IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In past we had this control with use_lvmetad check for
pvscan --cache -aay
Howerer this got lost with lvmetad removal commit:
117160b27e
When user sets lvm.conf global/event_activation=0
pvscan service will no longer auto activate any LVs on appeared PVs.
Move extra md component detection into the label scan phase.
It had been in set_pv_devices which was deep within the vg_read
phase, which wasn't a good place (better to detect that earlier.)
Now that pv metadata info is available in the scan phase, the pv
details (size and device_hint) can be used for extra md checking.
Use the device_hint from the pv metadata to trigger a full md
component check if the device_hint begins with /dev/md.
Stop triggering full md component checks based on missing
udev info for a dev.
Changes to tests to reflect that the code is now detecting
md components in some test case that it wasn't before.
Read buffersize - 1 so the last byte is always 0.
Simplify init of 0 buffers.
Check snprintf result for error and report internal error as it could
happen only via bad compile parameters.
Restructure the pvscan code, and add new temporary files
that list pvids in a VG, used for processing PVs that
have no metadata.
The new temp files, in /run/lvm/pvs_lookup/<vgname>, allow a
proper pvscan --cache to be done on PVs that have no metadata.
pvscan --cache <dev> is only supposed to read <dev>, but when
<dev> has no metadata, this had not been possible. The
command had to fall back to scanning all devices to read all
VG metadata to get the list of all PVIDs needed to check for
a complete VG. Now, the temp file can be used in place of
reading metadata from all PVs on the system.
Since we check for NULL pointers earlier we need
to be consistent across function - since the NULL
would applies across whole function.
When dropping 'mda' check - we are actually
already dereferencing it before - so it can't
be NULL at that places (and it's validated
before entering _read_mda_header_and_metadata).
When the PV device names in the VG metadata do not match the
current PV device names seen on the system, do not use the
optimized activation function (that avoids extra device scanning.)
When the device names do not match, it's a clue that there could
be duplicate PVs, in which case we want to scan all devicess to
find any duplicates and stop the activation if found.
This does not prevent autoactivating a VG from the incorrect
duplicate PV, because the incorrect duplicate may appear by itself
first. At that point its duplicate PV does not exist to be seen.
(A future enhancement could use the WWID to strengthen this
detection.)
When an online PV completed a VG, the standard
activation functions were used to activate the VG.
These functions use a full scan of all devs.
When many pvscans are run during startup and need
to activate many VGs, scanning all devs from all
the pvscans can take a long time.
Optimize VG activation in pvscan to scan only the
devs in the VG being activated. This makes use of
the online file info that was used to determine
the VG was complete.
The downside of this approach is that pvscan activation
will not detect duplicate PVs and block activation,
where a normal activation command (which scans all
devices) would.
Usually md components are eliminated in label scan and/or
duplicate resolution, but they could sometimes get into
the vg_read stage, where set_pv_devices compares the
device to the PV.
If set_pv_devices runs an md component check and finds
one, vg_read should eliminate the components.
In set_pv_devices, run an md component check always
if the PV is smaller than the device (this is not
very common.) If the PV is larger than the device,
(more common), do the component check when the config
setting is "auto" (the default).
An active md device with an end superblock causes lvm to
enable full md component detection. This was being done
within the filter loop instead of before, so the full
filtering of some devs could be missed.
Also incorporate the recently added config setting that
controls the md component detection.
Fix commit 7836e7aa1c
"pvscan: ignore device with incorrect size"
which caused pvscan to not consider a PV online (for purposes
of event based activation) if the PV and device sizes differed.
This helped to avoid mistaking MD components for PVs, and is
replaced by triggering an md component check when PV and device
sizes differ (which happens in set_pv_device).
When vg_read rescans devices with the intention of
writing the VG, the label rescan can open the devs
RW so they do not need to be closed and reopened
RW in dev_write_bytes.
commit aa75b31db5
"pvscan: handle case of scanning PV without metadata last"
failed to recognize that an arg may be null in the case of
'pvscan --cache' (without -aay) which does not keep track
of complete VGs because it does not need to activate them.
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
Handle the case where pvscan --cache -aay (with no dev args)
gets to the final PV, completing the VG, but that final PV does not
have VG metadata. In this case, we need to use VG metadata from a
previously scanned PV in the same VG, which we saved for this
possibility. Using this saved metadata, we can find which VG
this PVID belongs to, and then check if that VG is now complete,
and if so add the VG name to the list of complete VGs to be
autoactivated.
If a device looks like a PV, but its size does not
match the PV size in the metadata, then skip it for
purposes of autoactivation. It's probably not wrong
device for the PV.
In the past, the first 'pvscan --cache -aay dev' command
to run on the system would initialize the pvs_online dir
by scanning all devs and creating online files for all pvs
it found, and then autoactivating the VG (if complete) for
the named dev. The idea was that the system may not have
been able to run pvscan commands for early devices, so the
first pvscan to run would need to "make up" for any devices
that had appeared previously, which the system was unable to
scan. The problem or idea of making up for missed scans is
historical and should no longer be needed, so remove this
special init case.
When pvscan is run for the initialization case (the first
pvscan run on the system), it scans all devs and creates
online files for all PVs it finds. Previously it would
then autoactivate every complete VG, but change this to
only autoactive the (complete) VG corresponding to the
named device arg(s).
Fix to previous commit
"pvscan: ignore online for shared and foreign PVs"
which was incorrectly considering a PV foreign if its
VG had no system ID when the host did have a system ID.
Activation would not be allowed anyway, but we can
check for these cases early and avoid wasted time in
pvscan managing online files an attempting activation.
When a VG has multiple PVs, and all those PVs come online
at the same time, concurrent pvscans for each PV will all
create the individual pvid files, and all will often see
the VG is now complete. This causes each of the pvscan
commands to think it should activate the VG, so there
are multiple activations of the same VG. The vg lock
serializes them, and only the first pvscan actually does
the activation, but there is still a lot of extra overhead
and time used by the other pvscans that attempt to
activate the already active VG. This can lead to a backlog
of pvscans and timeouts.
To fix this, this adds a new /run/lvm/vgs_online/ dir that
works like the existing /run/lvm/pvs_online/ dir. Each pvscan
that wants to activate a VG will first try to exlusively create
the file vgs_online/<vgname>. Only the first pvscan will
succeed, and that one will do the VG activation. The other
pvscans will find the vgname file exists and will not do the
activation step.
When a PV goes offline, the vgs_online file for the corresponding
VG is removed. This allows the VG to be autoactivated again
when the PV comes online again. This requires that the vgname be
stored in the pvid files.
Use a file lock to ensure that only one pvscan will do
initialization of pvs_online, otherwise multiple concurrent
pvscans may all see an empty pvs_online directory and
do initialization.
The pvscan that is doing initialization should also only
attempt to activate complete VGs.
When aay was included in the pvscan --cache command,
the activation part was complaining about the unusual
state of the hint file since it had been recreated
just prior.
An idea from Zdenek for better ensuring valid hints by invalidating
them when pvscan --cache <device> sees a new PV, which is a case
where we know that hints should be invalidated. This is triggered
from systemd/udev logic, and there may be some cases where it would
invalidate hints that the existing methods wouldn't detect.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)