1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/source4/smbd/process_thread.c

575 lines
16 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
thread model: standard (1 thread per client connection)
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
Copyright (C) Andrew Tridgell 2003-2005
Copyright (C) James J Myers 2003 <myersjj@samba.org>
Copyright (C) Stefan (metze) Metzmacher 2004
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "version.h"
#include <pthread.h>
#ifdef HAVE_BACKTRACE
#include <execinfo.h>
#endif
#include "system/wait.h"
#include "system/filesys.h"
#include "system/time.h"
#include "lib/events/events.h"
#include "lib/util/dlinklist.h"
#include "lib/util/mutex.h"
#include "smbd/process_model.h"
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
static pthread_key_t title_key;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
struct new_conn_state {
struct tevent_context *ev;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
struct socket_context *sock;
struct loadparm_context *lp_ctx;
void (*new_conn)(struct tevent_context *, struct loadparm_context *lp_ctx, struct socket_context *, uint32_t , void *);
2009-02-02 10:41:28 +03:00
void *private_data;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
};
static void *thread_connection_fn(void *thread_parm)
{
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
struct new_conn_state *new_conn = talloc_get_type(thread_parm, struct new_conn_state);
2009-02-02 10:41:28 +03:00
new_conn->new_conn(new_conn->ev, new_conn->lp_ctx, new_conn->sock, pthread_self(), new_conn->private_data);
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
/* run this connection from here */
event_loop_wait(new_conn->ev);
talloc_free(new_conn);
return NULL;
}
/*
called when a listening socket becomes readable
*/
static void thread_accept_connection(struct tevent_context *ev,
struct loadparm_context *lp_ctx,
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
struct socket_context *sock,
void (*new_conn)(struct tevent_context *,
struct loadparm_context *,
struct socket_context *,
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
uint32_t , void *),
2009-02-02 10:41:28 +03:00
void *private_data)
{
NTSTATUS status;
int rc;
pthread_t thread_id;
pthread_attr_t thread_attr;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
struct new_conn_state *state;
struct tevent_context *ev2;
ev2 = s4_event_context_init(ev);
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
if (ev2 == NULL) return;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
state = talloc(ev2, struct new_conn_state);
if (state == NULL) {
talloc_free(ev2);
return;
}
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
state->new_conn = new_conn;
2009-02-02 10:41:28 +03:00
state->private_data = private_data;
state->lp_ctx = lp_ctx;
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
state->ev = ev2;
/* accept an incoming connection. */
status = socket_accept(sock, &state->sock);
if (!NT_STATUS_IS_OK(status)) {
talloc_free(ev2);
/* We need to throttle things until the system clears
enough resources to handle this new socket. If we
don't then we will spin filling the log and causing
more problems. We don't panic as this is probably a
temporary resource constraint */
sleep(1);
return;
}
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
talloc_steal(state, state->sock);
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
rc = pthread_create(&thread_id, &thread_attr, thread_connection_fn, state);
pthread_attr_destroy(&thread_attr);
if (rc == 0) {
DEBUG(4,("accept_connection_thread: created thread_id=%lu for fd=%d\n",
(unsigned long int)thread_id, socket_get_fd(sock)));
} else {
DEBUG(0,("accept_connection_thread: thread create failed for fd=%d, rc=%d\n", socket_get_fd(sock), rc));
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
talloc_free(ev2);
}
}
struct new_task_state {
struct tevent_context *ev;
struct loadparm_context *lp_ctx;
void (*new_task)(struct tevent_context *, struct loadparm_context *,
uint32_t , void *);
2009-02-02 10:41:28 +03:00
void *private_data;
};
static void *thread_task_fn(void *thread_parm)
{
struct new_task_state *new_task = talloc_get_type(thread_parm, struct new_task_state);
new_task->new_task(new_task->ev, new_task->lp_ctx, pthread_self(),
2009-02-02 10:41:28 +03:00
new_task->private_data);
/* run this connection from here */
event_loop_wait(new_task->ev);
talloc_free(new_task);
return NULL;
}
/*
called when a new task is needed
*/
static void thread_new_task(struct tevent_context *ev,
struct loadparm_context *lp_ctx,
const char *service_name,
void (*new_task)(struct tevent_context *,
struct loadparm_context *,
uint32_t , void *),
2009-02-02 10:41:28 +03:00
void *private_data)
{
int rc;
pthread_t thread_id;
pthread_attr_t thread_attr;
struct new_task_state *state;
struct tevent_context *ev2;
ev2 = s4_event_context_init(ev);
if (ev2 == NULL) return;
state = talloc(ev2, struct new_task_state);
if (state == NULL) {
talloc_free(ev2);
return;
}
state->new_task = new_task;
state->lp_ctx = lp_ctx;
2009-02-02 10:41:28 +03:00
state->private_data = private_data;
state->ev = ev2;
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
rc = pthread_create(&thread_id, &thread_attr, thread_task_fn, state);
pthread_attr_destroy(&thread_attr);
if (rc == 0) {
DEBUG(4,("thread_new_task: created %s thread_id=%lu\n",
service_name, (unsigned long int)thread_id));
} else {
DEBUG(0,("thread_new_task: thread create for %s failed rc=%d\n", service_name, rc));
talloc_free(ev2);
}
}
/* called when a task goes down */
static void thread_terminate(struct tevent_context *event_ctx, struct loadparm_context *lp_ctx, const char *reason)
{
DEBUG(10,("thread_terminate: reason[%s]\n",reason));
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
talloc_free(event_ctx);
/* terminate this thread */
pthread_exit(NULL); /* thread cleanup routine will do actual cleanup */
}
/* called to set a title of a task or connection */
static void thread_set_title(struct tevent_context *ev, const char *title)
{
char *old_title;
char *new_title;
old_title = pthread_getspecific(title_key);
talloc_free(old_title);
new_title = talloc_strdup(ev, title);
pthread_setspecific(title_key, new_title);
}
/*
mutex init function for thread model
*/
static int thread_mutex_init(smb_mutex_t *mutex, const char *name)
{
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
mutex->mutex = memdup(&m, sizeof(m));
if (! mutex->mutex) {
errno = ENOMEM;
return -1;
}
return pthread_mutex_init((pthread_mutex_t *)mutex->mutex, NULL);
}
/*
mutex destroy function for thread model
*/
static int thread_mutex_destroy(smb_mutex_t *mutex, const char *name)
{
return pthread_mutex_destroy((pthread_mutex_t *)mutex->mutex);
}
static void mutex_start_timer(struct timespec *tp1)
{
clock_gettime_mono(tp1);
}
static double mutex_end_timer(struct timespec tp1)
{
struct timespec tp2;
clock_gettime_mono(&tp2);
return((tp2.tv_sec - tp1.tv_sec) +
(tp2.tv_nsec - tp1.tv_nsec)*1.0e-9);
}
/*
mutex lock function for thread model
*/
static int thread_mutex_lock(smb_mutex_t *mutexP, const char *name)
{
pthread_mutex_t *mutex = (pthread_mutex_t *)mutexP->mutex;
int rc;
double t;
struct timespec tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_mutex_trylock(mutex))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("mutex lock: thread %d, lock %s not available\n",
(uint32_t)pthread_self(), name);
print_suspicious_usage("mutex_lock", name);
pthread_mutex_lock(mutex);
t = mutex_end_timer(tp1);
printf("mutex lock: thread %d, lock %s now available, waited %g seconds\n",
(uint32_t)pthread_self(), name, t);
return 0;
}
printf("mutex lock: thread %d, lock %s failed rc=%d\n",
(uint32_t)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
mutex unlock for thread model
*/
static int thread_mutex_unlock(smb_mutex_t *mutex, const char *name)
{
return pthread_mutex_unlock((pthread_mutex_t *)mutex->mutex);
}
/*****************************************************************
Read/write lock routines.
*****************************************************************/
/*
rwlock init function for thread model
*/
static int thread_rwlock_init(smb_rwlock_t *rwlock, const char *name)
{
pthread_rwlock_t m = PTHREAD_RWLOCK_INITIALIZER;
rwlock->rwlock = memdup(&m, sizeof(m));
if (! rwlock->rwlock) {
errno = ENOMEM;
return -1;
}
return pthread_rwlock_init((pthread_rwlock_t *)rwlock->rwlock, NULL);
}
/*
rwlock destroy function for thread model
*/
static int thread_rwlock_destroy(smb_rwlock_t *rwlock, const char *name)
{
return pthread_rwlock_destroy((pthread_rwlock_t *)rwlock->rwlock);
}
/*
rwlock lock for read function for thread model
*/
static int thread_rwlock_lock_read(smb_rwlock_t *rwlockP, const char *name)
{
pthread_rwlock_t *rwlock = (pthread_rwlock_t *)rwlockP->rwlock;
int rc;
double t;
struct timespec tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_rwlock_tryrdlock(rwlock))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("rwlock lock_read: thread %d, lock %s not available\n",
(uint32_t)pthread_self(), name);
print_suspicious_usage("rwlock_lock_read", name);
pthread_rwlock_rdlock(rwlock);
t = mutex_end_timer(tp1);
printf("rwlock lock_read: thread %d, lock %s now available, waited %g seconds\n",
(uint32_t)pthread_self(), name, t);
return 0;
}
printf("rwlock lock_read: thread %d, lock %s failed rc=%d\n",
(uint32_t)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
rwlock lock for write function for thread model
*/
static int thread_rwlock_lock_write(smb_rwlock_t *rwlockP, const char *name)
{
pthread_rwlock_t *rwlock = (pthread_rwlock_t *)rwlockP->rwlock;
int rc;
double t;
struct timespec tp1;
/* Test below is ONLY for debugging */
if ((rc = pthread_rwlock_trywrlock(rwlock))) {
if (rc == EBUSY) {
mutex_start_timer(&tp1);
printf("rwlock lock_write: thread %d, lock %s not available\n",
(uint32_t)pthread_self(), name);
print_suspicious_usage("rwlock_lock_write", name);
pthread_rwlock_wrlock(rwlock);
t = mutex_end_timer(tp1);
printf("rwlock lock_write: thread %d, lock %s now available, waited %g seconds\n",
(uint32_t)pthread_self(), name, t);
return 0;
}
printf("rwlock lock_write: thread %d, lock %s failed rc=%d\n",
(uint32_t)pthread_self(), name, rc);
SMB_ASSERT(errno == 0); /* force error */
}
return 0;
}
/*
rwlock unlock for thread model
*/
static int thread_rwlock_unlock(smb_rwlock_t *rwlock, const char *name)
{
return pthread_rwlock_unlock((pthread_rwlock_t *)rwlock->rwlock);
}
/*****************************************************************
Log suspicious usage (primarily for possible thread-unsafe behavior).
*****************************************************************/
static void thread_log_suspicious_usage(const char* from, const char* info)
{
DEBUG(1,("log_suspicious_usage: from %s info='%s'\n", from, info));
#ifdef HAVE_BACKTRACE
{
void *addresses[10];
int num_addresses = backtrace(addresses, 8);
char **bt_symbols = backtrace_symbols(addresses, num_addresses);
int i;
if (bt_symbols) {
for (i=0; i<num_addresses; i++) {
DEBUG(1,("log_suspicious_usage: %s%s\n", DEBUGTAB(1), bt_symbols[i]));
}
free(bt_symbols);
}
}
#endif
}
/*****************************************************************
Log suspicious usage to stdout (primarily for possible thread-unsafe behavior.
Used in mutex code where DEBUG calls would cause recursion.
*****************************************************************/
static void thread_print_suspicious_usage(const char* from, const char* info)
{
printf("log_suspicious_usage: from %s info='%s'\n", from, info);
#ifdef HAVE_BACKTRACE
{
void *addresses[10];
int num_addresses = backtrace(addresses, 8);
char **bt_symbols = backtrace_symbols(addresses, num_addresses);
int i;
if (bt_symbols) {
for (i=0; i<num_addresses; i++) {
printf("log_suspicious_usage: %s%s\n", DEBUGTAB(1), bt_symbols[i]);
}
free(bt_symbols);
}
}
#endif
}
static uint32_t thread_get_task_id(void)
{
return (uint32_t)pthread_self();
}
static void thread_log_task_id(int fd)
{
char *s= NULL;
asprintf(&s, "thread[%u][%s]:\n",
(uint32_t)pthread_self(),
(const char *)pthread_getspecific(title_key));
if (!s) return;
write(fd, s, strlen(s));
free(s);
}
r5102: This is a major simplification of the logic for controlling top level servers in smbd. The old code still contained a fairly bit of legacy from the time when smbd was only handling SMB connection. The new code gets rid of all of the smb_server specific code in smbd/, and creates a much simpler infrastructures for new server code. Major changes include: - simplified the process model code a lot. - got rid of the top level server and service structures completely. The top level context is now the event_context. This got rid of service.h and server.h completely (they were the most confusing parts of the old code) - added service_stream.[ch] for the helper functions that are specific to stream type services (services that handle streams, and use a logically separate process per connection) - got rid of the builtin idle_handler code in the service logic, as none of the servers were using it, and it can easily be handled by a server in future by adding its own timed_event to the event context. - fixed some major memory leaks in the rpc server code. - added registration of servers, rather than hard coding our list of possible servers. This allows for servers as modules in the future. - temporarily disabled the winbind code until I add the helper functions for that type of server - added error checking on service startup. If a configured server fails to startup then smbd doesn't startup. - cleaned up the command line handling in smbd, removing unused options (This used to be commit cf6a46c3cbde7b1eb1b86bd3882b953a2de3a42e)
2005-01-30 03:54:57 +03:00
/****************************************************************************
catch serious errors
****************************************************************************/
static void thread_sig_fault(int sig)
{
DEBUG(0,("===============================================================\n"));
DEBUG(0,("TERMINAL ERROR: Recursive signal %d in thread [%u][%s] (%s)\n",
sig,(uint32_t)pthread_self(),
(const char *)pthread_getspecific(title_key),
SAMBA_VERSION_STRING));
DEBUG(0,("===============================================================\n"));
exit(1); /* kill the whole server for now */
}
/*******************************************************************
setup our recursive fault handlers
********************************************************************/
static void thread_fault_setup(void)
{
#ifdef SIGSEGV
CatchSignal(SIGSEGV, thread_sig_fault);
#endif
#ifdef SIGBUS
CatchSignal(SIGBUS, thread_sig_fault);
#endif
#ifdef SIGABRT
CatchSignal(SIGABRT, thread_sig_fault);
#endif
}
/*******************************************************************
report a fault in a thread
********************************************************************/
static void thread_fault_handler(int sig)
{
static int counter;
/* try to catch recursive faults */
thread_fault_setup();
counter++; /* count number of faults that have occurred */
DEBUG(0,("===============================================================\n"));
DEBUG(0,("INTERNAL ERROR: Signal %d in thread [%u] [%s] (%s)\n",
sig,(uint32_t)pthread_self(),
(const char *)pthread_getspecific(title_key),
SAMBA_VERSION_STRING));
DEBUG(0,("Please read the file BUGS.txt in the distribution\n"));
DEBUG(0,("===============================================================\n"));
#ifdef HAVE_BACKTRACE
{
void *addresses[10];
int num_addresses = backtrace(addresses, 8);
char **bt_symbols = backtrace_symbols(addresses, num_addresses);
int i;
if (bt_symbols) {
for (i=0; i<num_addresses; i++) {
DEBUG(1,("fault_report: %s%s\n", DEBUGTAB(1), bt_symbols[i]));
}
free(bt_symbols);
}
}
#endif
pthread_exit(NULL); /* terminate failing thread only */
}
/*
called when the process model is selected
*/
static void thread_model_init(void)
{
struct mutex_ops m_ops;
struct debug_ops d_ops;
ZERO_STRUCT(m_ops);
ZERO_STRUCT(d_ops);
pthread_key_create(&title_key, NULL);
pthread_setspecific(title_key, NULL);
/* register mutex/rwlock handlers */
m_ops.mutex_init = thread_mutex_init;
m_ops.mutex_lock = thread_mutex_lock;
m_ops.mutex_unlock = thread_mutex_unlock;
m_ops.mutex_destroy = thread_mutex_destroy;
m_ops.rwlock_init = thread_rwlock_init;
m_ops.rwlock_lock_write = thread_rwlock_lock_write;
m_ops.rwlock_lock_read = thread_rwlock_lock_read;
m_ops.rwlock_unlock = thread_rwlock_unlock;
m_ops.rwlock_destroy = thread_rwlock_destroy;
register_mutex_handlers("thread", &m_ops);
register_fault_handler("thread", thread_fault_handler);
d_ops.log_suspicious_usage = thread_log_suspicious_usage;
d_ops.print_suspicious_usage = thread_print_suspicious_usage;
d_ops.get_task_id = thread_get_task_id;
d_ops.log_task_id = thread_log_task_id;
register_debug_handlers("thread", &d_ops);
}
static const struct model_ops thread_ops = {
.name = "thread",
.model_init = thread_model_init,
.accept_connection = thread_accept_connection,
.new_task = thread_new_task,
.terminate = thread_terminate,
.set_title = thread_set_title,
};
/*
initialise the thread process model, registering ourselves with the model subsystem
*/
NTSTATUS process_model_thread_init(void)
{
NTSTATUS ret;
/* register ourselves with the PROCESS_MODEL subsystem. */
ret = register_process_model(&thread_ops);
if (!NT_STATUS_IS_OK(ret)) {
DEBUG(0,("Failed to register process_model 'thread'!\n"));
return ret;
}
return ret;
}