IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A service that only sets the scheduling policy to round-robin
fails to be started. This is because the cpu_sched_priority is
initialized to 0 and is not adjusted when the policy is changed.
Clamp the cpu_sched_priority when the scheduler policy is set. Use
the current policy to validate the new priority.
Change the manual page to state that the given range only applies
to the real-time scheduling policies.
Add a testcase that verifies this change:
$ make test-sched-prio; ./test-sched-prio
[test/sched_idle_bad.service:6] CPU scheduling priority is out of range, ignoring: 1
[test/sched_rr_bad.service:7] CPU scheduling priority is out of range, ignoring: 0
[test/sched_rr_bad.service:8] CPU scheduling priority is out of range, ignoring: 100
Note: I did s/MANAGER/SYSTEMD/ everywhere, even though it makes the
patch quite verbose. Nevertheless, keeping MANAGER prefix in some
places, and SYSTEMD prefix in others would just lead to confusion down
the road. Better to rip off the band-aid now.
When looking for symlinks, it doesn't make sense to error-out if
the directory is missing. The user might delete an empty directory.
This check caused test-unit-file to fail when run before installation.
- don't use pivot_root() anymore, just reuse root hierarchy
- first create all mounts, then mark them read-only so that we get the
right behaviour when people want writable mounts inside of
read-only mounts
- don't pass invalid combinations of MS_ constants to the kernel
CC src/test/test_job_type-test-job-type.o
../src/test/test-job-type.c:40:25: warning: implicit conversion from enumeration type
'enum UnitType' to different enumeration type 'ServiceType' (aka 'enum ServiceType')
[-Wconversion]
.type = UNIT_SERVICE
^~~~~~~~~~~~
This makes sure that
systemctl status /home
is implicitly translated to:
systemctl status /home.mount
Similar, /dev/foobar becomes dev-foobar.device.
Also, all characters that cannot be part of a unit name are implicitly
escaped.
This reverts commit 9b5af248f0.
Udev now explicitely labels only files/directories in /dev. The selinux
array API is not released and will not work on other distros at this moment.
systemd-udev is currently incorrectly labeling /run/udev/* content because it is
using selinux prefix labeling of /dev. This patch will allow systemd-udev to
use prefix labeling of /dev and /run.
Two of our current job types are special:
JOB_TRY_RESTART, JOB_RELOAD_OR_START.
They differ from other job types by being sensitive to the unit active state.
They perform some action when the unit is active and some other action
otherwise. This raises a question: when exactly should the unit state be
checked to make the decision?
Currently the unit state is checked when the job becomes runnable. It's more
sensible to check the state immediately when the job is added by the user.
When the user types "systemctl try-restart foo.service", he really intends
to restart the service if it's running right now. If it isn't running right
now, the restart is pointless.
Consider the example (from Bugzilla[1]):
sleep.service takes some time to start.
hello.service has After=sleep.service.
Both services get started. Two jobs will appear:
hello.service/start waiting
sleep.service/start running
Then someone runs "systemctl try-restart hello.service".
Currently the try-restart operation will block and wait for
sleep.service/start to complete.
The correct result is to complete the try-restart operation immediately
with success, because hello.service is not running. The two original
jobs must not be disturbed by this.
To fix this we introduce two new concepts:
- a new job type: JOB_NOP
A JOB_NOP job does not do anything to the unit. It does not pull in any
dependencies. It is always immediately runnable. When installed to a unit,
it sits in a special slot (u->nop_job) where it never conflicts with
the installed job (u->job) of a different type. It never merges with jobs
of other types, but it can merge into an already installed JOB_NOP job.
- "collapsing" of job types
When a job of one of the two special types is added, the state of the unit
is checked immediately and the job type changes:
JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP
JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START
Should a job type JOB_RELOAD_OR_START appear later during job merging, it
collapses immediately afterwards.
Collapsing actually makes some things simpler, because there are now fewer
job types that are allowed in the transaction.
[1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586