IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This patch introduces the systemd pstore service which will archive the
contents of the Linux persistent storage filesystem, pstore, to other storage,
thus preserving the existing information contained in the pstore, and clearing
pstore storage for future error events.
Linux provides a persistent storage file system, pstore[1], that can store
error records when the kernel dies (or reboots or powers-off). These records in
turn can be referenced to debug kernel problems (currently the kernel stuffs
the tail of the dmesg, which also contains a stack backtrace, into pstore).
The pstore file system supports a variety of backends that map onto persistent
storage, such as the ACPI ERST[2, Section 18.5 Error Serialization] and UEFI
variables[3 Appendix N Common Platform Error Record]. The pstore backends
typically offer a relatively small amount of persistent storage, e.g. 64KiB,
which can quickly fill up and thus prevent subsequent kernel crashes from
recording errors. Thus there is a need to monitor and extract the pstore
contents so that future kernel problems can also record information in the
pstore.
The pstore service is independent of the kdump service. In cloud environments
specifically, host and guest filesystems are on remote filesystems (eg. iSCSI
or NFS), thus kdump relies [implicitly and/or explicitly] upon proper operation
of networking software *and* hardware *and* infrastructure. Thus it may not be
possible to capture a kernel coredump to a file since writes over the network
may not be possible.
The pstore backend, on the other hand, is completely local and provides a path
to store error records which will survive a reboot and aid in post-mortem
debugging.
Usage Notes:
This tool moves files from /sys/fs/pstore into /var/lib/systemd/pstore.
To enable kernel recording of error records into pstore, one must either pass
crash_kexec_post_notifiers[4] to the kernel command line or enable via 'echo Y
> /sys/module/kernel/parameters/crash_kexec_post_notifiers'. This option
invokes the recording of errors into pstore *before* an attempt to kexec/kdump
on a kernel crash.
Optionally, to record reboots and shutdowns in the pstore, one can either pass
the printk.always_kmsg_dump[4] to the kernel command line or enable via 'echo Y >
/sys/module/printk/parameters/always_kmsg_dump'. This option enables code on the
shutdown path to record information via pstore.
This pstore service is a oneshot service. When run, the service invokes
systemd-pstore which is a tool that performs the following:
- reads the pstore.conf configuration file
- collects the lists of files in the pstore (eg. /sys/fs/pstore)
- for certain file types (eg. dmesg) a handler is invoked
- for all other files, the file is moved from pstore
- In the case of dmesg handler, final processing occurs as such:
- files processed in reverse lexigraphical order to faciliate
reconstruction of original dmesg
- the filename is examined to determine which dmesg it is a part
- the file is appended to the reconstructed dmesg
For example, the following pstore contents:
root@vm356:~# ls -al /sys/fs/pstore
total 0
drwxr-x--- 2 root root 0 May 9 09:50 .
drwxr-xr-x 7 root root 0 May 9 09:50 ..
-r--r--r-- 1 root root 1610 May 9 09:49 dmesg-efi-155741337601001
-r--r--r-- 1 root root 1778 May 9 09:49 dmesg-efi-155741337602001
-r--r--r-- 1 root root 1726 May 9 09:49 dmesg-efi-155741337603001
-r--r--r-- 1 root root 1746 May 9 09:49 dmesg-efi-155741337604001
-r--r--r-- 1 root root 1686 May 9 09:49 dmesg-efi-155741337605001
-r--r--r-- 1 root root 1690 May 9 09:49 dmesg-efi-155741337606001
-r--r--r-- 1 root root 1775 May 9 09:49 dmesg-efi-155741337607001
-r--r--r-- 1 root root 1811 May 9 09:49 dmesg-efi-155741337608001
-r--r--r-- 1 root root 1817 May 9 09:49 dmesg-efi-155741337609001
-r--r--r-- 1 root root 1795 May 9 09:49 dmesg-efi-155741337710001
-r--r--r-- 1 root root 1770 May 9 09:49 dmesg-efi-155741337711001
-r--r--r-- 1 root root 1796 May 9 09:49 dmesg-efi-155741337712001
-r--r--r-- 1 root root 1787 May 9 09:49 dmesg-efi-155741337713001
-r--r--r-- 1 root root 1808 May 9 09:49 dmesg-efi-155741337714001
-r--r--r-- 1 root root 1754 May 9 09:49 dmesg-efi-155741337715001
results in the following:
root@vm356:~# ls -al /var/lib/systemd/pstore/155741337/
total 92
drwxr-xr-x 2 root root 4096 May 9 09:50 .
drwxr-xr-x 4 root root 40 May 9 09:50 ..
-rw-r--r-- 1 root root 1610 May 9 09:50 dmesg-efi-155741337601001
-rw-r--r-- 1 root root 1778 May 9 09:50 dmesg-efi-155741337602001
-rw-r--r-- 1 root root 1726 May 9 09:50 dmesg-efi-155741337603001
-rw-r--r-- 1 root root 1746 May 9 09:50 dmesg-efi-155741337604001
-rw-r--r-- 1 root root 1686 May 9 09:50 dmesg-efi-155741337605001
-rw-r--r-- 1 root root 1690 May 9 09:50 dmesg-efi-155741337606001
-rw-r--r-- 1 root root 1775 May 9 09:50 dmesg-efi-155741337607001
-rw-r--r-- 1 root root 1811 May 9 09:50 dmesg-efi-155741337608001
-rw-r--r-- 1 root root 1817 May 9 09:50 dmesg-efi-155741337609001
-rw-r--r-- 1 root root 1795 May 9 09:50 dmesg-efi-155741337710001
-rw-r--r-- 1 root root 1770 May 9 09:50 dmesg-efi-155741337711001
-rw-r--r-- 1 root root 1796 May 9 09:50 dmesg-efi-155741337712001
-rw-r--r-- 1 root root 1787 May 9 09:50 dmesg-efi-155741337713001
-rw-r--r-- 1 root root 1808 May 9 09:50 dmesg-efi-155741337714001
-rw-r--r-- 1 root root 1754 May 9 09:50 dmesg-efi-155741337715001
-rw-r--r-- 1 root root 26754 May 9 09:50 dmesg.txt
where dmesg.txt is reconstructed from the group of related
dmesg-efi-155741337* files.
Configuration file:
The pstore.conf configuration file has four settings, described below.
- Storage : one of "none", "external", or "journal". With "none", this
tool leaves the contents of pstore untouched. With "external", the
contents of the pstore are moved into the /var/lib/systemd/pstore,
as well as logged into the journal. With "journal", the contents of
the pstore are recorded only in the systemd journal. The default is
"external".
- Unlink : is a boolean. When "true", the default, then files in the
pstore are removed once processed. When "false", processing of the
pstore occurs normally, but the pstore files remain.
References:
[1] "Persistent storage for a kernel's dying breath",
March 23, 2011.
https://lwn.net/Articles/434821/
[2] "Advanced Configuration and Power Interface Specification",
version 6.2, May 2017.
https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
[3] "Unified Extensible Firmware Interface Specification",
version 2.8, March 2019.
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
[4] "The kernel’s command-line parameters",
https://static.lwn.net/kerneldoc/admin-guide/kernel-parameters.html
We can meaningfully compare jobs for units which have cpu weight or nice set.
But non-exec units those have those set.
Starting non-exec jobs first allows us to get them out of the queue quickly,
and consider more jobs for starting.
If we have service A, and socket B, and service C which is after socket B,
and we want to start both A and C, and C has higher cpu weight, if we get
B out of the way first, we'll know that we can start both A and C, and we'll
start C first.
Also invert the comparisons using CMP() so they are always done left vs. right,
and negate when returning instead.
Follow-up for da8e178296.
At the moment the shutdown watchdog is set only when rebooting.
The set of "things that can go wrong" is not too far off when kexec'ing
and in fact we have a use case where it would be useful - moving to a
new kernel image.
(The interesting bits about the what and why are in a comment in the
patch, please have a look there instead of looking here in the commit
msg).
Fixes: #10872
Our IO handler is only installed for one fd, hence there's no reason to
conditionalize on it again.
Also, split out the draining into a helper function of its own.
Some distros install nologin as /usr/sbin/nologin, others as
/sbin/nologin.
Since we can't really on merged-usr everywhere (where the path wouldn't
matter), make the path build time configurable via -Dnologin-path=.
Closes#13028
Urlich Windl wrote on the mailing list:
> I noticed that a line of "=======" in "[Service]" cases the message " Unknown lvalue '' in section 'Service'".
This now becomes:
/etc/systemd/system/eqeqeqeq.service:3: Missing key name before '=', ignoring line.
We generally don't treat syntax error as fatal, but in this case we would
completely refuse to load the file. I think we should treat the the same
as assignment outside of a section, or an unknown key name.
Jobs are added to the run queue in random order. This happens because most
jobs are added by iterating over the transaction or dependency hash maps.
As a result, jobs that can be executed at the same time are started in a
different order each time.
On small embedded devices this can cause a measurable jitter for the point
in time when a job starts (~100ms jitter for 10 units that are started in
random order).
This results is a similar jitter for the boot time. This is undesirable in
general and make optimizing the boot time a lot harder.
Also, jobs that should have a higher priority because the unit has a higher
CPU weight might get executed later than others.
Fix this by turning the job run_queue into a Prioq and sort by the
following criteria (use the next if the values are equal):
- CPU weight
- nice level
- unit type
- unit name
The last one is just there for deterministic sorting to avoid any jitter.
The enum order will be used to order jobs in the job queue.
Make sure that unit types that fork aditional processes come first to
maximize parallelism.
Change the resolved.conf Cache option to a tri-state "no, no-negative, yes" values.
If a lookup returns SERVFAIL systemd-resolved will cache the result for 30s (See 201d995),
however, there are several use cases on which this condition is not acceptable (See systemd#5552 comments)
and the only workaround would be to disable cache entirely or flush it , which isn't optimal.
This change adds the 'no-negative' option when set it avoids putting in cache
negative answers but still works the same heuristics for positive answers.
Signed-off-by: Jorge Niedbalski <jnr@metaklass.org>
The flag IFA_F_NOPREFIXROUTE was introduced in kernel-3.14. But even if
the kernel does not support the flag, it should be just ignored. So, it
is not necessary to do the fallback logic. Moreover, the current logic
is not a fallback mechanism but just retrying. So, it should not work.
Let's drop that.
This restores proper speed with asan builds with gcc 9.1.1.
Fixes#12997.
$ rpm -q gcc
gcc-9.1.1-2.fc31.x86_64
$ time ASAN_OPTIONS=strict_string_checks=1:detect_stack_use_after_return=1:check_initialization_order=1:strict_init_order=1 UBSAN_OPTIONS=print_stacktrace=1:print_summary=1:halt_on_error=1 build-rawhide-sanitize/test-conf-parser
(old) 86.99s user 20.22s system 361% cpu 29.635 total
(new) 3.05s user 0.29s system 99% cpu 3.377 total
Size is increased a bit:
$ size build/systemd
(old) 1683421 246100 1208 1930729 1d75e9 build/systemd
(new) 1688237 246100 1208 1935545 1d88b9 build/systemd
... but that's <0.1%, so we don't really care.