1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-22 22:04:08 +03:00
samba-mirror/source3/lib/gencache.c

957 lines
22 KiB
C
Raw Normal View History

/*
Unix SMB/CIFS implementation.
Generic, persistent and shared between processes cache mechanism for use
by various parts of the Samba code
Copyright (C) Rafal Szczesniak 2002
2009-09-20 18:10:01 +02:00
Copyright (C) Volker Lendecke 2009
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "lib/gencache.h"
#include "system/filesys.h"
#include "system/glob.h"
#include "util_tdb.h"
#include "tdb_wrap/tdb_wrap.h"
#include "zlib.h"
#undef DBGC_CLASS
#define DBGC_CLASS DBGC_TDB
static struct tdb_wrap *cache;
static struct tdb_wrap *cache_notrans;
/**
* @file gencache.c
* @brief Generic, persistent and shared between processes cache mechanism
* for use by various parts of the Samba code
*
**/
struct gencache_timeout {
time_t timeout;
};
bool gencache_timeout_expired(const struct gencache_timeout *t)
{
return t->timeout <= time(NULL);
}
/**
* Cache initialisation function. Opens cache tdb file or creates
* it if does not exist.
*
* @return true on successful initialisation of the cache or
* false on failure
**/
static bool gencache_init(void)
{
char* cache_fname = NULL;
int open_flags = O_RDWR|O_CREAT;
int hash_size;
/* skip file open if it's already opened */
if (cache) {
return true;
}
hash_size = lp_parm_int(-1, "gencache", "hash_size", 10000);
cache_fname = cache_path(talloc_tos(), "gencache.tdb");
if (cache_fname == NULL) {
return false;
}
DEBUG(5, ("Opening cache file at %s\n", cache_fname));
cache = tdb_wrap_open(NULL, cache_fname, hash_size,
TDB_DEFAULT|TDB_INCOMPATIBLE_HASH,
open_flags, 0644);
if (!cache && (errno == EACCES)) {
open_flags = O_RDONLY;
cache = tdb_wrap_open(NULL, cache_fname, hash_size,
TDB_DEFAULT|TDB_INCOMPATIBLE_HASH,
open_flags, 0644);
if (cache) {
DEBUG(5, ("gencache_init: Opening cache file %s read-only.\n", cache_fname));
}
}
TALLOC_FREE(cache_fname);
if (!cache) {
DEBUG(5, ("Attempt to open gencache.tdb has failed.\n"));
return false;
}
cache_fname = lock_path(talloc_tos(), "gencache_notrans.tdb");
if (cache_fname == NULL) {
TALLOC_FREE(cache);
return false;
}
DEBUG(5, ("Opening cache file at %s\n", cache_fname));
cache_notrans = tdb_wrap_open(NULL, cache_fname, hash_size,
TDB_CLEAR_IF_FIRST|
TDB_INCOMPATIBLE_HASH|
TDB_NOSYNC|
TDB_MUTEX_LOCKING,
open_flags, 0644);
if (cache_notrans == NULL) {
DEBUG(5, ("Opening %s failed: %s\n", cache_fname,
strerror(errno)));
TALLOC_FREE(cache_fname);
TALLOC_FREE(cache);
return false;
}
TALLOC_FREE(cache_fname);
return true;
}
static TDB_DATA last_stabilize_key(void)
{
const char key[] = "@LAST_STABILIZED";
return (TDB_DATA) {
.dptr = discard_const_p(uint8_t, key),
.dsize = sizeof(key),
};
}
struct gencache_have_val_state {
time_t new_timeout;
const DATA_BLOB *data;
bool gotit;
};
static void gencache_have_val_parser(const struct gencache_timeout *old_timeout,
DATA_BLOB data,
void *private_data)
{
struct gencache_have_val_state *state =
(struct gencache_have_val_state *)private_data;
time_t now = time(NULL);
int cache_time_left, new_time_left, additional_time;
/*
* Excuse the many variables, but these time calculations are
* confusing to me. We do not want to write to gencache with a
* possibly expensive transaction if we are about to write the same
* value, just extending the remaining timeout by less than 10%.
*/
cache_time_left = old_timeout->timeout - now;
if (cache_time_left <= 0) {
/*
* timed out, write new value
*/
return;
}
new_time_left = state->new_timeout - now;
if (new_time_left <= 0) {
/*
* Huh -- no new timeout?? Write it.
*/
return;
}
if (new_time_left < cache_time_left) {
/*
* Someone wants to shorten the timeout. Let it happen.
*/
return;
}
/*
* By how much does the new timeout extend the remaining cache time?
*/
additional_time = new_time_left - cache_time_left;
if (additional_time * 10 < 0) {
/*
* Integer overflow. We extend by so much that we have to write it.
*/
return;
}
/*
* The comparison below is essentially equivalent to
*
* new_time_left > cache_time_left * 1.10
*
* but without floating point calculations.
*/
if (additional_time * 10 > cache_time_left) {
/*
* We extend the cache timeout by more than 10%. Do it.
*/
return;
}
/*
* Now the more expensive data compare.
*/
if (data_blob_cmp(state->data, &data) != 0) {
/*
* Write a new value. Certainly do it.
*/
return;
}
/*
* Extending the timeout by less than 10% for the same cache value is
* not worth the trouble writing a value into gencache under a
* possibly expensive transaction.
*/
state->gotit = true;
}
static bool gencache_have_val(const char *keystr, const DATA_BLOB *data,
time_t timeout)
{
struct gencache_have_val_state state;
state.new_timeout = timeout;
state.data = data;
state.gotit = false;
if (!gencache_parse(keystr, gencache_have_val_parser, &state)) {
return false;
}
return state.gotit;
}
static int last_stabilize_parser(TDB_DATA key, TDB_DATA data,
void *private_data)
{
time_t *last_stabilize = private_data;
if ((data.dsize != 0) && (data.dptr[data.dsize-1] == '\0')) {
*last_stabilize = atoi((char *)data.dptr);
}
return 0;
}
/**
* Set an entry in the cache file. If there's no such
* one, then add it.
*
* @param keystr string that represents a key of this entry
* @param blob DATA_BLOB value being cached
* @param timeout time when the value is expired
*
* @retval true when entry is successfully stored
* @retval false on failure
**/
bool gencache_set_data_blob(const char *keystr, DATA_BLOB blob,
time_t timeout)
{
TDB_DATA key;
int ret;
time_t last_stabilize;
static int writecount;
TDB_DATA dbufs[3];
uint32_t crc;
if ((keystr == NULL) || (blob.data == NULL)) {
return false;
}
key = string_term_tdb_data(keystr);
ret = tdb_data_cmp(key, last_stabilize_key());
if (ret == 0) {
DEBUG(10, ("Can't store %s as a key\n", keystr));
return false;
}
if (!gencache_init()) {
return false;
}
if ((timeout != 0) && gencache_have_val(keystr, &blob, timeout)) {
DEBUG(10, ("Did not store value for %s, we already got it\n",
keystr));
return true;
}
dbufs[0] = (TDB_DATA) { .dptr = (uint8_t *)&timeout,
.dsize = sizeof(time_t) };
dbufs[1] = (TDB_DATA) { .dptr = blob.data, .dsize = blob.length };
crc = crc32(0, Z_NULL, 0);
crc = crc32(crc, key.dptr, key.dsize);
crc = crc32(crc, dbufs[0].dptr, dbufs[0].dsize);
crc = crc32(crc, dbufs[1].dptr, dbufs[1].dsize);
dbufs[2] = (TDB_DATA) { .dptr = (uint8_t *)&crc,
.dsize = sizeof(crc) };
DEBUG(10, ("Adding cache entry with key=[%s] and timeout="
"[%s] (%d seconds %s)\n", keystr,
timestring(talloc_tos(), timeout),
(int)(timeout - time(NULL)),
timeout > time(NULL) ? "ahead" : "in the past"));
ret = tdb_storev(cache_notrans->tdb, key, dbufs, ARRAY_SIZE(dbufs), 0);
if (ret != 0) {
return false;
}
/*
* Every 100 writes within a single process, stabilize the cache with
* a transaction. This is done to prevent a single transaction to
* become huge and chew lots of memory.
*/
writecount += 1;
if (writecount > lp_parm_int(-1, "gencache", "stabilize_count", 100)) {
gencache_stabilize();
writecount = 0;
goto done;
}
/*
* Every 5 minutes, call gencache_stabilize() to not let grow
* gencache_notrans.tdb too large.
*/
last_stabilize = 0;
tdb_parse_record(cache_notrans->tdb, last_stabilize_key(),
last_stabilize_parser, &last_stabilize);
if ((last_stabilize
+ lp_parm_int(-1, "gencache", "stabilize_interval", 300))
< time(NULL)) {
gencache_stabilize();
}
done:
return ret == 0;
}
static void gencache_del_parser(const struct gencache_timeout *t,
DATA_BLOB blob,
void *private_data)
{
if (t->timeout != 0) {
bool *exists = private_data;
*exists = true;
}
}
/**
* Delete one entry from the cache file.
*
* @param keystr string that represents a key of this entry
*
* @retval true upon successful deletion
* @retval false in case of failure
**/
bool gencache_del(const char *keystr)
{
TDB_DATA key = string_term_tdb_data(keystr);
bool exists = false;
bool result = false;
int ret;
if (keystr == NULL) {
return false;
}
if (!gencache_init()) {
return false;
}
DEBUG(10, ("Deleting cache entry (key=[%s])\n", keystr));
ret = tdb_chainlock(cache_notrans->tdb, key);
if (ret == -1) {
return false;
}
gencache_parse(keystr, gencache_del_parser, &exists);
if (exists) {
/*
* We delete an element by setting its timeout to
* 0. This way we don't have to do a transaction on
* gencache.tdb every time we delete an element.
*/
result = gencache_set(keystr, "", 0);
}
tdb_chainunlock(cache_notrans->tdb, key);
return result;
}
static bool gencache_pull_timeout(TDB_DATA key,
TDB_DATA data,
time_t *pres,
DATA_BLOB *payload)
{
size_t crc_ofs;
uint32_t crc, stored_crc;
if ((data.dptr == NULL) ||
(data.dsize < (sizeof(time_t) + sizeof(uint32_t)))) {
return false;
}
crc_ofs = data.dsize - sizeof(uint32_t);
crc = crc32(0, Z_NULL, 0);
crc = crc32(crc, key.dptr, key.dsize);
crc = crc32(crc, data.dptr, crc_ofs);
memcpy(&stored_crc, data.dptr + crc_ofs, sizeof(uint32_t));
if (stored_crc != crc) {
return false;
}
if (pres != NULL) {
memcpy(pres, data.dptr, sizeof(time_t));
}
if (payload != NULL) {
*payload = (DATA_BLOB) {
.data = data.dptr+sizeof(time_t),
.length = data.dsize-sizeof(time_t)-sizeof(uint32_t),
};
}
return true;
}
2010-11-27 00:40:25 +01:00
struct gencache_parse_state {
void (*parser)(const struct gencache_timeout *timeout,
DATA_BLOB blob,
void *private_data);
2010-11-27 00:40:25 +01:00
void *private_data;
bool copy_to_notrans;
2010-11-27 00:40:25 +01:00
};
static int gencache_parse_fn(TDB_DATA key, TDB_DATA data, void *private_data)
{
struct gencache_parse_state *state;
struct gencache_timeout t;
DATA_BLOB payload;
2010-11-27 00:40:25 +01:00
bool ret;
ret = gencache_pull_timeout(key, data, &t.timeout, &payload);
2010-11-27 00:40:25 +01:00
if (!ret) {
return -1;
}
state = (struct gencache_parse_state *)private_data;
state->parser(&t, payload, state->private_data);
if (state->copy_to_notrans) {
tdb_store(cache_notrans->tdb, key, data, 0);
}
2010-11-27 00:40:25 +01:00
return 0;
}
bool gencache_parse(const char *keystr,
void (*parser)(const struct gencache_timeout *timeout,
DATA_BLOB blob,
2010-11-27 00:40:25 +01:00
void *private_data),
void *private_data)
{
struct gencache_parse_state state;
TDB_DATA key = string_term_tdb_data(keystr);
2010-11-27 00:40:25 +01:00
int ret;
if (keystr == NULL) {
return false;
}
if (tdb_data_cmp(key, last_stabilize_key()) == 0) {
2010-11-27 00:40:25 +01:00
return false;
}
if (!gencache_init()) {
return false;
}
state.parser = parser;
state.private_data = private_data;
state.copy_to_notrans = false;
ret = tdb_chainlock(cache_notrans->tdb, key);
if (ret != 0) {
return false;
}
2010-11-27 00:40:25 +01:00
ret = tdb_parse_record(cache_notrans->tdb, key,
gencache_parse_fn, &state);
if (ret == 0) {
tdb_chainunlock(cache_notrans->tdb, key);
2010-11-27 00:40:25 +01:00
return true;
}
state.copy_to_notrans = true;
ret = tdb_parse_record(cache->tdb, key, gencache_parse_fn, &state);
if ((ret == -1) && (tdb_error(cache->tdb) == TDB_ERR_NOEXIST)) {
/*
* The record does not exist. Set a delete-marker in
* gencache_notrans, so that we don't have to look at
* the fcntl-based cache again.
*/
gencache_set(keystr, "", 0);
}
tdb_chainunlock(cache_notrans->tdb, key);
return (ret == 0);
2010-11-27 00:40:25 +01:00
}
struct gencache_get_data_blob_state {
TALLOC_CTX *mem_ctx;
DATA_BLOB *blob;
time_t timeout;
bool result;
};
static void gencache_get_data_blob_parser(const struct gencache_timeout *t,
DATA_BLOB blob,
void *private_data)
{
struct gencache_get_data_blob_state *state =
(struct gencache_get_data_blob_state *)private_data;
if (t->timeout == 0) {
state->result = false;
return;
}
state->timeout = t->timeout;
if (state->blob == NULL) {
state->result = true;
return;
}
*state->blob = data_blob_talloc(state->mem_ctx, blob.data,
blob.length);
if (state->blob->data == NULL) {
state->result = false;
return;
}
state->result = true;
}
/**
* Get existing entry from the cache file.
*
* @param keystr string that represents a key of this entry
* @param blob DATA_BLOB that is filled with entry's blob
* @param timeout pointer to a time_t that is filled with entry's
* timeout
*
* @retval true when entry is successfully fetched
* @retval false for failure
**/
bool gencache_get_data_blob(const char *keystr, TALLOC_CTX *mem_ctx,
DATA_BLOB *blob,
time_t *timeout, bool *was_expired)
{
struct gencache_get_data_blob_state state;
bool expired = false;
state.result = false;
state.mem_ctx = mem_ctx;
state.blob = blob;
if (!gencache_parse(keystr, gencache_get_data_blob_parser, &state)) {
goto fail;
}
if (!state.result) {
goto fail;
}
if (state.timeout <= time(NULL)) {
/*
* We're expired, delete the entry. We can't use gencache_del
* here, because that uses gencache_get_data_blob for checking
* the existence of a record. We know the thing exists and
* directly store an empty value with 0 timeout.
*/
gencache_set(keystr, "", 0);
expired = true;
goto fail;
}
if (timeout) {
*timeout = state.timeout;
}
return true;
fail:
if (was_expired != NULL) {
*was_expired = expired;
}
if (state.result && state.blob) {
data_blob_free(state.blob);
}
return false;
}
struct stabilize_state {
bool written;
};
static int stabilize_fn(struct tdb_context *tdb, TDB_DATA key, TDB_DATA val,
void *priv);
/**
* Stabilize gencache
*
* Migrate the clear-if-first gencache data to the stable,
* transaction-based gencache.tdb
*/
bool gencache_stabilize(void)
{
struct stabilize_state state;
int res;
char *now;
if (!gencache_init()) {
return false;
}
res = tdb_transaction_start_nonblock(cache->tdb);
if (res != 0) {
if (tdb_error(cache->tdb) == TDB_ERR_NOLOCK)
{
/*
* Someone else already does the stabilize,
* this does not have to be done twice
*/
return true;
}
DEBUG(10, ("Could not start transaction on gencache.tdb: "
"%s\n", tdb_errorstr(cache->tdb)));
return false;
}
res = tdb_lockall_nonblock(cache_notrans->tdb);
if (res != 0) {
tdb_transaction_cancel(cache->tdb);
DEBUG(10, ("Could not get allrecord lock on "
"gencache_notrans.tdb: %s\n",
tdb_errorstr(cache_notrans->tdb)));
return false;
}
state.written = false;
res = tdb_traverse(cache_notrans->tdb, stabilize_fn, &state);
if (res < 0) {
tdb_unlockall(cache_notrans->tdb);
tdb_transaction_cancel(cache->tdb);
return false;
}
if (!state.written) {
tdb_unlockall(cache_notrans->tdb);
tdb_transaction_cancel(cache->tdb);
return true;
}
res = tdb_transaction_commit(cache->tdb);
if (res != 0) {
DEBUG(10, ("tdb_transaction_commit on gencache.tdb failed: "
"%s\n", tdb_errorstr(cache->tdb)));
tdb_unlockall(cache_notrans->tdb);
return false;
}
res = tdb_wipe_all(cache_notrans->tdb);
if (res < 0) {
DBG_DEBUG("tdb_wipe_all on gencache_notrans.tdb failed: %s\n",
tdb_errorstr(cache_notrans->tdb));
}
now = talloc_asprintf(talloc_tos(), "%d", (int)time(NULL));
if (now != NULL) {
tdb_store(cache_notrans->tdb, last_stabilize_key(),
string_term_tdb_data(now), 0);
TALLOC_FREE(now);
}
res = tdb_unlockall(cache_notrans->tdb);
if (res != 0) {
DEBUG(10, ("tdb_unlockall on gencache.tdb failed: "
"%s\n", tdb_errorstr(cache->tdb)));
return false;
}
return true;
}
static int stabilize_fn(struct tdb_context *tdb, TDB_DATA key, TDB_DATA val,
void *priv)
{
struct stabilize_state *state = (struct stabilize_state *)priv;
int res;
time_t timeout;
if (tdb_data_cmp(key, last_stabilize_key()) == 0) {
return 0;
}
if (!gencache_pull_timeout(key, val, &timeout, NULL)) {
DEBUG(10, ("Ignoring invalid entry\n"));
return 0;
}
if ((timeout < time(NULL)) || (val.dsize == 0)) {
res = tdb_delete(cache->tdb, key);
if (res == 0) {
state->written = true;
} else if (tdb_error(cache->tdb) == TDB_ERR_NOEXIST) {
res = 0;
}
} else {
res = tdb_store(cache->tdb, key, val, 0);
if (res == 0) {
state->written = true;
}
}
if (res != 0) {
DEBUG(10, ("Transfer to gencache.tdb failed: %s\n",
tdb_errorstr(cache->tdb)));
return -1;
}
return 0;
}
/**
* Get existing entry from the cache file.
*
* @param keystr string that represents a key of this entry
* @param valstr buffer that is allocated and filled with the entry value
* buffer's disposing must be done outside
* @param timeout pointer to a time_t that is filled with entry's
* timeout
*
* @retval true when entry is successfully fetched
* @retval false for failure
**/
bool gencache_get(const char *keystr, TALLOC_CTX *mem_ctx, char **value,
time_t *ptimeout)
{
DATA_BLOB blob;
bool ret = false;
ret = gencache_get_data_blob(keystr, mem_ctx, &blob, ptimeout, NULL);
if (!ret) {
return false;
}
if ((blob.data == NULL) || (blob.length == 0)) {
data_blob_free(&blob);
return false;
}
if (blob.data[blob.length-1] != '\0') {
/* Not NULL terminated, can't be a string */
data_blob_free(&blob);
return false;
}
if (value) {
/*
* talloc_move generates a type-punned warning here. As we
* leave the function immediately, do a simple talloc_steal.
*/
*value = (char *)talloc_steal(mem_ctx, blob.data);
return true;
}
data_blob_free(&blob);
return true;
}
/**
* Set an entry in the cache file. If there's no such
* one, then add it.
*
* @param keystr string that represents a key of this entry
* @param value text representation value being cached
* @param timeout time when the value is expired
*
* @retval true when entry is successfully stored
* @retval false on failure
**/
bool gencache_set(const char *keystr, const char *value, time_t timeout)
{
DATA_BLOB blob = data_blob_const(value, strlen(value)+1);
return gencache_set_data_blob(keystr, blob, timeout);
}
2010-11-27 15:48:21 +01:00
struct gencache_iterate_blobs_state {
void (*fn)(const char *key, DATA_BLOB value,
time_t timeout, void *private_data);
const char *pattern;
2010-11-27 15:48:21 +01:00
void *private_data;
bool in_persistent;
};
2010-11-27 15:48:21 +01:00
static int gencache_iterate_blobs_fn(struct tdb_context *tdb, TDB_DATA key,
TDB_DATA data, void *priv)
{
2010-11-27 15:48:21 +01:00
struct gencache_iterate_blobs_state *state =
(struct gencache_iterate_blobs_state *)priv;
char *keystr;
char *free_key = NULL;
time_t timeout;
DATA_BLOB payload;
if (tdb_data_cmp(key, last_stabilize_key()) == 0) {
return 0;
}
if (state->in_persistent && tdb_exists(cache_notrans->tdb, key)) {
return 0;
}
if (key.dptr[key.dsize-1] == '\0') {
keystr = (char *)key.dptr;
} else {
/* ensure 0-termination */
keystr = talloc_strndup(talloc_tos(), (char *)key.dptr, key.dsize);
free_key = keystr;
if (keystr == NULL) {
goto done;
}
}
if (!gencache_pull_timeout(key, data, &timeout, &payload)) {
goto done;
}
if (timeout == 0) {
/* delete marker */
goto done;
}
if (fnmatch(state->pattern, keystr, 0) != 0) {
goto done;
}
DEBUG(10, ("Calling function with arguments "
"(key=[%s], timeout=[%s])\n",
keystr, timestring(talloc_tos(), timeout)));
state->fn(keystr, payload, timeout, state->private_data);
done:
TALLOC_FREE(free_key);
return 0;
}
2010-11-27 15:48:21 +01:00
void gencache_iterate_blobs(void (*fn)(const char *key, DATA_BLOB value,
time_t timeout, void *private_data),
void *private_data, const char *pattern)
{
2010-11-27 15:48:21 +01:00
struct gencache_iterate_blobs_state state;
2010-11-27 15:48:21 +01:00
if ((fn == NULL) || (pattern == NULL) || !gencache_init()) {
return;
}
2010-11-27 15:48:21 +01:00
DEBUG(5, ("Searching cache keys with pattern %s\n", pattern));
state.fn = fn;
2010-11-27 15:48:21 +01:00
state.pattern = pattern;
state.private_data = private_data;
state.in_persistent = false;
tdb_traverse(cache_notrans->tdb, gencache_iterate_blobs_fn, &state);
state.in_persistent = true;
tdb_traverse(cache->tdb, gencache_iterate_blobs_fn, &state);
2010-11-27 15:48:21 +01:00
}
/**
* Iterate through all entries which key matches to specified pattern
*
* @param fn pointer to the function that will be supplied with each single
* matching cache entry (key, value and timeout) as an arguments
* @param data void pointer to an arbitrary data that is passed directly to the fn
* function on each call
* @param keystr_pattern pattern the existing entries' keys are matched to
*
**/
struct gencache_iterate_state {
void (*fn)(const char *key, const char *value, time_t timeout,
void *priv);
void *private_data;
};
static void gencache_iterate_fn(const char *key, DATA_BLOB value,
time_t timeout, void *private_data)
{
struct gencache_iterate_state *state =
(struct gencache_iterate_state *)private_data;
char *valstr;
char *free_val = NULL;
if (value.data[value.length-1] == '\0') {
valstr = (char *)value.data;
} else {
/* ensure 0-termination */
valstr = talloc_strndup(talloc_tos(), (char *)value.data, value.length);
2010-11-27 15:48:21 +01:00
free_val = valstr;
if (valstr == NULL) {
goto done;
}
2010-11-27 15:48:21 +01:00
}
DEBUG(10, ("Calling function with arguments "
"(key=[%s], value=[%s], timeout=[%s])\n",
key, valstr, timestring(talloc_tos(), timeout)));
2010-11-27 15:48:21 +01:00
state->fn(key, valstr, timeout, state->private_data);
done:
TALLOC_FREE(free_val);
2010-11-27 15:48:21 +01:00
}
void gencache_iterate(void (*fn)(const char *key, const char *value,
time_t timeout, void *dptr),
void *private_data, const char *pattern)
{
struct gencache_iterate_state state;
if (fn == NULL) {
return;
}
state.fn = fn;
state.private_data = private_data;
gencache_iterate_blobs(gencache_iterate_fn, &state, pattern);
}