IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If there's an activation volume_filter, it might not be possible
to activate the rmeta LVs to wipe them. At least inherit any
LV tags from the parent LV while attempting this.
Checking for devices uses is_missing_pv() to check
if there is a device for the PV. is_missing_pv()
is based on the MISSING_PV flag, which does not
always correspond to !pv->dev. When using lvmetad,
a command like:
pvs --config 'devices/filter=["a|/dev/sdb|", "r|.*|"]'
will cause a number of PVs to have NULL pv->dev, but
not the MISSING_PV flag. So, NULL pv->dev needs to
also be checked.
[0] fedora/~ # pvs --config 'devices/filter=["a|/dev/sda|", "r|.*|"]'
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Couldn't find device for segment belonging to fedora/root while checking used and assumed devices.
WARNING: Couldn't find device for segment belonging to fedora/swap while checking used and assumed devices.
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
[unknown] fedora lvm2 a-m 19.49g 0
Probably not worth mentioning "segments" here, just state that devices
for an LV can't be all found during the check - it's less mysterious for
user then:
[0] fedora/~ # pvs --config 'devices/filter=["a|/dev/sda|", "r|.*|"]'
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Couldn't find all devices for LV fedora/root while checking used and assumed devices.
WARNING: Couldn't find all devices for LV fedora/swap while checking used and assumed devices.
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
[unknown] fedora lvm2 a-m 19.49g 0
When checking assumed PVs against real devices used for LVs and if
there's no device assigned for an assumed PV (e.g. due to filters),
do log_warn instead of log_error and continue checking LV segments
and associated assumed PVs further, just like we do log_warn elsewhere
in this situation.
This way user will see the warning for each LV which couldn't be
checked completely against real PVs used. Before, we logged only
the very first occurence of missing device for an LV in a VG and we
returned from the function doing this check for all the LVs in VG
immediately which may be a bit misleading because it didn't tell
user about all the other LVs and whether they could be checked
or not.
For example, we have this setup:
[0] fedora/~ # pvs
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
/dev/vda2 fedora lvm2 a-- 19.49g 0
[0] fedora/~ # lvs -o+devices
LV VG Attr LSize Devices
root fedora -wi-ao---- 19.00g /dev/vda2(0)
swap fedora -wi-ao---- 500.00m /dev/vda2(4864)
Before this patch (only the very first LV in a VG is logged to have a
problem while checking used and assumed devices):
[0] fedora/~ # pvs --config 'devices/filter=["a|/dev/sda|", "r|.*|"]'
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
Couldn't find device for segment belonging to fedora/root while checking used and assumed devices.
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
[unknown] fedora lvm2 a-m 19.49g 0
With this patch applied (all LVs where we hit problem while checking
used and assumed devices are logged and it's warning, not error):
[0] fedora/~ # pvs --config 'devices/filter=["a|/dev/sda|", "r|.*|"]'
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Device for PV Qcxpcy-XgtP-UD3s-PmG0-qLyE-Z0ho-DYsxoz not found or rejected by a filter.
WARNING: Couldn't find device for segment belonging to fedora/root while checking used and assumed devices.
WARNING: Couldn't find device for segment belonging to fedora/swap while checking used and assumed devices.
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
[unknown] fedora lvm2 a-m 19.49g 0
vg/snapshotN should not appear anywhere.
No code should be showing this, but it was noticed in some logs last
week and we can deal with it in display_lvname().
The lvmetad connection is created within the
init_connections() path during command startup,
rather than via the old lvmetad_active() check.
The old lvmetad_active() checks are replaced
with lvmetad_used() which is a simple check that
tests if the command is using/connected to lvmetad.
The old lvmetad_set_active(cmd, 0) calls, which
stopped the command from using lvmetad (to revert to
disk scanning), are replaced with lvmetad_make_unused(cmd).
It's possible for an LVM LV to use a device during activation which
then differs from device which LVM assumes based on metadata later on.
For example, such device mismatch can occur if LVM doesn't have
complete view of devices during activation or if filters are
misbehaving or they're incorrectly set during activation.
This patch adds code that can detect this mismatch by creating
VG UUID and LV UUID index while scanning devices for device cache.
The VG UUID index maps VG UUID to a device list. Each device in the
list has a device layered above as a holder which is an LVM LV device
and for which we know the VG UUID (and similarly for LV UUID index).
We can acquire VG and LV UUID by reading /sys/block/<dm_dev_name>/dm/uuid.
So these indices represent the actual state of PV device use in
the system by LVs and then we compare that to what LVM assumes
based on metadata.
For example:
[0] fedora/~ # lsblk /dev/sdq /dev/sdr /dev/sds /dev/sdt
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdq 65:0 0 104M 0 disk
|-vg-lvol0 253:2 0 200M 0 lvm
`-mpath_dev1 253:3 0 104M 0 mpath
sdr 65:16 0 104M 0 disk
`-mpath_dev1 253:3 0 104M 0 mpath
sds 65:32 0 104M 0 disk
|-vg-lvol0 253:2 0 200M 0 lvm
`-mpath_dev2 253:4 0 104M 0 mpath
sdt 65:48 0 104M 0 disk
`-mpath_dev2 253:4 0 104M 0 mpath
In this case the vg-lvol0 is mapped onto sdq and sds becauset this is
what was available and seen during activation. Then later on, sdr and
sdt appeared and mpath devices were created out of sdq+sdr (mpath_dev1)
and sds+sdt (mpath_dev2). Now, LVM assumes (correctly) that mpath_dev1
and mpath_dev2 are the PVs that should be used, not the mpath
components (sdq/sdr, sds/sdt).
[0] fedora/~ # pvs
Found duplicate PV xSUix1GJ2SK82ACFuKzFLAQi8xMfFxnO: using /dev/mapper/mpath_dev1 not /dev/sdq
Using duplicate PV /dev/mapper/mpath_dev1 from subsystem DM, replacing /dev/sdq
Found duplicate PV MvHyMVabtSqr33AbkUrobq1LjP8oiTRm: using /dev/mapper/mpath_dev2 not /dev/sds
Using duplicate PV /dev/mapper/mpath_dev2 from subsystem DM, ignoring /dev/sds
WARNING: Device mismatch detected for vg/lvol0 which is accessing /dev/sdq, /dev/sds instead of /dev/mapper/mpath_dev1, /dev/mapper/mpath_dev2.
PV VG Fmt Attr PSize PFree
/dev/mapper/mpath_dev1 vg lvm2 a-- 100.00m 0
/dev/mapper/mpath_dev2 vg lvm2 a-- 100.00m 0
Commit b64703401da1f4bef60579a0b3766c087fcfe96a cause regression
when handling stacked resize of pool metadata volume that would
be a raid LV.
Fix it by properly setting up size also for layer extension.
There's a window between doing VG read and checking PV device size
against real device size. If the device is removed in this window,
the dev cache still holds struct device and pv->dev still references
that and that PV is not marked as missing. However, if we're trying
to get size for such device, the open fails because that device
doesn't exists anymore.
We called existing pv_dev_size in _check_pv_dev_sizes fn. But
pv_dev_size assigned a size of 0 if the dev_get_size it called failed
(because the device is gone).
So call the dev_get_size directly and check for the return code
in _check_pv_dev_sizes and go further only if we really know the
device size. This is to avoid confusing warning messages like:
Device /dev/sdd1 has size of 0 sectors which is smaller than corresponding PV size of 31455207 sectors. Was device resized?
One or more devices used as PVs in VG helter_skelter have changed sizes.
When a command modifies a PV or VG, or changes the
activation state of an LV, it will send a dbus
notification when the command is finished. This
can be enabled/disabled with a config setting.
Historical LV is valid as long as there is at least one live LV among
its ancestors. If we find any invalid (dangling) historical LVs, remove
them automatically.
The vg_strip_outdated_historical_lvs iterates over the list of historical LVs
we have and it shoots down the ones which are outdated.
Configuration hook to set the timeout will be in subsequent patch.
Report proper values for historical LVs in lv_layout and lv_role fields.
Any historical LV doesn't have any layout anymore and the role is "history".
For example:
$ lvs -H -o name,lv_attr,lv_layout,lv_role vg/-lvol1
LV Attr Layout Role
-lvol1 ----h----- none public,history
Add support for making an interconnection between thin LV segment and
its indirect origin (which may be historical or live LV) - add a new
"indirect_origin" argument to attach_pool_lv function.
Also export historical LVs when exporting LVM2 metadata.
This is list of all historical LVs listed in
"historical_logical_volumes" metadata section with all
the properties exported for each historical LV.
For example, we have this thin snapshot sequence:
lvol1 --> lvol2 --> lvol3
\
--> lvol4
We end up with these metadata:
logical_volume {
...
(lvol1, lvol3 and lvol4 listed here as usual - no change here)
...
}
historical_logical_volumes {
lvol2 {
id = "S0Dw1U-v5sF-LwAb-W9SI-pNOF-Madd-5dxSv5"
creation_time = 1456919613 # 2016-03-02 12:53:33 +0100
removal_time = 1456919620 # 2016-03-02 12:53:40 +0100
origin = "lvol1"
descendants = ["lvol3", "lvol4"]
}
}
By removing lvol1 further, we end up with:
historical_logical_volumes {
lvol2 {
id = "S0Dw1U-v5sF-LwAb-W9SI-pNOF-Madd-5dxSv5"
creation_time = 1456919613 # 2016-03-02 12:53:33 +0100
removal_time = 1456919620 # 2016-03-02 12:53:40 +0100
origin = "-lvol1"
descendants = ["lvol3", "lvol4"]
}
lvol1 {
id = "me0mes-aYnK-nRfT-vNlV-UiR1-GP7r-ojbROr"
creation_time = 1456919608 # 2016-03-02 12:53:28 +0100
removal_time = 1456919767 # 2016-03-02 12:56:07 +0100
}
}
When an LV is being removed, we create an instance of
"struct historical_logical_volume" wrapped up in
"struct generic_logical_volume".
All instances of "struct historical_logical_volume" are then recorded in
"historical_lvs" list which is part of "struct volume_group".
The "historical LV" is then interconnected with "live LVs" to
connect a history chain for the live LV.
The add_glv_to_indirect_glvs is a helper function that registers a
volume represented by struct generic_logical_volume instance ("glv")
as an indirect user of another volume ("origin_glv") and vice versa -
it also registers the other volume ("origin_glv") as indirect_origin
of user volume ("glv").
The remove_glv_from_indirect_glvs does the opposite.
The get_or_create_glv is helper function that retrieves any existing
generic_logical_volume wrapper for the LV. If the wrapper does not exist
yet, it's created.
The get_org_create_glvl is the same as get_or_create_glv but it creates
the glv_list wrapper in addition so it can be added to a list.
Add new structures and new fields in existing structures to support
tracking history of LVs (the LVs which don't exist - the have been
removed already):
- new "struct historical_logical_volume"
This structure keeps information specific to historical LVs
(historical LV is very reduced form of struct logical_volume +
it contains a few specific fields to track historical LV
properties like removal time and connections among other LVs).
- new "struct generic_logical_volume"
Wrapper for "struct historical_logical_volume" and
"struct logical_volume" to make it possible to handle volumes
in uniform way, no matter if it's live or historical one.
- new "struct glv_list"
Wrapper for "struct generic_logical_volume" so it can be
added to a list.
- new "indirect_glvs" field in "struct logical_volume"
List that stores references to all indirect users of this LV - this
interconnects live LV with historical descendant LVs or even live
descendant LVs.
- new "indirect_origin" field in "struct lv_segment"
Reference to indirect origin of this segment - this interconnects
live LV (segment) with historical ancestor.
- new "this_glv" field in "struct logical_volume"
This references an existing generic_logical_volume wrapper for this
LV, if used. It can be NULL if not needed - which means we're not
handling historical LVs at all.
- new "historical_lvs" field in "struct volume group
List of all historical LVs read from VG metadata.
Showing 'u' in the pv_attr reporting field is mostly unnecessary because
most PVs are allocatable, and being allocatable implies it is (u)sed,
and this is already obvious from other fields in the default 'pvs'
output like the VG name.
So move the new (u)sed pv_attr from character position 4 to 1, and only
show it in those rare cases when the PV is not (a)llocatable or the
relevant metadata is missing.
(Scripts should not be using pv_attr, but rather pv_allocatable,
pv_exported, pv_missing, pv_in_use etc.)