently the flag
is not used to its best.
FIXME: achieve the state where only thin volume snapshot origin is
suspended without its childrens - let's explore whether this may
happen automatically inside libdm (might be generic for other targets).
So the code would not need to annotate the node for this.
Extend lv_activate_opts with bool flag to know for which purpose
dtree is created - and add message only for activation tree
(since that's the only place that may send them).
Extend validation check for thin snapshot creation and test whether
active snapshot origin is suspended before its snapshot is created
(useful in recover scenarios) - in this case also detect, whether
transaction has been already completed and avoid such suspend check
failure in that case.
Similar to the "mirror" segment type's log device, _add_dev_to_dtree should
be called and not _add_lv_to_dtree when adding metadata sub-LVs to the deptree.
Since _add_lv_to_dtree was being called, 'origin_only' could be set if a
snapshot sits on top of the RAID device. This would cause the actual device
that needed to be added to be skipped in favor of the non-existant device,
"<foo>-real".
This value returns percentage of 'mapped' size compared with total LV size.
(Without passed seg pointer it return highest mapped size - but it's
not used yet.)
LVM metadata knows only of striped segments - not linear ones.
The activation code detects segments with a single stripe and switches
them to use the linear target.
If the new lvm.conf setting is set to 0 (e.g. in a test script), this
'optimisation' is turned off.
Remove FIXMES - there should not be any pool free call since
the memory pool is from device manager, and pool is detroyed
after the operation, so doing extra free here would not help here.
However lv_has_target_type() is using cmd mempool so here the extra
call for dm_pool_free makes sence.
Since we support snapshots of thin volumes, we could have more layers,
so we have to check whether tpool layer is going to be inserted.
As the _add_segment_to_dtree() is the only place that adds tpool
segment, we may just check pointer (no strcmp for layer).
Switch to use seg_is_ function instead of lv_is_.
Let's put the overlay device over real thin pool device.
So we can get the proper locking on cluster.
Overwise the pool LV would be activate once implicitely
and in other case explicitely, confusing locking mechanism.
This patch make the activation of pool LV independent on
activation of thin LV since they will both implicitely use
real -thin pool device.
When verify_udev_operations was disable, code for stacking fs operation for
lvm links was completely disable - but this code was also used for collecting
information, that a new node is being created.
Add a new flag which is set when a creation of lv symlinks is requested which
should restore old behaviour of lv_info function, that has called fs_sync()
before quere for open count on device.
Using log_warn to report missing symlinks as warning, since the command
itself returns as successful, we should not produce log_error().
log_warn is better fit here.
Cosmetic, since r is already 0 for the error path, no need to assign it there,
and r is assigned to 1 after switch command.
Also makes the code more readable.
The current code does not always assign proper udev flags to sub-LVs (e.g.
mirror images and log LVs). This shows up especially during a splitmirror
operation in which an image is split off from a mirror to form a new LV.
A mirror with a disk log is actually composed of 4 different LVs: the 2
mirror images, the log, and the top-level LV that "glues" them all together.
When a 2-way mirror is split into two linear LVs, two of those LVs must be
removed. The segments of the image which is not split off to form the new
LV are transferred to the top-level LV. This is done so that the original
LV can maintain its major/minor, UUID, and name. The sub-lv from which the
segments were transferred gets an error segment as a transitory process
before it is eventually removed. (Note that if the error target was not put
in place, a resume_lv would result in two LVs pointing to the same segment!
If the machine crashes before the eventual removal of the sub-LV, the result
would be a residual LV with the same mapping as the original (now linear) LV.)
So, the two LVs that need to be removed are now the log device and the sub-LV
with the error segment. If udev_flags are not properly set, a resume will
cause the error LV to come up and be scanned by udev. This causes I/O errors.
Additionally, when udev scans sub-LVs (or former sub-LVs), it can cause races
when we are trying to remove those LVs. This is especially bad during failure
conditions.
When the mirror is suspended, the top-level along with its sub-LVs are
suspended. The changes (now 2 linear devices and the yet-to-be-removed log
and error LV) are committed. When the resume takes place on the original
LV, there are no longer links to the other sub-lvs through the LVM metadata.
The links are implicitly handled by querying the kernel for a list of
dependencies. This is done in the '_add_dev' function (which is recursively
called for each dependency found) - called through the following chain:
_add_dev
dm_tree_add_dev_with_udev_flags
<*** DM / LVM divide ***>
_add_dev_to_dtree
_add_lv_to_dtree
_create_partial_dtree
_tree_action
dev_manager_activate
_lv_activate_lv
_lv_resume
lv_resume_if_active
When udev flags are calculated by '_get_udev_flags', it is done by referencing
the 'logical_volume' structure. Those flags are then passed down into
'dm_tree_add_dev_with_udev_flags', which in turn passes them to '_add_dev'.
Unfortunately, when '_add_dev' is finding the dependencies, it has no way to
calculate their proper udev_flags. This is because it is below the DM/LVM
divide - it doesn't have access to the logical_volume structure. In fact,
'_add_dev' simply reuses the udev_flags given for the initial device! This
virtually guarentees the udev_flags are wrong for all the dependencies unless
they are reset by some other mechanism. The current code provides no such
mechanism. Even if '_add_new_lv_to_dtree' were called on the sub-devices -
which it isn't - entries already in the tree are simply passed over, failing
to reset any udev_flags. The solution must retain its implicit nature of
discovering dependencies and be able to go back over the dependencies found
to properly set the udev_flags.
My solution simply calls a new function before leaving '_add_new_lv_to_dtree'
that iterates over the dtree nodes to properly reset the udev_flags of any
children. It is important that this function occur after the '_add_dev' has
done its job of querying the kernel for a list of dependencies. It is this
list of children that we use to look up their respective LVs and properly
calculate the udev_flags.
This solution has worked for single machine, cluster, and cluster w/ exclusive
activation.
leaving behind the LVM-specific parts of the code (convenience wrappers that
handle `struct device` and `struct cmd_context`, basically). A number of
functions have been renamed (in addition to getting a dm_ prefix) -- namely,
all of the config interface now has a dm_config_ prefix.
~> lvconvert --splitmirrors 1 --trackchanges vg/lv
The '--trackchanges' option allows a user the ability to use an image of
a RAID1 array for the purposes of temporary read-only access. The image
can be merged back into the array at a later time and only the blocks that
have changed in the array since the split will be resync'ed. This
operation can be thought of as a partial split. The image is never completely
extracted from the array, in that the array reserves the position the device
occupied and tracks the differences between the array and the split image via
a bitmap. The image itself is rendered read-only and the name (<LV>_rimage_*)
cannot be changed. The user can complete the split (permanently splitting the
image from the array) by re-issuing the 'lvconvert' command without the
'--trackchanges' argument and specifying the '--name' argument.
~> lvconvert --splitmirrors 1 --name my_split vg/lv
Merging the tracked image back into the array is done with the '--merge'
option (included in a follow-on patch).
~> lvconvert --merge vg/lv_rimage_<n>
The internal mechanics of this are relatively simple. The 'raid' device-
mapper target allows for the specification of an empty slot in an array
via '- -'. This is what will be used if a partial activation of an array
is ever required. (It would also be possible to use 'error' targets in
place of the '- -'.) If a RAID image is found to be both read-only and
visible, then it is considered separate from the array and '- -' is used
to hold it's position in the array. So, all that needs to be done to
temporarily split an image from the array /and/ cause the kernel target's
bitmap to track (aka "mark") changes made is to make the specified image
visible and read-only. To merge the device back into the array, the image
needs to be returned to the read/write state of the top-level LV and made
invisible.
Implementation described in doc/lvm2-raid.txt.
Basic support includes:
- ability to create RAID 1/4/5/6 arrays
- ability to delete RAID arrays
- ability to display RAID arrays
Notable missing features (not included in this patch):
- ability to clean-up/repair failures
- ability to convert RAID segment types
- ability to monitor RAID segment types