IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This commit follows further on the deprecation path for --share-system,
by splitting and gating each share-able namespace behind its own
environment flag.
Mere presence of the socket in the filesystem makes
udev_queue_get_udev_is_active() return that udev is running. Note that,
udev on exit doesn't unlink control socket nor does systemd. Thus socket
stays around even when both daemon and socket are stopped. This causes
problems for cryptsetup because when it detects running udev it launches
synchronous operations that *really* require udev. This in turn may
cause blocking and subsequent timeout in systemd-cryptsetup on reboot
while machine is in a state that udev and its control socket units are
stopped, e.g. emergency mode.
Fixes#2477
When the system journal becomes re-opened post-flush with the runtime
journal open, it implies we've recovered from something like an ENOSPC
situation where the system journal rotate had failed, leaving the system
journal closed, causing the runtime journal to be opened post-flush.
For the duration of the unavailable system journal, we log to the
runtime journal. But when the system journal gets opened (space made
available, for example), we need to close the runtime journal before new
journal writes will go to the system journal. Calling
server_flush_to_var() after opening the system journal with a runtime
journal present, post-flush, achieves this while preserving the runtime
journal's contents in the system journal.
The combination of the present flushed flag file and the runtime journal
being open is a state where we should be logging to the system journal,
so it's appropriate to resume doing so once we've successfully opened
the system journal.
bus_connect_transport() is exclusively used from our command line tools, hence
let's set exit-on-disconnect for all of them, making behaviour a bit nicer in
case dbus-daemon goes down.
Old libdbus has a feature that the process is terminated whenever the the bus
connection receives a disconnect. This is pretty useful on desktop apps (where
a disconnect indicates session termination), as well as on command line apps
(where we really shouldn't stay hanging in most cases if dbus daemon goes
down).
Add a similar feature to sd-bus, but make it opt-in rather than opt-out, like
it is on libdbus. Also, if the bus is attached to an event loop just exit the
event loop rather than the the whole process.
If the server side kicks us from the bus, from our view no names are on the bus
anymore, hence let's make sure to dispatch all tracking objects immediately.
In order to add a name to a bus tracking object we need to do some bus
operations: we need to check if the name already exists and add match for it.
Both are synchronous bus calls. While processing those we need to make sure
that the tracking object is not dispatched yet, as it might still be empty, but
is not going to be empty for very long.
hence, block dispatching by removing the object from the dispatch queue while
adding it, and readding it on error.
It is useful for clients to be able to read the last CPU usage counter value of
a unit even if the unit is already terminated. Hence, before destroying a
cgroup's cgroup cache the last CPU usage counter and return it if the cgroup is
gone.
Let's make sure we can read the exit code/status properties exposed by PID 1
properly. Let's reuse the existing code for unsigned fields, as we just use it
to copy words around, and don't calculate it.
This adds two (privileged) bus calls Ref() and Unref() to the Unit interface.
The two calls may be used by clients to pin a unit into memory, so that various
runtime properties aren't flushed out by the automatic GC. This is necessary
to permit clients to race-freely acquire runtime results (such as process exit
status/code or accumulated CPU time) on successful service termination.
Ref() and Unref() are fully recursive, hence act like the usual reference
counting concept in C. Taking a reference is a privileged operation, as this
allows pinning units into memory which consumes resources.
Transient units may also gain a reference at the time of creation, via the new
AddRef property (that is only defined for transient units at the time of
creation).
And while ware at it, also drop some references to kdbus, and stop claiming
sd-bus wasn't stable yet. Also order man page references in the main sd-bus man
page alphabetically.
This adds an optional "recursive" counting mode to sd_bus_track. If enabled
adding the same name multiple times to an sd_bus_track object is counted
individually, so that it also has to be removed the same number of times before
it is gone again from the tracking object.
This functionality is useful for implementing local ref counted objects that
peers make take references on.
A lot of basic code wants to know the stack size, and it is safe if they do,
hence let's permit getrlimit() (but not setrlimit()) by default.
See: #3970
to prevent:
src/mount/mount-tool.c: In function ‘acquire_description’:
src/mount/mount-tool.c:728:24: warning: return makes integer from pointer without a cast [-Wint-conversion]
return NULL;
^~~~
warning.
Additionally we don't set Description property in a case when
arg_description is NULL.
When told to enable a template unit, and the DefaultInstance specified in that
unit was masked, we would do this. Such a unit cannot be started or loaded, so
reporting successful enabling is misleading and unexpected.
$ systemctl mask getty@tty1
Created symlink /etc/systemd/system/getty@tty1.service → /dev/null.
$ systemctl --root=/ enable getty@tty1
(unchanged)
Failed to enable unit, unit /etc/systemd/system/getty@tty1.service is masked.
$ systemctl --root=/ enable getty@
(before)
Created symlink /etc/systemd/system/getty.target.wants/getty@tty1.service → /usr/lib/systemd/system/getty@.service.
(now)
Failed to enable unit, unit /etc/systemd/system/getty@tty1.service is masked.
The same error is emitted for enable and preset. And an error is emmited, not a
warning, so the failure to enable DefaultInstance is treated the same as if the
instance was specified on the command line. I think that this makes most sense,
for most template units.
Fixes#2513.
After the call of the isatty() we check its result twice in the
open_terminal(). There are no sense to check result of isatty() that
it is less than zero and return -errno, because as described in
documentation:
isatty() returns 1 if fd is an open file descriptor referring to a
terminal; otherwise 0 is returned, and errno is set to indicate the
error.
So it can't be less than zero.