2018-01-06 01:09:26 +01:00
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* Microsemi SoCs pinctrl driver
*
* Author : < alexandre . belloni @ free - electrons . com >
* License : Dual MIT / GPL
* Copyright ( c ) 2017 Microsemi Corporation
*/
# include <linux/gpio/driver.h>
# include <linux/interrupt.h>
# include <linux/io.h>
2022-09-05 09:21:27 -07:00
# include <linux/mfd/ocelot.h>
2023-07-14 11:48:54 -06:00
# include <linux/of.h>
2018-01-06 01:09:26 +01:00
# include <linux/platform_device.h>
# include <linux/regmap.h>
2022-04-20 21:19:26 +02:00
# include <linux/reset.h>
2018-01-06 01:09:26 +01:00
# include <linux/slab.h>
2022-10-07 16:44:44 +03:00
# include <linux/pinctrl/consumer.h>
# include <linux/pinctrl/pinconf-generic.h>
# include <linux/pinctrl/pinconf.h>
# include <linux/pinctrl/pinctrl.h>
# include <linux/pinctrl/pinmux.h>
2018-01-06 01:09:26 +01:00
# include "core.h"
# include "pinconf.h"
# include "pinmux.h"
2020-06-15 15:32:37 +02:00
# define ocelot_clrsetbits(addr, clear, set) \
writel ( ( readl ( addr ) & ~ ( clear ) ) | ( set ) , ( addr ) )
enum {
PINCONF_BIAS ,
PINCONF_SCHMITT ,
PINCONF_DRIVE_STRENGTH ,
} ;
/* GPIO standard registers */
2018-01-06 01:09:26 +01:00
# define OCELOT_GPIO_OUT_SET 0x0
# define OCELOT_GPIO_OUT_CLR 0x4
# define OCELOT_GPIO_OUT 0x8
# define OCELOT_GPIO_IN 0xc
# define OCELOT_GPIO_OE 0x10
# define OCELOT_GPIO_INTR 0x14
# define OCELOT_GPIO_INTR_ENA 0x18
# define OCELOT_GPIO_INTR_IDENT 0x1c
# define OCELOT_GPIO_ALT0 0x20
# define OCELOT_GPIO_ALT1 0x24
# define OCELOT_GPIO_SD_MAP 0x28
# define OCELOT_FUNC_PER_PIN 4
enum {
2021-11-18 16:55:48 +05:30
FUNC_CAN0_a ,
FUNC_CAN0_b ,
FUNC_CAN1 ,
2022-03-26 20:28:48 +01:00
FUNC_CLKMON ,
2018-01-06 01:09:26 +01:00
FUNC_NONE ,
2021-11-18 16:55:48 +05:30
FUNC_FC0_a ,
FUNC_FC0_b ,
FUNC_FC0_c ,
FUNC_FC1_a ,
FUNC_FC1_b ,
FUNC_FC1_c ,
FUNC_FC2_a ,
FUNC_FC2_b ,
FUNC_FC3_a ,
FUNC_FC3_b ,
FUNC_FC3_c ,
FUNC_FC4_a ,
FUNC_FC4_b ,
FUNC_FC4_c ,
FUNC_FC_SHRD0 ,
FUNC_FC_SHRD1 ,
FUNC_FC_SHRD2 ,
FUNC_FC_SHRD3 ,
FUNC_FC_SHRD4 ,
FUNC_FC_SHRD5 ,
FUNC_FC_SHRD6 ,
FUNC_FC_SHRD7 ,
FUNC_FC_SHRD8 ,
FUNC_FC_SHRD9 ,
FUNC_FC_SHRD10 ,
FUNC_FC_SHRD11 ,
FUNC_FC_SHRD12 ,
FUNC_FC_SHRD13 ,
FUNC_FC_SHRD14 ,
FUNC_FC_SHRD15 ,
FUNC_FC_SHRD16 ,
FUNC_FC_SHRD17 ,
FUNC_FC_SHRD18 ,
FUNC_FC_SHRD19 ,
FUNC_FC_SHRD20 ,
2018-01-06 01:09:26 +01:00
FUNC_GPIO ,
2021-11-18 16:55:48 +05:30
FUNC_IB_TRG_a ,
FUNC_IB_TRG_b ,
FUNC_IB_TRG_c ,
2020-06-15 15:32:37 +02:00
FUNC_IRQ0 ,
2021-11-18 16:55:48 +05:30
FUNC_IRQ_IN_a ,
FUNC_IRQ_IN_b ,
FUNC_IRQ_IN_c ,
2018-01-06 01:09:26 +01:00
FUNC_IRQ0_IN ,
2021-11-18 16:55:48 +05:30
FUNC_IRQ_OUT_a ,
FUNC_IRQ_OUT_b ,
FUNC_IRQ_OUT_c ,
2018-01-06 01:09:26 +01:00
FUNC_IRQ0_OUT ,
2020-06-15 15:32:37 +02:00
FUNC_IRQ1 ,
2018-01-06 01:09:26 +01:00
FUNC_IRQ1_IN ,
FUNC_IRQ1_OUT ,
2020-06-15 15:32:37 +02:00
FUNC_EXT_IRQ ,
2020-05-13 14:55:20 +02:00
FUNC_MIIM ,
2021-11-18 16:55:48 +05:30
FUNC_MIIM_a ,
FUNC_MIIM_b ,
FUNC_MIIM_c ,
FUNC_MIIM_Sa ,
FUNC_MIIM_Sb ,
FUNC_OB_TRG ,
FUNC_OB_TRG_a ,
FUNC_OB_TRG_b ,
2020-06-15 15:32:37 +02:00
FUNC_PHY_LED ,
2018-01-06 01:09:26 +01:00
FUNC_PCI_WAKE ,
2020-06-15 15:32:37 +02:00
FUNC_MD ,
2018-01-06 01:09:26 +01:00
FUNC_PTP0 ,
FUNC_PTP1 ,
FUNC_PTP2 ,
FUNC_PTP3 ,
2022-04-13 21:29:18 +02:00
FUNC_PTPSYNC_0 ,
2021-11-18 16:55:48 +05:30
FUNC_PTPSYNC_1 ,
FUNC_PTPSYNC_2 ,
FUNC_PTPSYNC_3 ,
FUNC_PTPSYNC_4 ,
FUNC_PTPSYNC_5 ,
FUNC_PTPSYNC_6 ,
FUNC_PTPSYNC_7 ,
2018-01-06 01:09:26 +01:00
FUNC_PWM ,
2022-03-26 20:28:47 +01:00
FUNC_PWM_a ,
FUNC_PWM_b ,
2021-11-18 16:55:48 +05:30
FUNC_QSPI1 ,
FUNC_QSPI2 ,
FUNC_R ,
FUNC_RECO_a ,
FUNC_RECO_b ,
2020-05-13 14:55:20 +02:00
FUNC_RECO_CLK ,
2021-11-18 16:55:48 +05:30
FUNC_SD ,
2020-05-13 14:55:20 +02:00
FUNC_SFP ,
2021-11-18 16:55:48 +05:30
FUNC_SFP_SD ,
2018-01-06 01:09:26 +01:00
FUNC_SG0 ,
2018-12-20 15:44:31 +01:00
FUNC_SG1 ,
FUNC_SG2 ,
2021-11-18 16:55:48 +05:30
FUNC_SGPIO_a ,
FUNC_SGPIO_b ,
2018-01-06 01:09:26 +01:00
FUNC_SI ,
2020-06-15 15:32:37 +02:00
FUNC_SI2 ,
2018-01-06 01:09:26 +01:00
FUNC_TACHO ,
2021-11-18 16:55:48 +05:30
FUNC_TACHO_a ,
FUNC_TACHO_b ,
2018-01-06 01:09:26 +01:00
FUNC_TWI ,
2018-12-20 15:44:31 +01:00
FUNC_TWI2 ,
2020-06-15 15:32:37 +02:00
FUNC_TWI3 ,
2018-01-06 01:09:26 +01:00
FUNC_TWI_SCL_M ,
2021-11-18 16:55:48 +05:30
FUNC_TWI_SLC_GATE ,
FUNC_TWI_SLC_GATE_AD ,
2018-01-06 01:09:26 +01:00
FUNC_UART ,
FUNC_UART2 ,
2020-06-15 15:32:37 +02:00
FUNC_UART3 ,
2021-11-18 16:55:48 +05:30
FUNC_USB_H_a ,
FUNC_USB_H_b ,
FUNC_USB_H_c ,
FUNC_USB_S_a ,
FUNC_USB_S_b ,
FUNC_USB_S_c ,
2020-06-15 15:32:37 +02:00
FUNC_PLL_STAT ,
FUNC_EMMC ,
2021-11-18 16:55:48 +05:30
FUNC_EMMC_SD ,
2020-06-15 15:32:37 +02:00
FUNC_REF_CLK ,
FUNC_RCVRD_CLK ,
2018-01-06 01:09:26 +01:00
FUNC_MAX
} ;
static const char * const ocelot_function_names [ ] = {
2021-11-18 16:55:48 +05:30
[ FUNC_CAN0_a ] = " can0_a " ,
[ FUNC_CAN0_b ] = " can0_b " ,
[ FUNC_CAN1 ] = " can1 " ,
2022-03-26 20:28:48 +01:00
[ FUNC_CLKMON ] = " clkmon " ,
2018-01-06 01:09:26 +01:00
[ FUNC_NONE ] = " none " ,
2021-11-18 16:55:48 +05:30
[ FUNC_FC0_a ] = " fc0_a " ,
[ FUNC_FC0_b ] = " fc0_b " ,
[ FUNC_FC0_c ] = " fc0_c " ,
[ FUNC_FC1_a ] = " fc1_a " ,
[ FUNC_FC1_b ] = " fc1_b " ,
[ FUNC_FC1_c ] = " fc1_c " ,
[ FUNC_FC2_a ] = " fc2_a " ,
[ FUNC_FC2_b ] = " fc2_b " ,
[ FUNC_FC3_a ] = " fc3_a " ,
[ FUNC_FC3_b ] = " fc3_b " ,
[ FUNC_FC3_c ] = " fc3_c " ,
[ FUNC_FC4_a ] = " fc4_a " ,
[ FUNC_FC4_b ] = " fc4_b " ,
[ FUNC_FC4_c ] = " fc4_c " ,
[ FUNC_FC_SHRD0 ] = " fc_shrd0 " ,
[ FUNC_FC_SHRD1 ] = " fc_shrd1 " ,
[ FUNC_FC_SHRD2 ] = " fc_shrd2 " ,
[ FUNC_FC_SHRD3 ] = " fc_shrd3 " ,
[ FUNC_FC_SHRD4 ] = " fc_shrd4 " ,
[ FUNC_FC_SHRD5 ] = " fc_shrd5 " ,
[ FUNC_FC_SHRD6 ] = " fc_shrd6 " ,
[ FUNC_FC_SHRD7 ] = " fc_shrd7 " ,
[ FUNC_FC_SHRD8 ] = " fc_shrd8 " ,
[ FUNC_FC_SHRD9 ] = " fc_shrd9 " ,
[ FUNC_FC_SHRD10 ] = " fc_shrd10 " ,
[ FUNC_FC_SHRD11 ] = " fc_shrd11 " ,
[ FUNC_FC_SHRD12 ] = " fc_shrd12 " ,
[ FUNC_FC_SHRD13 ] = " fc_shrd13 " ,
[ FUNC_FC_SHRD14 ] = " fc_shrd14 " ,
[ FUNC_FC_SHRD15 ] = " fc_shrd15 " ,
[ FUNC_FC_SHRD16 ] = " fc_shrd16 " ,
[ FUNC_FC_SHRD17 ] = " fc_shrd17 " ,
[ FUNC_FC_SHRD18 ] = " fc_shrd18 " ,
[ FUNC_FC_SHRD19 ] = " fc_shrd19 " ,
[ FUNC_FC_SHRD20 ] = " fc_shrd20 " ,
2018-01-06 01:09:26 +01:00
[ FUNC_GPIO ] = " gpio " ,
2021-11-18 16:55:48 +05:30
[ FUNC_IB_TRG_a ] = " ib_trig_a " ,
[ FUNC_IB_TRG_b ] = " ib_trig_b " ,
[ FUNC_IB_TRG_c ] = " ib_trig_c " ,
2020-06-15 15:32:37 +02:00
[ FUNC_IRQ0 ] = " irq0 " ,
2021-11-18 16:55:48 +05:30
[ FUNC_IRQ_IN_a ] = " irq_in_a " ,
[ FUNC_IRQ_IN_b ] = " irq_in_b " ,
[ FUNC_IRQ_IN_c ] = " irq_in_c " ,
2018-01-06 01:09:26 +01:00
[ FUNC_IRQ0_IN ] = " irq0_in " ,
2021-11-18 16:55:48 +05:30
[ FUNC_IRQ_OUT_a ] = " irq_out_a " ,
[ FUNC_IRQ_OUT_b ] = " irq_out_b " ,
[ FUNC_IRQ_OUT_c ] = " irq_out_c " ,
2018-01-06 01:09:26 +01:00
[ FUNC_IRQ0_OUT ] = " irq0_out " ,
2020-06-15 15:32:37 +02:00
[ FUNC_IRQ1 ] = " irq1 " ,
2018-01-06 01:09:26 +01:00
[ FUNC_IRQ1_IN ] = " irq1_in " ,
[ FUNC_IRQ1_OUT ] = " irq1_out " ,
2020-06-15 15:32:37 +02:00
[ FUNC_EXT_IRQ ] = " ext_irq " ,
2020-05-13 14:55:20 +02:00
[ FUNC_MIIM ] = " miim " ,
2021-11-18 16:55:48 +05:30
[ FUNC_MIIM_a ] = " miim_a " ,
[ FUNC_MIIM_b ] = " miim_b " ,
[ FUNC_MIIM_c ] = " miim_c " ,
[ FUNC_MIIM_Sa ] = " miim_slave_a " ,
[ FUNC_MIIM_Sb ] = " miim_slave_b " ,
2020-06-15 15:32:37 +02:00
[ FUNC_PHY_LED ] = " phy_led " ,
2018-01-06 01:09:26 +01:00
[ FUNC_PCI_WAKE ] = " pci_wake " ,
2020-06-15 15:32:37 +02:00
[ FUNC_MD ] = " md " ,
2021-11-18 16:55:48 +05:30
[ FUNC_OB_TRG ] = " ob_trig " ,
[ FUNC_OB_TRG_a ] = " ob_trig_a " ,
[ FUNC_OB_TRG_b ] = " ob_trig_b " ,
2018-01-06 01:09:26 +01:00
[ FUNC_PTP0 ] = " ptp0 " ,
[ FUNC_PTP1 ] = " ptp1 " ,
[ FUNC_PTP2 ] = " ptp2 " ,
[ FUNC_PTP3 ] = " ptp3 " ,
2022-04-13 21:29:18 +02:00
[ FUNC_PTPSYNC_0 ] = " ptpsync_0 " ,
2021-11-18 16:55:48 +05:30
[ FUNC_PTPSYNC_1 ] = " ptpsync_1 " ,
[ FUNC_PTPSYNC_2 ] = " ptpsync_2 " ,
[ FUNC_PTPSYNC_3 ] = " ptpsync_3 " ,
[ FUNC_PTPSYNC_4 ] = " ptpsync_4 " ,
[ FUNC_PTPSYNC_5 ] = " ptpsync_5 " ,
[ FUNC_PTPSYNC_6 ] = " ptpsync_6 " ,
[ FUNC_PTPSYNC_7 ] = " ptpsync_7 " ,
2018-01-06 01:09:26 +01:00
[ FUNC_PWM ] = " pwm " ,
2022-03-26 20:28:47 +01:00
[ FUNC_PWM_a ] = " pwm_a " ,
[ FUNC_PWM_b ] = " pwm_b " ,
2021-11-18 16:55:48 +05:30
[ FUNC_QSPI1 ] = " qspi1 " ,
[ FUNC_QSPI2 ] = " qspi2 " ,
[ FUNC_R ] = " reserved " ,
[ FUNC_RECO_a ] = " reco_a " ,
[ FUNC_RECO_b ] = " reco_b " ,
2020-05-13 14:55:20 +02:00
[ FUNC_RECO_CLK ] = " reco_clk " ,
2021-11-18 16:55:48 +05:30
[ FUNC_SD ] = " sd " ,
2020-05-13 14:55:20 +02:00
[ FUNC_SFP ] = " sfp " ,
2021-11-18 16:55:48 +05:30
[ FUNC_SFP_SD ] = " sfp_sd " ,
2018-01-06 01:09:26 +01:00
[ FUNC_SG0 ] = " sg0 " ,
2018-12-20 15:44:31 +01:00
[ FUNC_SG1 ] = " sg1 " ,
[ FUNC_SG2 ] = " sg2 " ,
2021-11-18 16:55:48 +05:30
[ FUNC_SGPIO_a ] = " sgpio_a " ,
[ FUNC_SGPIO_b ] = " sgpio_b " ,
2018-01-06 01:09:26 +01:00
[ FUNC_SI ] = " si " ,
2020-06-15 15:32:37 +02:00
[ FUNC_SI2 ] = " si2 " ,
2018-01-06 01:09:26 +01:00
[ FUNC_TACHO ] = " tacho " ,
2021-11-18 16:55:48 +05:30
[ FUNC_TACHO_a ] = " tacho_a " ,
[ FUNC_TACHO_b ] = " tacho_b " ,
2018-01-06 01:09:26 +01:00
[ FUNC_TWI ] = " twi " ,
2018-12-20 15:44:31 +01:00
[ FUNC_TWI2 ] = " twi2 " ,
2020-06-15 15:32:37 +02:00
[ FUNC_TWI3 ] = " twi3 " ,
2018-01-06 01:09:26 +01:00
[ FUNC_TWI_SCL_M ] = " twi_scl_m " ,
2021-11-18 16:55:48 +05:30
[ FUNC_TWI_SLC_GATE ] = " twi_slc_gate " ,
[ FUNC_TWI_SLC_GATE_AD ] = " twi_slc_gate_ad " ,
[ FUNC_USB_H_a ] = " usb_host_a " ,
[ FUNC_USB_H_b ] = " usb_host_b " ,
[ FUNC_USB_H_c ] = " usb_host_c " ,
[ FUNC_USB_S_a ] = " usb_slave_a " ,
[ FUNC_USB_S_b ] = " usb_slave_b " ,
[ FUNC_USB_S_c ] = " usb_slave_c " ,
2018-01-06 01:09:26 +01:00
[ FUNC_UART ] = " uart " ,
[ FUNC_UART2 ] = " uart2 " ,
2020-06-15 15:32:37 +02:00
[ FUNC_UART3 ] = " uart3 " ,
[ FUNC_PLL_STAT ] = " pll_stat " ,
[ FUNC_EMMC ] = " emmc " ,
2021-11-18 16:55:48 +05:30
[ FUNC_EMMC_SD ] = " emmc_sd " ,
2020-06-15 15:32:37 +02:00
[ FUNC_REF_CLK ] = " ref_clk " ,
[ FUNC_RCVRD_CLK ] = " rcvrd_clk " ,
2018-01-06 01:09:26 +01:00
} ;
struct ocelot_pmx_func {
const char * * groups ;
unsigned int ngroups ;
} ;
struct ocelot_pin_caps {
unsigned int pin ;
unsigned char functions [ OCELOT_FUNC_PER_PIN ] ;
2021-11-18 16:55:48 +05:30
unsigned char a_functions [ OCELOT_FUNC_PER_PIN ] ; /* Additional functions */
2018-01-06 01:09:26 +01:00
} ;
2022-07-13 21:37:49 +02:00
struct ocelot_pincfg_data {
u8 pd_bit ;
u8 pu_bit ;
u8 drive_bits ;
u8 schmitt_bit ;
} ;
2018-01-06 01:09:26 +01:00
struct ocelot_pinctrl {
struct device * dev ;
struct pinctrl_dev * pctl ;
struct gpio_chip gpio_chip ;
struct regmap * map ;
2021-11-19 11:59:27 -08:00
struct regmap * pincfg ;
2018-12-20 15:44:31 +01:00
struct pinctrl_desc * desc ;
2022-07-13 21:37:49 +02:00
const struct ocelot_pincfg_data * pincfg_data ;
2018-01-06 01:09:26 +01:00
struct ocelot_pmx_func func [ FUNC_MAX ] ;
2018-12-20 15:44:31 +01:00
u8 stride ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
struct workqueue_struct * wq ;
2018-01-06 01:09:26 +01:00
} ;
2022-07-13 21:37:49 +02:00
struct ocelot_match_data {
struct pinctrl_desc desc ;
struct ocelot_pincfg_data pincfg_data ;
} ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
struct ocelot_irq_work {
struct work_struct irq_work ;
struct irq_desc * irq_desc ;
} ;
2020-11-06 10:31:17 +01:00
# define LUTON_P(p, f0, f1) \
static struct ocelot_pin_caps luton_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_NONE , \
} , \
}
LUTON_P ( 0 , SG0 , NONE ) ;
LUTON_P ( 1 , SG0 , NONE ) ;
LUTON_P ( 2 , SG0 , NONE ) ;
LUTON_P ( 3 , SG0 , NONE ) ;
LUTON_P ( 4 , TACHO , NONE ) ;
LUTON_P ( 5 , TWI , PHY_LED ) ;
LUTON_P ( 6 , TWI , PHY_LED ) ;
LUTON_P ( 7 , NONE , PHY_LED ) ;
LUTON_P ( 8 , EXT_IRQ , PHY_LED ) ;
LUTON_P ( 9 , EXT_IRQ , PHY_LED ) ;
LUTON_P ( 10 , SFP , PHY_LED ) ;
LUTON_P ( 11 , SFP , PHY_LED ) ;
LUTON_P ( 12 , SFP , PHY_LED ) ;
LUTON_P ( 13 , SFP , PHY_LED ) ;
LUTON_P ( 14 , SI , PHY_LED ) ;
LUTON_P ( 15 , SI , PHY_LED ) ;
LUTON_P ( 16 , SI , PHY_LED ) ;
LUTON_P ( 17 , SFP , PHY_LED ) ;
LUTON_P ( 18 , SFP , PHY_LED ) ;
LUTON_P ( 19 , SFP , PHY_LED ) ;
LUTON_P ( 20 , SFP , PHY_LED ) ;
LUTON_P ( 21 , SFP , PHY_LED ) ;
LUTON_P ( 22 , SFP , PHY_LED ) ;
LUTON_P ( 23 , SFP , PHY_LED ) ;
LUTON_P ( 24 , SFP , PHY_LED ) ;
LUTON_P ( 25 , SFP , PHY_LED ) ;
LUTON_P ( 26 , SFP , PHY_LED ) ;
LUTON_P ( 27 , SFP , PHY_LED ) ;
LUTON_P ( 28 , SFP , PHY_LED ) ;
LUTON_P ( 29 , PWM , NONE ) ;
LUTON_P ( 30 , UART , NONE ) ;
LUTON_P ( 31 , UART , NONE ) ;
# define LUTON_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & luton_pin_ # # n \
}
static const struct pinctrl_pin_desc luton_pins [ ] = {
LUTON_PIN ( 0 ) ,
LUTON_PIN ( 1 ) ,
LUTON_PIN ( 2 ) ,
LUTON_PIN ( 3 ) ,
LUTON_PIN ( 4 ) ,
LUTON_PIN ( 5 ) ,
LUTON_PIN ( 6 ) ,
LUTON_PIN ( 7 ) ,
LUTON_PIN ( 8 ) ,
LUTON_PIN ( 9 ) ,
LUTON_PIN ( 10 ) ,
LUTON_PIN ( 11 ) ,
LUTON_PIN ( 12 ) ,
LUTON_PIN ( 13 ) ,
LUTON_PIN ( 14 ) ,
LUTON_PIN ( 15 ) ,
LUTON_PIN ( 16 ) ,
LUTON_PIN ( 17 ) ,
LUTON_PIN ( 18 ) ,
LUTON_PIN ( 19 ) ,
LUTON_PIN ( 20 ) ,
LUTON_PIN ( 21 ) ,
LUTON_PIN ( 22 ) ,
LUTON_PIN ( 23 ) ,
LUTON_PIN ( 24 ) ,
LUTON_PIN ( 25 ) ,
LUTON_PIN ( 26 ) ,
LUTON_PIN ( 27 ) ,
LUTON_PIN ( 28 ) ,
LUTON_PIN ( 29 ) ,
LUTON_PIN ( 30 ) ,
LUTON_PIN ( 31 ) ,
} ;
2020-11-06 10:31:18 +01:00
# define SERVAL_P(p, f0, f1, f2) \
static struct ocelot_pin_caps serval_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_ # # f2 , \
} , \
}
SERVAL_P ( 0 , SG0 , NONE , NONE ) ;
SERVAL_P ( 1 , SG0 , NONE , NONE ) ;
SERVAL_P ( 2 , SG0 , NONE , NONE ) ;
SERVAL_P ( 3 , SG0 , NONE , NONE ) ;
SERVAL_P ( 4 , TACHO , NONE , NONE ) ;
SERVAL_P ( 5 , PWM , NONE , NONE ) ;
SERVAL_P ( 6 , TWI , NONE , NONE ) ;
SERVAL_P ( 7 , TWI , NONE , NONE ) ;
SERVAL_P ( 8 , SI , NONE , NONE ) ;
SERVAL_P ( 9 , SI , MD , NONE ) ;
SERVAL_P ( 10 , SI , MD , NONE ) ;
SERVAL_P ( 11 , SFP , MD , TWI_SCL_M ) ;
SERVAL_P ( 12 , SFP , MD , TWI_SCL_M ) ;
SERVAL_P ( 13 , SFP , UART2 , TWI_SCL_M ) ;
SERVAL_P ( 14 , SFP , UART2 , TWI_SCL_M ) ;
SERVAL_P ( 15 , SFP , PTP0 , TWI_SCL_M ) ;
SERVAL_P ( 16 , SFP , PTP0 , TWI_SCL_M ) ;
SERVAL_P ( 17 , SFP , PCI_WAKE , TWI_SCL_M ) ;
SERVAL_P ( 18 , SFP , NONE , TWI_SCL_M ) ;
SERVAL_P ( 19 , SFP , NONE , TWI_SCL_M ) ;
SERVAL_P ( 20 , SFP , NONE , TWI_SCL_M ) ;
SERVAL_P ( 21 , SFP , NONE , TWI_SCL_M ) ;
SERVAL_P ( 22 , NONE , NONE , NONE ) ;
SERVAL_P ( 23 , NONE , NONE , NONE ) ;
SERVAL_P ( 24 , NONE , NONE , NONE ) ;
SERVAL_P ( 25 , NONE , NONE , NONE ) ;
SERVAL_P ( 26 , UART , NONE , NONE ) ;
SERVAL_P ( 27 , UART , NONE , NONE ) ;
SERVAL_P ( 28 , IRQ0 , NONE , NONE ) ;
SERVAL_P ( 29 , IRQ1 , NONE , NONE ) ;
SERVAL_P ( 30 , PTP0 , NONE , NONE ) ;
SERVAL_P ( 31 , PTP0 , NONE , NONE ) ;
# define SERVAL_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & serval_pin_ # # n \
}
static const struct pinctrl_pin_desc serval_pins [ ] = {
SERVAL_PIN ( 0 ) ,
SERVAL_PIN ( 1 ) ,
SERVAL_PIN ( 2 ) ,
SERVAL_PIN ( 3 ) ,
SERVAL_PIN ( 4 ) ,
SERVAL_PIN ( 5 ) ,
SERVAL_PIN ( 6 ) ,
SERVAL_PIN ( 7 ) ,
SERVAL_PIN ( 8 ) ,
SERVAL_PIN ( 9 ) ,
SERVAL_PIN ( 10 ) ,
SERVAL_PIN ( 11 ) ,
SERVAL_PIN ( 12 ) ,
SERVAL_PIN ( 13 ) ,
SERVAL_PIN ( 14 ) ,
SERVAL_PIN ( 15 ) ,
SERVAL_PIN ( 16 ) ,
SERVAL_PIN ( 17 ) ,
SERVAL_PIN ( 18 ) ,
SERVAL_PIN ( 19 ) ,
SERVAL_PIN ( 20 ) ,
SERVAL_PIN ( 21 ) ,
SERVAL_PIN ( 22 ) ,
SERVAL_PIN ( 23 ) ,
SERVAL_PIN ( 24 ) ,
SERVAL_PIN ( 25 ) ,
SERVAL_PIN ( 26 ) ,
SERVAL_PIN ( 27 ) ,
SERVAL_PIN ( 28 ) ,
SERVAL_PIN ( 29 ) ,
SERVAL_PIN ( 30 ) ,
SERVAL_PIN ( 31 ) ,
} ;
2018-01-06 01:09:26 +01:00
# define OCELOT_P(p, f0, f1, f2) \
static struct ocelot_pin_caps ocelot_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_ # # f2 , \
} , \
}
OCELOT_P ( 0 , SG0 , NONE , NONE ) ;
OCELOT_P ( 1 , SG0 , NONE , NONE ) ;
OCELOT_P ( 2 , SG0 , NONE , NONE ) ;
OCELOT_P ( 3 , SG0 , NONE , NONE ) ;
2018-07-11 15:01:26 +02:00
OCELOT_P ( 4 , IRQ0_IN , IRQ0_OUT , TWI_SCL_M ) ;
2018-01-06 01:09:26 +01:00
OCELOT_P ( 5 , IRQ1_IN , IRQ1_OUT , PCI_WAKE ) ;
OCELOT_P ( 6 , UART , TWI_SCL_M , NONE ) ;
OCELOT_P ( 7 , UART , TWI_SCL_M , NONE ) ;
OCELOT_P ( 8 , SI , TWI_SCL_M , IRQ0_OUT ) ;
OCELOT_P ( 9 , SI , TWI_SCL_M , IRQ1_OUT ) ;
2020-05-13 14:55:20 +02:00
OCELOT_P ( 10 , PTP2 , TWI_SCL_M , SFP ) ;
OCELOT_P ( 11 , PTP3 , TWI_SCL_M , SFP ) ;
OCELOT_P ( 12 , UART2 , TWI_SCL_M , SFP ) ;
OCELOT_P ( 13 , UART2 , TWI_SCL_M , SFP ) ;
OCELOT_P ( 14 , MIIM , TWI_SCL_M , SFP ) ;
OCELOT_P ( 15 , MIIM , TWI_SCL_M , SFP ) ;
2018-01-06 01:09:26 +01:00
OCELOT_P ( 16 , TWI , NONE , SI ) ;
OCELOT_P ( 17 , TWI , TWI_SCL_M , SI ) ;
OCELOT_P ( 18 , PTP0 , TWI_SCL_M , NONE ) ;
OCELOT_P ( 19 , PTP1 , TWI_SCL_M , NONE ) ;
2020-05-13 14:55:20 +02:00
OCELOT_P ( 20 , RECO_CLK , TACHO , TWI_SCL_M ) ;
OCELOT_P ( 21 , RECO_CLK , PWM , TWI_SCL_M ) ;
2018-01-06 01:09:26 +01:00
# define OCELOT_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & ocelot_pin_ # # n \
}
static const struct pinctrl_pin_desc ocelot_pins [ ] = {
OCELOT_PIN ( 0 ) ,
OCELOT_PIN ( 1 ) ,
OCELOT_PIN ( 2 ) ,
OCELOT_PIN ( 3 ) ,
OCELOT_PIN ( 4 ) ,
OCELOT_PIN ( 5 ) ,
OCELOT_PIN ( 6 ) ,
OCELOT_PIN ( 7 ) ,
OCELOT_PIN ( 8 ) ,
OCELOT_PIN ( 9 ) ,
OCELOT_PIN ( 10 ) ,
OCELOT_PIN ( 11 ) ,
OCELOT_PIN ( 12 ) ,
OCELOT_PIN ( 13 ) ,
OCELOT_PIN ( 14 ) ,
OCELOT_PIN ( 15 ) ,
OCELOT_PIN ( 16 ) ,
OCELOT_PIN ( 17 ) ,
OCELOT_PIN ( 18 ) ,
OCELOT_PIN ( 19 ) ,
OCELOT_PIN ( 20 ) ,
OCELOT_PIN ( 21 ) ,
} ;
2018-12-20 15:44:31 +01:00
# define JAGUAR2_P(p, f0, f1) \
static struct ocelot_pin_caps jaguar2_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_NONE \
} , \
}
JAGUAR2_P ( 0 , SG0 , NONE ) ;
JAGUAR2_P ( 1 , SG0 , NONE ) ;
JAGUAR2_P ( 2 , SG0 , NONE ) ;
JAGUAR2_P ( 3 , SG0 , NONE ) ;
JAGUAR2_P ( 4 , SG1 , NONE ) ;
JAGUAR2_P ( 5 , SG1 , NONE ) ;
JAGUAR2_P ( 6 , IRQ0_IN , IRQ0_OUT ) ;
JAGUAR2_P ( 7 , IRQ1_IN , IRQ1_OUT ) ;
JAGUAR2_P ( 8 , PTP0 , NONE ) ;
JAGUAR2_P ( 9 , PTP1 , NONE ) ;
JAGUAR2_P ( 10 , UART , NONE ) ;
JAGUAR2_P ( 11 , UART , NONE ) ;
JAGUAR2_P ( 12 , SG1 , NONE ) ;
JAGUAR2_P ( 13 , SG1 , NONE ) ;
JAGUAR2_P ( 14 , TWI , TWI_SCL_M ) ;
JAGUAR2_P ( 15 , TWI , NONE ) ;
JAGUAR2_P ( 16 , SI , TWI_SCL_M ) ;
JAGUAR2_P ( 17 , SI , TWI_SCL_M ) ;
JAGUAR2_P ( 18 , SI , TWI_SCL_M ) ;
JAGUAR2_P ( 19 , PCI_WAKE , NONE ) ;
JAGUAR2_P ( 20 , IRQ0_OUT , TWI_SCL_M ) ;
JAGUAR2_P ( 21 , IRQ1_OUT , TWI_SCL_M ) ;
JAGUAR2_P ( 22 , TACHO , NONE ) ;
JAGUAR2_P ( 23 , PWM , NONE ) ;
JAGUAR2_P ( 24 , UART2 , NONE ) ;
JAGUAR2_P ( 25 , UART2 , SI ) ;
JAGUAR2_P ( 26 , PTP2 , SI ) ;
JAGUAR2_P ( 27 , PTP3 , SI ) ;
JAGUAR2_P ( 28 , TWI2 , SI ) ;
JAGUAR2_P ( 29 , TWI2 , SI ) ;
JAGUAR2_P ( 30 , SG2 , SI ) ;
JAGUAR2_P ( 31 , SG2 , SI ) ;
JAGUAR2_P ( 32 , SG2 , SI ) ;
JAGUAR2_P ( 33 , SG2 , SI ) ;
JAGUAR2_P ( 34 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 35 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 36 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 37 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 38 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 39 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 40 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 41 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 42 , NONE , TWI_SCL_M ) ;
JAGUAR2_P ( 43 , NONE , TWI_SCL_M ) ;
2020-05-13 14:55:20 +02:00
JAGUAR2_P ( 44 , NONE , SFP ) ;
JAGUAR2_P ( 45 , NONE , SFP ) ;
JAGUAR2_P ( 46 , NONE , SFP ) ;
JAGUAR2_P ( 47 , NONE , SFP ) ;
JAGUAR2_P ( 48 , SFP , NONE ) ;
JAGUAR2_P ( 49 , SFP , SI ) ;
JAGUAR2_P ( 50 , SFP , SI ) ;
JAGUAR2_P ( 51 , SFP , SI ) ;
JAGUAR2_P ( 52 , SFP , NONE ) ;
JAGUAR2_P ( 53 , SFP , NONE ) ;
JAGUAR2_P ( 54 , SFP , NONE ) ;
JAGUAR2_P ( 55 , SFP , NONE ) ;
JAGUAR2_P ( 56 , MIIM , SFP ) ;
JAGUAR2_P ( 57 , MIIM , SFP ) ;
JAGUAR2_P ( 58 , MIIM , SFP ) ;
JAGUAR2_P ( 59 , MIIM , SFP ) ;
2018-12-20 15:44:31 +01:00
JAGUAR2_P ( 60 , NONE , NONE ) ;
JAGUAR2_P ( 61 , NONE , NONE ) ;
JAGUAR2_P ( 62 , NONE , NONE ) ;
JAGUAR2_P ( 63 , NONE , NONE ) ;
# define JAGUAR2_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & jaguar2_pin_ # # n \
}
static const struct pinctrl_pin_desc jaguar2_pins [ ] = {
JAGUAR2_PIN ( 0 ) ,
JAGUAR2_PIN ( 1 ) ,
JAGUAR2_PIN ( 2 ) ,
JAGUAR2_PIN ( 3 ) ,
JAGUAR2_PIN ( 4 ) ,
JAGUAR2_PIN ( 5 ) ,
JAGUAR2_PIN ( 6 ) ,
JAGUAR2_PIN ( 7 ) ,
JAGUAR2_PIN ( 8 ) ,
JAGUAR2_PIN ( 9 ) ,
JAGUAR2_PIN ( 10 ) ,
JAGUAR2_PIN ( 11 ) ,
JAGUAR2_PIN ( 12 ) ,
JAGUAR2_PIN ( 13 ) ,
JAGUAR2_PIN ( 14 ) ,
JAGUAR2_PIN ( 15 ) ,
JAGUAR2_PIN ( 16 ) ,
JAGUAR2_PIN ( 17 ) ,
JAGUAR2_PIN ( 18 ) ,
JAGUAR2_PIN ( 19 ) ,
JAGUAR2_PIN ( 20 ) ,
JAGUAR2_PIN ( 21 ) ,
JAGUAR2_PIN ( 22 ) ,
JAGUAR2_PIN ( 23 ) ,
JAGUAR2_PIN ( 24 ) ,
JAGUAR2_PIN ( 25 ) ,
JAGUAR2_PIN ( 26 ) ,
JAGUAR2_PIN ( 27 ) ,
JAGUAR2_PIN ( 28 ) ,
JAGUAR2_PIN ( 29 ) ,
JAGUAR2_PIN ( 30 ) ,
JAGUAR2_PIN ( 31 ) ,
JAGUAR2_PIN ( 32 ) ,
JAGUAR2_PIN ( 33 ) ,
JAGUAR2_PIN ( 34 ) ,
JAGUAR2_PIN ( 35 ) ,
JAGUAR2_PIN ( 36 ) ,
JAGUAR2_PIN ( 37 ) ,
JAGUAR2_PIN ( 38 ) ,
JAGUAR2_PIN ( 39 ) ,
JAGUAR2_PIN ( 40 ) ,
JAGUAR2_PIN ( 41 ) ,
JAGUAR2_PIN ( 42 ) ,
JAGUAR2_PIN ( 43 ) ,
JAGUAR2_PIN ( 44 ) ,
JAGUAR2_PIN ( 45 ) ,
JAGUAR2_PIN ( 46 ) ,
JAGUAR2_PIN ( 47 ) ,
JAGUAR2_PIN ( 48 ) ,
JAGUAR2_PIN ( 49 ) ,
JAGUAR2_PIN ( 50 ) ,
JAGUAR2_PIN ( 51 ) ,
JAGUAR2_PIN ( 52 ) ,
JAGUAR2_PIN ( 53 ) ,
JAGUAR2_PIN ( 54 ) ,
JAGUAR2_PIN ( 55 ) ,
JAGUAR2_PIN ( 56 ) ,
JAGUAR2_PIN ( 57 ) ,
JAGUAR2_PIN ( 58 ) ,
JAGUAR2_PIN ( 59 ) ,
JAGUAR2_PIN ( 60 ) ,
JAGUAR2_PIN ( 61 ) ,
JAGUAR2_PIN ( 62 ) ,
JAGUAR2_PIN ( 63 ) ,
} ;
2022-01-25 14:18:58 +01:00
# define SERVALT_P(p, f0, f1, f2) \
static struct ocelot_pin_caps servalt_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_ # # f2 \
} , \
}
SERVALT_P ( 0 , SG0 , NONE , NONE ) ;
SERVALT_P ( 1 , SG0 , NONE , NONE ) ;
SERVALT_P ( 2 , SG0 , NONE , NONE ) ;
SERVALT_P ( 3 , SG0 , NONE , NONE ) ;
SERVALT_P ( 4 , IRQ0_IN , IRQ0_OUT , TWI_SCL_M ) ;
SERVALT_P ( 5 , IRQ1_IN , IRQ1_OUT , TWI_SCL_M ) ;
SERVALT_P ( 6 , UART , NONE , NONE ) ;
SERVALT_P ( 7 , UART , NONE , NONE ) ;
SERVALT_P ( 8 , SI , SFP , TWI_SCL_M ) ;
SERVALT_P ( 9 , PCI_WAKE , SFP , SI ) ;
SERVALT_P ( 10 , PTP0 , SFP , TWI_SCL_M ) ;
SERVALT_P ( 11 , PTP1 , SFP , TWI_SCL_M ) ;
SERVALT_P ( 12 , REF_CLK , SFP , TWI_SCL_M ) ;
SERVALT_P ( 13 , REF_CLK , SFP , TWI_SCL_M ) ;
SERVALT_P ( 14 , REF_CLK , IRQ0_OUT , SI ) ;
SERVALT_P ( 15 , REF_CLK , IRQ1_OUT , SI ) ;
SERVALT_P ( 16 , TACHO , SFP , SI ) ;
SERVALT_P ( 17 , PWM , NONE , TWI_SCL_M ) ;
SERVALT_P ( 18 , PTP2 , SFP , SI ) ;
SERVALT_P ( 19 , PTP3 , SFP , SI ) ;
SERVALT_P ( 20 , UART2 , SFP , SI ) ;
SERVALT_P ( 21 , UART2 , NONE , NONE ) ;
SERVALT_P ( 22 , MIIM , SFP , TWI2 ) ;
SERVALT_P ( 23 , MIIM , SFP , TWI2 ) ;
SERVALT_P ( 24 , TWI , NONE , NONE ) ;
SERVALT_P ( 25 , TWI , SFP , TWI_SCL_M ) ;
SERVALT_P ( 26 , TWI_SCL_M , SFP , SI ) ;
SERVALT_P ( 27 , TWI_SCL_M , SFP , SI ) ;
SERVALT_P ( 28 , TWI_SCL_M , SFP , SI ) ;
SERVALT_P ( 29 , TWI_SCL_M , NONE , NONE ) ;
SERVALT_P ( 30 , TWI_SCL_M , NONE , NONE ) ;
SERVALT_P ( 31 , TWI_SCL_M , NONE , NONE ) ;
SERVALT_P ( 32 , TWI_SCL_M , NONE , NONE ) ;
SERVALT_P ( 33 , RCVRD_CLK , NONE , NONE ) ;
SERVALT_P ( 34 , RCVRD_CLK , NONE , NONE ) ;
SERVALT_P ( 35 , RCVRD_CLK , NONE , NONE ) ;
SERVALT_P ( 36 , RCVRD_CLK , NONE , NONE ) ;
# define SERVALT_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & servalt_pin_ # # n \
}
static const struct pinctrl_pin_desc servalt_pins [ ] = {
SERVALT_PIN ( 0 ) ,
SERVALT_PIN ( 1 ) ,
SERVALT_PIN ( 2 ) ,
SERVALT_PIN ( 3 ) ,
SERVALT_PIN ( 4 ) ,
SERVALT_PIN ( 5 ) ,
SERVALT_PIN ( 6 ) ,
SERVALT_PIN ( 7 ) ,
SERVALT_PIN ( 8 ) ,
SERVALT_PIN ( 9 ) ,
SERVALT_PIN ( 10 ) ,
SERVALT_PIN ( 11 ) ,
SERVALT_PIN ( 12 ) ,
SERVALT_PIN ( 13 ) ,
SERVALT_PIN ( 14 ) ,
SERVALT_PIN ( 15 ) ,
SERVALT_PIN ( 16 ) ,
SERVALT_PIN ( 17 ) ,
SERVALT_PIN ( 18 ) ,
SERVALT_PIN ( 19 ) ,
SERVALT_PIN ( 20 ) ,
SERVALT_PIN ( 21 ) ,
SERVALT_PIN ( 22 ) ,
SERVALT_PIN ( 23 ) ,
SERVALT_PIN ( 24 ) ,
SERVALT_PIN ( 25 ) ,
SERVALT_PIN ( 26 ) ,
SERVALT_PIN ( 27 ) ,
SERVALT_PIN ( 28 ) ,
SERVALT_PIN ( 29 ) ,
SERVALT_PIN ( 30 ) ,
SERVALT_PIN ( 31 ) ,
SERVALT_PIN ( 32 ) ,
SERVALT_PIN ( 33 ) ,
SERVALT_PIN ( 34 ) ,
SERVALT_PIN ( 35 ) ,
SERVALT_PIN ( 36 ) ,
} ;
2020-06-15 15:32:37 +02:00
# define SPARX5_P(p, f0, f1, f2) \
static struct ocelot_pin_caps sparx5_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_GPIO , FUNC_ # # f0 , FUNC_ # # f1 , FUNC_ # # f2 \
} , \
}
SPARX5_P ( 0 , SG0 , PLL_STAT , NONE ) ;
SPARX5_P ( 1 , SG0 , NONE , NONE ) ;
SPARX5_P ( 2 , SG0 , NONE , NONE ) ;
SPARX5_P ( 3 , SG0 , NONE , NONE ) ;
SPARX5_P ( 4 , SG1 , NONE , NONE ) ;
SPARX5_P ( 5 , SG1 , NONE , NONE ) ;
SPARX5_P ( 6 , IRQ0_IN , IRQ0_OUT , SFP ) ;
SPARX5_P ( 7 , IRQ1_IN , IRQ1_OUT , SFP ) ;
SPARX5_P ( 8 , PTP0 , NONE , SFP ) ;
SPARX5_P ( 9 , PTP1 , SFP , TWI_SCL_M ) ;
SPARX5_P ( 10 , UART , NONE , NONE ) ;
SPARX5_P ( 11 , UART , NONE , NONE ) ;
SPARX5_P ( 12 , SG1 , NONE , NONE ) ;
SPARX5_P ( 13 , SG1 , NONE , NONE ) ;
SPARX5_P ( 14 , TWI , TWI_SCL_M , NONE ) ;
SPARX5_P ( 15 , TWI , NONE , NONE ) ;
SPARX5_P ( 16 , SI , TWI_SCL_M , SFP ) ;
SPARX5_P ( 17 , SI , TWI_SCL_M , SFP ) ;
SPARX5_P ( 18 , SI , TWI_SCL_M , SFP ) ;
SPARX5_P ( 19 , PCI_WAKE , TWI_SCL_M , SFP ) ;
SPARX5_P ( 20 , IRQ0_OUT , TWI_SCL_M , SFP ) ;
SPARX5_P ( 21 , IRQ1_OUT , TACHO , SFP ) ;
SPARX5_P ( 22 , TACHO , IRQ0_OUT , TWI_SCL_M ) ;
SPARX5_P ( 23 , PWM , UART3 , TWI_SCL_M ) ;
SPARX5_P ( 24 , PTP2 , UART3 , TWI_SCL_M ) ;
SPARX5_P ( 25 , PTP3 , SI , TWI_SCL_M ) ;
SPARX5_P ( 26 , UART2 , SI , TWI_SCL_M ) ;
SPARX5_P ( 27 , UART2 , SI , TWI_SCL_M ) ;
SPARX5_P ( 28 , TWI2 , SI , SFP ) ;
SPARX5_P ( 29 , TWI2 , SI , SFP ) ;
SPARX5_P ( 30 , SG2 , SI , PWM ) ;
SPARX5_P ( 31 , SG2 , SI , TWI_SCL_M ) ;
SPARX5_P ( 32 , SG2 , SI , TWI_SCL_M ) ;
SPARX5_P ( 33 , SG2 , SI , SFP ) ;
SPARX5_P ( 34 , NONE , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 35 , SFP , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 36 , SFP , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 37 , SFP , NONE , EMMC ) ;
SPARX5_P ( 38 , NONE , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 39 , SI2 , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 40 , SI2 , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 41 , SI2 , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 42 , SI2 , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 43 , SI2 , TWI_SCL_M , EMMC ) ;
SPARX5_P ( 44 , SI , SFP , EMMC ) ;
SPARX5_P ( 45 , SI , SFP , EMMC ) ;
SPARX5_P ( 46 , NONE , SFP , EMMC ) ;
SPARX5_P ( 47 , NONE , SFP , EMMC ) ;
SPARX5_P ( 48 , TWI3 , SI , SFP ) ;
SPARX5_P ( 49 , TWI3 , NONE , SFP ) ;
SPARX5_P ( 50 , SFP , NONE , TWI_SCL_M ) ;
SPARX5_P ( 51 , SFP , SI , TWI_SCL_M ) ;
SPARX5_P ( 52 , SFP , MIIM , TWI_SCL_M ) ;
SPARX5_P ( 53 , SFP , MIIM , TWI_SCL_M ) ;
SPARX5_P ( 54 , SFP , PTP2 , TWI_SCL_M ) ;
SPARX5_P ( 55 , SFP , PTP3 , PCI_WAKE ) ;
SPARX5_P ( 56 , MIIM , SFP , TWI_SCL_M ) ;
SPARX5_P ( 57 , MIIM , SFP , TWI_SCL_M ) ;
SPARX5_P ( 58 , MIIM , SFP , TWI_SCL_M ) ;
SPARX5_P ( 59 , MIIM , SFP , NONE ) ;
SPARX5_P ( 60 , RECO_CLK , NONE , NONE ) ;
SPARX5_P ( 61 , RECO_CLK , NONE , NONE ) ;
SPARX5_P ( 62 , RECO_CLK , PLL_STAT , NONE ) ;
SPARX5_P ( 63 , RECO_CLK , NONE , NONE ) ;
# define SPARX5_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & sparx5_pin_ # # n \
}
static const struct pinctrl_pin_desc sparx5_pins [ ] = {
SPARX5_PIN ( 0 ) ,
SPARX5_PIN ( 1 ) ,
SPARX5_PIN ( 2 ) ,
SPARX5_PIN ( 3 ) ,
SPARX5_PIN ( 4 ) ,
SPARX5_PIN ( 5 ) ,
SPARX5_PIN ( 6 ) ,
SPARX5_PIN ( 7 ) ,
SPARX5_PIN ( 8 ) ,
SPARX5_PIN ( 9 ) ,
SPARX5_PIN ( 10 ) ,
SPARX5_PIN ( 11 ) ,
SPARX5_PIN ( 12 ) ,
SPARX5_PIN ( 13 ) ,
SPARX5_PIN ( 14 ) ,
SPARX5_PIN ( 15 ) ,
SPARX5_PIN ( 16 ) ,
SPARX5_PIN ( 17 ) ,
SPARX5_PIN ( 18 ) ,
SPARX5_PIN ( 19 ) ,
SPARX5_PIN ( 20 ) ,
SPARX5_PIN ( 21 ) ,
SPARX5_PIN ( 22 ) ,
SPARX5_PIN ( 23 ) ,
SPARX5_PIN ( 24 ) ,
SPARX5_PIN ( 25 ) ,
SPARX5_PIN ( 26 ) ,
SPARX5_PIN ( 27 ) ,
SPARX5_PIN ( 28 ) ,
SPARX5_PIN ( 29 ) ,
SPARX5_PIN ( 30 ) ,
SPARX5_PIN ( 31 ) ,
SPARX5_PIN ( 32 ) ,
SPARX5_PIN ( 33 ) ,
SPARX5_PIN ( 34 ) ,
SPARX5_PIN ( 35 ) ,
SPARX5_PIN ( 36 ) ,
SPARX5_PIN ( 37 ) ,
SPARX5_PIN ( 38 ) ,
SPARX5_PIN ( 39 ) ,
SPARX5_PIN ( 40 ) ,
SPARX5_PIN ( 41 ) ,
SPARX5_PIN ( 42 ) ,
SPARX5_PIN ( 43 ) ,
SPARX5_PIN ( 44 ) ,
SPARX5_PIN ( 45 ) ,
SPARX5_PIN ( 46 ) ,
SPARX5_PIN ( 47 ) ,
SPARX5_PIN ( 48 ) ,
SPARX5_PIN ( 49 ) ,
SPARX5_PIN ( 50 ) ,
SPARX5_PIN ( 51 ) ,
SPARX5_PIN ( 52 ) ,
SPARX5_PIN ( 53 ) ,
SPARX5_PIN ( 54 ) ,
SPARX5_PIN ( 55 ) ,
SPARX5_PIN ( 56 ) ,
SPARX5_PIN ( 57 ) ,
SPARX5_PIN ( 58 ) ,
SPARX5_PIN ( 59 ) ,
SPARX5_PIN ( 60 ) ,
SPARX5_PIN ( 61 ) ,
SPARX5_PIN ( 62 ) ,
SPARX5_PIN ( 63 ) ,
} ;
2021-11-18 16:55:48 +05:30
# define LAN966X_P(p, f0, f1, f2, f3, f4, f5, f6, f7) \
static struct ocelot_pin_caps lan966x_pin_ # # p = { \
. pin = p , \
. functions = { \
FUNC_ # # f0 , FUNC_ # # f1 , FUNC_ # # f2 , \
FUNC_ # # f3 \
} , \
. a_functions = { \
FUNC_ # # f4 , FUNC_ # # f5 , FUNC_ # # f6 , \
FUNC_ # # f7 \
} , \
}
/* Pinmuxing table taken from data sheet */
/* Pin FUNC0 FUNC1 FUNC2 FUNC3 FUNC4 FUNC5 FUNC6 FUNC7 */
LAN966X_P ( 0 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 1 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 2 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 3 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 4 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 5 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 6 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 7 , GPIO , NONE , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 8 , GPIO , FC0_a , USB_H_b , NONE , USB_S_b , NONE , NONE , R ) ;
LAN966X_P ( 9 , GPIO , FC0_a , USB_H_b , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 10 , GPIO , FC0_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 11 , GPIO , FC1_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 12 , GPIO , FC1_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 13 , GPIO , FC1_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 14 , GPIO , FC2_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 15 , GPIO , FC2_a , NONE , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 16 , GPIO , FC2_a , IB_TRG_a , NONE , OB_TRG_a , IRQ_IN_c , IRQ_OUT_c , R ) ;
LAN966X_P ( 17 , GPIO , FC3_a , IB_TRG_a , NONE , OB_TRG_a , IRQ_IN_c , IRQ_OUT_c , R ) ;
LAN966X_P ( 18 , GPIO , FC3_a , IB_TRG_a , NONE , OB_TRG_a , IRQ_IN_c , IRQ_OUT_c , R ) ;
LAN966X_P ( 19 , GPIO , FC3_a , IB_TRG_a , NONE , OB_TRG_a , IRQ_IN_c , IRQ_OUT_c , R ) ;
LAN966X_P ( 20 , GPIO , FC4_a , IB_TRG_a , NONE , OB_TRG_a , IRQ_IN_c , NONE , R ) ;
LAN966X_P ( 21 , GPIO , FC4_a , NONE , NONE , OB_TRG_a , NONE , NONE , R ) ;
LAN966X_P ( 22 , GPIO , FC4_a , NONE , NONE , OB_TRG_a , NONE , NONE , R ) ;
LAN966X_P ( 23 , GPIO , NONE , NONE , NONE , OB_TRG_a , NONE , NONE , R ) ;
LAN966X_P ( 24 , GPIO , FC0_b , IB_TRG_a , USB_H_c , OB_TRG_a , IRQ_IN_c , TACHO_a , R ) ;
LAN966X_P ( 25 , GPIO , FC0_b , IB_TRG_a , USB_H_c , OB_TRG_a , IRQ_OUT_c , SFP_SD , R ) ;
LAN966X_P ( 26 , GPIO , FC0_b , IB_TRG_a , USB_S_c , OB_TRG_a , CAN0_a , SFP_SD , R ) ;
2022-03-26 20:28:47 +01:00
LAN966X_P ( 27 , GPIO , NONE , NONE , NONE , OB_TRG_a , CAN0_a , PWM_a , R ) ;
2021-11-18 16:55:48 +05:30
LAN966X_P ( 28 , GPIO , MIIM_a , NONE , NONE , OB_TRG_a , IRQ_OUT_c , SFP_SD , R ) ;
LAN966X_P ( 29 , GPIO , MIIM_a , NONE , NONE , OB_TRG_a , NONE , NONE , R ) ;
2022-03-26 20:28:48 +01:00
LAN966X_P ( 30 , GPIO , FC3_c , CAN1 , CLKMON , OB_TRG , RECO_b , NONE , R ) ;
LAN966X_P ( 31 , GPIO , FC3_c , CAN1 , CLKMON , OB_TRG , RECO_b , NONE , R ) ;
2021-11-18 16:55:48 +05:30
LAN966X_P ( 32 , GPIO , FC3_c , NONE , SGPIO_a , NONE , MIIM_Sa , NONE , R ) ;
LAN966X_P ( 33 , GPIO , FC1_b , NONE , SGPIO_a , NONE , MIIM_Sa , MIIM_b , R ) ;
LAN966X_P ( 34 , GPIO , FC1_b , NONE , SGPIO_a , NONE , MIIM_Sa , MIIM_b , R ) ;
2022-04-13 21:29:18 +02:00
LAN966X_P ( 35 , GPIO , FC1_b , PTPSYNC_0 , SGPIO_a , CAN0_b , NONE , NONE , R ) ;
2021-11-18 16:55:48 +05:30
LAN966X_P ( 36 , GPIO , NONE , PTPSYNC_1 , NONE , CAN0_b , NONE , NONE , R ) ;
LAN966X_P ( 37 , GPIO , FC_SHRD0 , PTPSYNC_2 , TWI_SLC_GATE_AD , NONE , NONE , NONE , R ) ;
LAN966X_P ( 38 , GPIO , NONE , PTPSYNC_3 , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 39 , GPIO , NONE , PTPSYNC_4 , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 40 , GPIO , FC_SHRD1 , PTPSYNC_5 , NONE , NONE , NONE , NONE , R ) ;
LAN966X_P ( 41 , GPIO , FC_SHRD2 , PTPSYNC_6 , TWI_SLC_GATE_AD , NONE , NONE , NONE , R ) ;
LAN966X_P ( 42 , GPIO , FC_SHRD3 , PTPSYNC_7 , TWI_SLC_GATE_AD , NONE , NONE , NONE , R ) ;
LAN966X_P ( 43 , GPIO , FC2_b , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , RECO_a , IRQ_IN_a , R ) ;
LAN966X_P ( 44 , GPIO , FC2_b , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , RECO_a , IRQ_IN_a , R ) ;
LAN966X_P ( 45 , GPIO , FC2_b , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , NONE , IRQ_IN_a , R ) ;
LAN966X_P ( 46 , GPIO , FC1_c , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , FC_SHRD4 , IRQ_IN_a , R ) ;
LAN966X_P ( 47 , GPIO , FC1_c , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , FC_SHRD5 , IRQ_IN_a , R ) ;
LAN966X_P ( 48 , GPIO , FC1_c , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , FC_SHRD6 , IRQ_IN_a , R ) ;
LAN966X_P ( 49 , GPIO , FC_SHRD7 , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , TWI_SLC_GATE , IRQ_IN_a , R ) ;
LAN966X_P ( 50 , GPIO , FC_SHRD16 , OB_TRG_b , IB_TRG_b , IRQ_OUT_a , TWI_SLC_GATE , NONE , R ) ;
2022-03-26 20:28:47 +01:00
LAN966X_P ( 51 , GPIO , FC3_b , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , PWM_b , IRQ_IN_b , R ) ;
2021-11-18 16:55:48 +05:30
LAN966X_P ( 52 , GPIO , FC3_b , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , TACHO_b , IRQ_IN_b , R ) ;
LAN966X_P ( 53 , GPIO , FC3_b , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , NONE , IRQ_IN_b , R ) ;
LAN966X_P ( 54 , GPIO , FC_SHRD8 , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , TWI_SLC_GATE , IRQ_IN_b , R ) ;
LAN966X_P ( 55 , GPIO , FC_SHRD9 , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , TWI_SLC_GATE , IRQ_IN_b , R ) ;
LAN966X_P ( 56 , GPIO , FC4_b , OB_TRG_b , IB_TRG_c , IRQ_OUT_b , FC_SHRD10 , IRQ_IN_b , R ) ;
LAN966X_P ( 57 , GPIO , FC4_b , TWI_SLC_GATE , IB_TRG_c , IRQ_OUT_b , FC_SHRD11 , IRQ_IN_b , R ) ;
LAN966X_P ( 58 , GPIO , FC4_b , TWI_SLC_GATE , IB_TRG_c , IRQ_OUT_b , FC_SHRD12 , IRQ_IN_b , R ) ;
LAN966X_P ( 59 , GPIO , QSPI1 , MIIM_c , NONE , NONE , MIIM_Sb , NONE , R ) ;
LAN966X_P ( 60 , GPIO , QSPI1 , MIIM_c , NONE , NONE , MIIM_Sb , NONE , R ) ;
LAN966X_P ( 61 , GPIO , QSPI1 , NONE , SGPIO_b , FC0_c , MIIM_Sb , NONE , R ) ;
LAN966X_P ( 62 , GPIO , QSPI1 , FC_SHRD13 , SGPIO_b , FC0_c , TWI_SLC_GATE , SFP_SD , R ) ;
LAN966X_P ( 63 , GPIO , QSPI1 , FC_SHRD14 , SGPIO_b , FC0_c , TWI_SLC_GATE , SFP_SD , R ) ;
LAN966X_P ( 64 , GPIO , QSPI1 , FC4_c , SGPIO_b , FC_SHRD15 , TWI_SLC_GATE , SFP_SD , R ) ;
LAN966X_P ( 65 , GPIO , USB_H_a , FC4_c , NONE , IRQ_OUT_c , TWI_SLC_GATE_AD , NONE , R ) ;
LAN966X_P ( 66 , GPIO , USB_H_a , FC4_c , USB_S_a , IRQ_OUT_c , IRQ_IN_c , NONE , R ) ;
LAN966X_P ( 67 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 68 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 69 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 70 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 71 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 72 , GPIO , EMMC_SD , NONE , QSPI2 , NONE , NONE , NONE , R ) ;
LAN966X_P ( 73 , GPIO , EMMC , NONE , NONE , SD , NONE , NONE , R ) ;
LAN966X_P ( 74 , GPIO , EMMC , NONE , FC_SHRD17 , SD , TWI_SLC_GATE , NONE , R ) ;
LAN966X_P ( 75 , GPIO , EMMC , NONE , FC_SHRD18 , SD , TWI_SLC_GATE , NONE , R ) ;
LAN966X_P ( 76 , GPIO , EMMC , NONE , FC_SHRD19 , SD , TWI_SLC_GATE , NONE , R ) ;
LAN966X_P ( 77 , GPIO , EMMC_SD , NONE , FC_SHRD20 , NONE , TWI_SLC_GATE , NONE , R ) ;
# define LAN966X_PIN(n) { \
. number = n , \
. name = " GPIO_ " # n , \
. drv_data = & lan966x_pin_ # # n \
}
static const struct pinctrl_pin_desc lan966x_pins [ ] = {
LAN966X_PIN ( 0 ) ,
LAN966X_PIN ( 1 ) ,
LAN966X_PIN ( 2 ) ,
LAN966X_PIN ( 3 ) ,
LAN966X_PIN ( 4 ) ,
LAN966X_PIN ( 5 ) ,
LAN966X_PIN ( 6 ) ,
LAN966X_PIN ( 7 ) ,
LAN966X_PIN ( 8 ) ,
LAN966X_PIN ( 9 ) ,
LAN966X_PIN ( 10 ) ,
LAN966X_PIN ( 11 ) ,
LAN966X_PIN ( 12 ) ,
LAN966X_PIN ( 13 ) ,
LAN966X_PIN ( 14 ) ,
LAN966X_PIN ( 15 ) ,
LAN966X_PIN ( 16 ) ,
LAN966X_PIN ( 17 ) ,
LAN966X_PIN ( 18 ) ,
LAN966X_PIN ( 19 ) ,
LAN966X_PIN ( 20 ) ,
LAN966X_PIN ( 21 ) ,
LAN966X_PIN ( 22 ) ,
LAN966X_PIN ( 23 ) ,
LAN966X_PIN ( 24 ) ,
LAN966X_PIN ( 25 ) ,
LAN966X_PIN ( 26 ) ,
LAN966X_PIN ( 27 ) ,
LAN966X_PIN ( 28 ) ,
LAN966X_PIN ( 29 ) ,
LAN966X_PIN ( 30 ) ,
LAN966X_PIN ( 31 ) ,
LAN966X_PIN ( 32 ) ,
LAN966X_PIN ( 33 ) ,
LAN966X_PIN ( 34 ) ,
LAN966X_PIN ( 35 ) ,
LAN966X_PIN ( 36 ) ,
LAN966X_PIN ( 37 ) ,
LAN966X_PIN ( 38 ) ,
LAN966X_PIN ( 39 ) ,
LAN966X_PIN ( 40 ) ,
LAN966X_PIN ( 41 ) ,
LAN966X_PIN ( 42 ) ,
LAN966X_PIN ( 43 ) ,
LAN966X_PIN ( 44 ) ,
LAN966X_PIN ( 45 ) ,
LAN966X_PIN ( 46 ) ,
LAN966X_PIN ( 47 ) ,
LAN966X_PIN ( 48 ) ,
LAN966X_PIN ( 49 ) ,
LAN966X_PIN ( 50 ) ,
LAN966X_PIN ( 51 ) ,
LAN966X_PIN ( 52 ) ,
LAN966X_PIN ( 53 ) ,
LAN966X_PIN ( 54 ) ,
LAN966X_PIN ( 55 ) ,
LAN966X_PIN ( 56 ) ,
LAN966X_PIN ( 57 ) ,
LAN966X_PIN ( 58 ) ,
LAN966X_PIN ( 59 ) ,
LAN966X_PIN ( 60 ) ,
LAN966X_PIN ( 61 ) ,
LAN966X_PIN ( 62 ) ,
LAN966X_PIN ( 63 ) ,
LAN966X_PIN ( 64 ) ,
LAN966X_PIN ( 65 ) ,
LAN966X_PIN ( 66 ) ,
LAN966X_PIN ( 67 ) ,
LAN966X_PIN ( 68 ) ,
LAN966X_PIN ( 69 ) ,
LAN966X_PIN ( 70 ) ,
LAN966X_PIN ( 71 ) ,
LAN966X_PIN ( 72 ) ,
LAN966X_PIN ( 73 ) ,
LAN966X_PIN ( 74 ) ,
LAN966X_PIN ( 75 ) ,
LAN966X_PIN ( 76 ) ,
LAN966X_PIN ( 77 ) ,
} ;
2018-01-06 01:09:26 +01:00
static int ocelot_get_functions_count ( struct pinctrl_dev * pctldev )
{
return ARRAY_SIZE ( ocelot_function_names ) ;
}
static const char * ocelot_get_function_name ( struct pinctrl_dev * pctldev ,
unsigned int function )
{
return ocelot_function_names [ function ] ;
}
static int ocelot_get_function_groups ( struct pinctrl_dev * pctldev ,
unsigned int function ,
const char * const * * groups ,
unsigned * const num_groups )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
* groups = info - > func [ function ] . groups ;
* num_groups = info - > func [ function ] . ngroups ;
return 0 ;
}
2018-12-20 15:44:31 +01:00
static int ocelot_pin_function_idx ( struct ocelot_pinctrl * info ,
unsigned int pin , unsigned int function )
2018-01-06 01:09:26 +01:00
{
2018-12-20 15:44:31 +01:00
struct ocelot_pin_caps * p = info - > desc - > pins [ pin ] . drv_data ;
2018-01-06 01:09:26 +01:00
int i ;
for ( i = 0 ; i < OCELOT_FUNC_PER_PIN ; i + + ) {
if ( function = = p - > functions [ i ] )
return i ;
2021-11-18 16:55:48 +05:30
if ( function = = p - > a_functions [ i ] )
return i + OCELOT_FUNC_PER_PIN ;
2018-01-06 01:09:26 +01:00
}
return - 1 ;
}
2019-06-20 20:30:37 +02:00
# define REG_ALT(msb, info, p) (OCELOT_GPIO_ALT0 * (info)->stride + 4 * ((msb) + ((info)->stride * ((p) / 32))))
2018-12-20 15:44:31 +01:00
2018-01-06 01:09:26 +01:00
static int ocelot_pinmux_set_mux ( struct pinctrl_dev * pctldev ,
unsigned int selector , unsigned int group )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
2018-12-20 15:44:31 +01:00
struct ocelot_pin_caps * pin = info - > desc - > pins [ group ] . drv_data ;
unsigned int p = pin - > pin % 32 ;
2018-01-06 01:09:26 +01:00
int f ;
2018-12-20 15:44:31 +01:00
f = ocelot_pin_function_idx ( info , group , selector ) ;
2018-01-06 01:09:26 +01:00
if ( f < 0 )
return - EINVAL ;
/*
* f is encoded on two bits .
2019-06-20 20:30:37 +02:00
* bit 0 of f goes in BIT ( pin ) of ALT [ 0 ] , bit 1 of f goes in BIT ( pin ) of
* ALT [ 1 ]
2018-01-06 01:09:26 +01:00
* This is racy because both registers can ' t be updated at the same time
* but it doesn ' t matter much for now .
2020-06-15 15:32:37 +02:00
* Note : ALT0 / ALT1 are organized specially for 64 gpio targets
2018-01-06 01:09:26 +01:00
*/
2019-06-20 20:30:37 +02:00
regmap_update_bits ( info - > map , REG_ALT ( 0 , info , pin - > pin ) ,
2018-12-20 15:44:31 +01:00
BIT ( p ) , f < < p ) ;
2019-06-20 20:30:37 +02:00
regmap_update_bits ( info - > map , REG_ALT ( 1 , info , pin - > pin ) ,
2023-02-06 21:37:20 +01:00
BIT ( p ) , ( f > > 1 ) < < p ) ;
2018-01-06 01:09:26 +01:00
return 0 ;
}
2021-11-18 16:55:48 +05:30
static int lan966x_pinmux_set_mux ( struct pinctrl_dev * pctldev ,
unsigned int selector , unsigned int group )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
struct ocelot_pin_caps * pin = info - > desc - > pins [ group ] . drv_data ;
unsigned int p = pin - > pin % 32 ;
int f ;
f = ocelot_pin_function_idx ( info , group , selector ) ;
if ( f < 0 )
return - EINVAL ;
/*
* f is encoded on three bits .
* bit 0 of f goes in BIT ( pin ) of ALT [ 0 ] , bit 1 of f goes in BIT ( pin ) of
* ALT [ 1 ] , bit 2 of f goes in BIT ( pin ) of ALT [ 2 ]
* This is racy because three registers can ' t be updated at the same time
* but it doesn ' t matter much for now .
* Note : ALT0 / ALT1 / ALT2 are organized specially for 78 gpio targets
*/
regmap_update_bits ( info - > map , REG_ALT ( 0 , info , pin - > pin ) ,
BIT ( p ) , f < < p ) ;
regmap_update_bits ( info - > map , REG_ALT ( 1 , info , pin - > pin ) ,
BIT ( p ) , ( f > > 1 ) < < p ) ;
regmap_update_bits ( info - > map , REG_ALT ( 2 , info , pin - > pin ) ,
BIT ( p ) , ( f > > 2 ) < < p ) ;
return 0 ;
}
2019-06-20 20:30:37 +02:00
# define REG(r, info, p) ((r) * (info)->stride + (4 * ((p) / 32)))
2018-01-06 01:09:26 +01:00
static int ocelot_gpio_set_direction ( struct pinctrl_dev * pctldev ,
struct pinctrl_gpio_range * range ,
unsigned int pin , bool input )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
2018-12-20 15:44:31 +01:00
unsigned int p = pin % 32 ;
2018-01-06 01:09:26 +01:00
2019-06-20 20:30:36 +02:00
regmap_update_bits ( info - > map , REG ( OCELOT_GPIO_OE , info , pin ) , BIT ( p ) ,
2018-12-20 15:44:31 +01:00
input ? 0 : BIT ( p ) ) ;
2018-01-06 01:09:26 +01:00
return 0 ;
}
static int ocelot_gpio_request_enable ( struct pinctrl_dev * pctldev ,
struct pinctrl_gpio_range * range ,
unsigned int offset )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
2018-12-20 15:44:31 +01:00
unsigned int p = offset % 32 ;
2018-01-06 01:09:26 +01:00
2019-06-20 20:30:37 +02:00
regmap_update_bits ( info - > map , REG_ALT ( 0 , info , offset ) ,
2018-12-20 15:44:31 +01:00
BIT ( p ) , 0 ) ;
2019-06-20 20:30:37 +02:00
regmap_update_bits ( info - > map , REG_ALT ( 1 , info , offset ) ,
2018-12-20 15:44:31 +01:00
BIT ( p ) , 0 ) ;
2018-01-06 01:09:26 +01:00
return 0 ;
}
2021-11-18 16:55:48 +05:30
static int lan966x_gpio_request_enable ( struct pinctrl_dev * pctldev ,
struct pinctrl_gpio_range * range ,
unsigned int offset )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
unsigned int p = offset % 32 ;
regmap_update_bits ( info - > map , REG_ALT ( 0 , info , offset ) ,
BIT ( p ) , 0 ) ;
regmap_update_bits ( info - > map , REG_ALT ( 1 , info , offset ) ,
BIT ( p ) , 0 ) ;
regmap_update_bits ( info - > map , REG_ALT ( 2 , info , offset ) ,
BIT ( p ) , 0 ) ;
return 0 ;
}
2018-01-06 01:09:26 +01:00
static const struct pinmux_ops ocelot_pmx_ops = {
. get_functions_count = ocelot_get_functions_count ,
. get_function_name = ocelot_get_function_name ,
. get_function_groups = ocelot_get_function_groups ,
. set_mux = ocelot_pinmux_set_mux ,
. gpio_set_direction = ocelot_gpio_set_direction ,
. gpio_request_enable = ocelot_gpio_request_enable ,
} ;
2021-11-18 16:55:48 +05:30
static const struct pinmux_ops lan966x_pmx_ops = {
. get_functions_count = ocelot_get_functions_count ,
. get_function_name = ocelot_get_function_name ,
. get_function_groups = ocelot_get_function_groups ,
. set_mux = lan966x_pinmux_set_mux ,
. gpio_set_direction = ocelot_gpio_set_direction ,
. gpio_request_enable = lan966x_gpio_request_enable ,
} ;
2018-01-06 01:09:26 +01:00
static int ocelot_pctl_get_groups_count ( struct pinctrl_dev * pctldev )
{
2018-12-20 15:44:31 +01:00
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
return info - > desc - > npins ;
2018-01-06 01:09:26 +01:00
}
static const char * ocelot_pctl_get_group_name ( struct pinctrl_dev * pctldev ,
unsigned int group )
{
2018-12-20 15:44:31 +01:00
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
return info - > desc - > pins [ group ] . name ;
2018-01-06 01:09:26 +01:00
}
static int ocelot_pctl_get_group_pins ( struct pinctrl_dev * pctldev ,
unsigned int group ,
const unsigned int * * pins ,
unsigned int * num_pins )
{
2018-12-20 15:44:31 +01:00
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
* pins = & info - > desc - > pins [ group ] . number ;
2018-01-06 01:09:26 +01:00
* num_pins = 1 ;
return 0 ;
}
2020-06-15 15:32:37 +02:00
static int ocelot_hw_get_value ( struct ocelot_pinctrl * info ,
unsigned int pin ,
unsigned int reg ,
int * val )
{
int ret = - EOPNOTSUPP ;
if ( info - > pincfg ) {
2022-07-13 21:37:49 +02:00
const struct ocelot_pincfg_data * opd = info - > pincfg_data ;
2021-11-19 11:59:27 -08:00
u32 regcfg ;
2022-07-13 21:37:50 +02:00
ret = regmap_read ( info - > pincfg ,
pin * regmap_get_reg_stride ( info - > pincfg ) ,
& regcfg ) ;
2021-11-19 11:59:27 -08:00
if ( ret )
return ret ;
2020-06-15 15:32:37 +02:00
ret = 0 ;
switch ( reg ) {
case PINCONF_BIAS :
2022-07-13 21:37:49 +02:00
* val = regcfg & ( opd - > pd_bit | opd - > pu_bit ) ;
2020-06-15 15:32:37 +02:00
break ;
case PINCONF_SCHMITT :
2022-07-13 21:37:49 +02:00
* val = regcfg & opd - > schmitt_bit ;
2020-06-15 15:32:37 +02:00
break ;
case PINCONF_DRIVE_STRENGTH :
2022-07-13 21:37:49 +02:00
* val = regcfg & opd - > drive_bits ;
2020-06-15 15:32:37 +02:00
break ;
default :
ret = - EOPNOTSUPP ;
break ;
}
}
return ret ;
}
2021-11-19 11:59:27 -08:00
static int ocelot_pincfg_clrsetbits ( struct ocelot_pinctrl * info , u32 regaddr ,
u32 clrbits , u32 setbits )
{
u32 val ;
int ret ;
2022-07-13 21:37:50 +02:00
ret = regmap_read ( info - > pincfg ,
regaddr * regmap_get_reg_stride ( info - > pincfg ) ,
& val ) ;
2021-11-19 11:59:27 -08:00
if ( ret )
return ret ;
val & = ~ clrbits ;
val | = setbits ;
2022-07-13 21:37:50 +02:00
ret = regmap_write ( info - > pincfg ,
regaddr * regmap_get_reg_stride ( info - > pincfg ) ,
val ) ;
2021-11-19 11:59:27 -08:00
return ret ;
}
2020-06-15 15:32:37 +02:00
static int ocelot_hw_set_value ( struct ocelot_pinctrl * info ,
unsigned int pin ,
unsigned int reg ,
int val )
{
int ret = - EOPNOTSUPP ;
if ( info - > pincfg ) {
2022-07-13 21:37:49 +02:00
const struct ocelot_pincfg_data * opd = info - > pincfg_data ;
2020-06-15 15:32:37 +02:00
ret = 0 ;
switch ( reg ) {
case PINCONF_BIAS :
2022-07-13 21:37:49 +02:00
ret = ocelot_pincfg_clrsetbits ( info , pin ,
opd - > pd_bit | opd - > pu_bit ,
2021-11-19 11:59:27 -08:00
val ) ;
2020-06-15 15:32:37 +02:00
break ;
case PINCONF_SCHMITT :
2022-07-13 21:37:49 +02:00
ret = ocelot_pincfg_clrsetbits ( info , pin ,
opd - > schmitt_bit ,
2021-11-19 11:59:27 -08:00
val ) ;
2020-06-15 15:32:37 +02:00
break ;
case PINCONF_DRIVE_STRENGTH :
if ( val < = 3 )
2021-11-19 11:59:27 -08:00
ret = ocelot_pincfg_clrsetbits ( info , pin ,
2022-07-13 21:37:49 +02:00
opd - > drive_bits ,
val ) ;
2020-06-15 15:32:37 +02:00
else
ret = - EINVAL ;
break ;
default :
ret = - EOPNOTSUPP ;
break ;
}
}
return ret ;
}
static int ocelot_pinconf_get ( struct pinctrl_dev * pctldev ,
unsigned int pin , unsigned long * config )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
u32 param = pinconf_to_config_param ( * config ) ;
int val , err ;
switch ( param ) {
case PIN_CONFIG_BIAS_DISABLE :
case PIN_CONFIG_BIAS_PULL_UP :
case PIN_CONFIG_BIAS_PULL_DOWN :
err = ocelot_hw_get_value ( info , pin , PINCONF_BIAS , & val ) ;
if ( err )
return err ;
if ( param = = PIN_CONFIG_BIAS_DISABLE )
2020-11-06 16:36:35 +08:00
val = ( val = = 0 ) ;
2020-06-15 15:32:37 +02:00
else if ( param = = PIN_CONFIG_BIAS_PULL_DOWN )
2022-07-13 21:37:49 +02:00
val = ! ! ( val & info - > pincfg_data - > pd_bit ) ;
2020-06-15 15:32:37 +02:00
else /* PIN_CONFIG_BIAS_PULL_UP */
2022-07-13 21:37:49 +02:00
val = ! ! ( val & info - > pincfg_data - > pu_bit ) ;
2020-06-15 15:32:37 +02:00
break ;
case PIN_CONFIG_INPUT_SCHMITT_ENABLE :
2022-07-13 21:37:49 +02:00
if ( ! info - > pincfg_data - > schmitt_bit )
return - EOPNOTSUPP ;
2020-06-15 15:32:37 +02:00
err = ocelot_hw_get_value ( info , pin , PINCONF_SCHMITT , & val ) ;
if ( err )
return err ;
2022-07-13 21:37:49 +02:00
val = ! ! ( val & info - > pincfg_data - > schmitt_bit ) ;
2020-06-15 15:32:37 +02:00
break ;
case PIN_CONFIG_DRIVE_STRENGTH :
err = ocelot_hw_get_value ( info , pin , PINCONF_DRIVE_STRENGTH ,
& val ) ;
if ( err )
return err ;
break ;
case PIN_CONFIG_OUTPUT :
err = regmap_read ( info - > map , REG ( OCELOT_GPIO_OUT , info , pin ) ,
& val ) ;
if ( err )
return err ;
val = ! ! ( val & BIT ( pin % 32 ) ) ;
break ;
case PIN_CONFIG_INPUT_ENABLE :
case PIN_CONFIG_OUTPUT_ENABLE :
err = regmap_read ( info - > map , REG ( OCELOT_GPIO_OE , info , pin ) ,
& val ) ;
if ( err )
return err ;
val = val & BIT ( pin % 32 ) ;
if ( param = = PIN_CONFIG_OUTPUT_ENABLE )
val = ! ! val ;
else
val = ! val ;
break ;
default :
return - EOPNOTSUPP ;
}
* config = pinconf_to_config_packed ( param , val ) ;
return 0 ;
}
static int ocelot_pinconf_set ( struct pinctrl_dev * pctldev , unsigned int pin ,
unsigned long * configs , unsigned int num_configs )
{
struct ocelot_pinctrl * info = pinctrl_dev_get_drvdata ( pctldev ) ;
2022-07-13 21:37:49 +02:00
const struct ocelot_pincfg_data * opd = info - > pincfg_data ;
2020-06-15 15:32:37 +02:00
u32 param , arg , p ;
int cfg , err = 0 ;
for ( cfg = 0 ; cfg < num_configs ; cfg + + ) {
param = pinconf_to_config_param ( configs [ cfg ] ) ;
arg = pinconf_to_config_argument ( configs [ cfg ] ) ;
switch ( param ) {
case PIN_CONFIG_BIAS_DISABLE :
case PIN_CONFIG_BIAS_PULL_UP :
case PIN_CONFIG_BIAS_PULL_DOWN :
arg = ( param = = PIN_CONFIG_BIAS_DISABLE ) ? 0 :
2022-07-13 21:37:49 +02:00
( param = = PIN_CONFIG_BIAS_PULL_UP ) ?
opd - > pu_bit : opd - > pd_bit ;
2020-06-15 15:32:37 +02:00
err = ocelot_hw_set_value ( info , pin , PINCONF_BIAS , arg ) ;
if ( err )
goto err ;
break ;
case PIN_CONFIG_INPUT_SCHMITT_ENABLE :
2022-07-13 21:37:49 +02:00
if ( ! opd - > schmitt_bit )
return - EOPNOTSUPP ;
arg = arg ? opd - > schmitt_bit : 0 ;
2020-06-15 15:32:37 +02:00
err = ocelot_hw_set_value ( info , pin , PINCONF_SCHMITT ,
arg ) ;
if ( err )
goto err ;
break ;
case PIN_CONFIG_DRIVE_STRENGTH :
err = ocelot_hw_set_value ( info , pin ,
PINCONF_DRIVE_STRENGTH ,
arg ) ;
if ( err )
goto err ;
break ;
case PIN_CONFIG_OUTPUT_ENABLE :
case PIN_CONFIG_INPUT_ENABLE :
case PIN_CONFIG_OUTPUT :
p = pin % 32 ;
if ( arg )
regmap_write ( info - > map ,
REG ( OCELOT_GPIO_OUT_SET , info ,
pin ) ,
BIT ( p ) ) ;
else
regmap_write ( info - > map ,
REG ( OCELOT_GPIO_OUT_CLR , info ,
pin ) ,
BIT ( p ) ) ;
regmap_update_bits ( info - > map ,
REG ( OCELOT_GPIO_OE , info , pin ) ,
BIT ( p ) ,
param = = PIN_CONFIG_INPUT_ENABLE ?
0 : BIT ( p ) ) ;
break ;
default :
err = - EOPNOTSUPP ;
}
}
err :
return err ;
}
static const struct pinconf_ops ocelot_confops = {
. is_generic = true ,
. pin_config_get = ocelot_pinconf_get ,
. pin_config_set = ocelot_pinconf_set ,
. pin_config_config_dbg_show = pinconf_generic_dump_config ,
} ;
2018-01-06 01:09:26 +01:00
static const struct pinctrl_ops ocelot_pctl_ops = {
. get_groups_count = ocelot_pctl_get_groups_count ,
. get_group_name = ocelot_pctl_get_group_name ,
. get_group_pins = ocelot_pctl_get_group_pins ,
. dt_node_to_map = pinconf_generic_dt_node_to_map_pin ,
. dt_free_map = pinconf_generic_dt_free_map ,
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data luton_desc = {
. desc = {
. name = " luton-pinctrl " ,
. pins = luton_pins ,
. npins = ARRAY_SIZE ( luton_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. owner = THIS_MODULE ,
} ,
2020-11-06 10:31:17 +01:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data serval_desc = {
. desc = {
. name = " serval-pinctrl " ,
. pins = serval_pins ,
. npins = ARRAY_SIZE ( serval_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. owner = THIS_MODULE ,
} ,
2020-11-06 10:31:18 +01:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data ocelot_desc = {
. desc = {
. name = " ocelot-pinctrl " ,
. pins = ocelot_pins ,
. npins = ARRAY_SIZE ( ocelot_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. owner = THIS_MODULE ,
} ,
2018-01-06 01:09:26 +01:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data jaguar2_desc = {
. desc = {
. name = " jaguar2-pinctrl " ,
. pins = jaguar2_pins ,
. npins = ARRAY_SIZE ( jaguar2_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. owner = THIS_MODULE ,
} ,
2018-12-20 15:44:31 +01:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data servalt_desc = {
. desc = {
. name = " servalt-pinctrl " ,
. pins = servalt_pins ,
. npins = ARRAY_SIZE ( servalt_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. owner = THIS_MODULE ,
} ,
2022-01-25 14:18:58 +01:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data sparx5_desc = {
. desc = {
. name = " sparx5-pinctrl " ,
. pins = sparx5_pins ,
. npins = ARRAY_SIZE ( sparx5_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & ocelot_pmx_ops ,
. confops = & ocelot_confops ,
. owner = THIS_MODULE ,
} ,
. pincfg_data = {
. pd_bit = BIT ( 4 ) ,
. pu_bit = BIT ( 3 ) ,
. drive_bits = GENMASK ( 1 , 0 ) ,
. schmitt_bit = BIT ( 2 ) ,
} ,
2020-06-15 15:32:37 +02:00
} ;
2022-07-13 21:37:49 +02:00
static struct ocelot_match_data lan966x_desc = {
. desc = {
. name = " lan966x-pinctrl " ,
. pins = lan966x_pins ,
. npins = ARRAY_SIZE ( lan966x_pins ) ,
. pctlops = & ocelot_pctl_ops ,
. pmxops = & lan966x_pmx_ops ,
. confops = & ocelot_confops ,
. owner = THIS_MODULE ,
} ,
. pincfg_data = {
. pd_bit = BIT ( 3 ) ,
. pu_bit = BIT ( 2 ) ,
. drive_bits = GENMASK ( 1 , 0 ) ,
} ,
2021-11-18 16:55:48 +05:30
} ;
2018-01-06 01:09:26 +01:00
static int ocelot_create_group_func_map ( struct device * dev ,
struct ocelot_pinctrl * info )
{
int f , npins , i ;
2018-12-20 15:44:31 +01:00
u8 * pins = kcalloc ( info - > desc - > npins , sizeof ( u8 ) , GFP_KERNEL ) ;
if ( ! pins )
return - ENOMEM ;
2018-01-06 01:09:26 +01:00
for ( f = 0 ; f < FUNC_MAX ; f + + ) {
2018-12-20 15:44:31 +01:00
for ( npins = 0 , i = 0 ; i < info - > desc - > npins ; i + + ) {
if ( ocelot_pin_function_idx ( info , i , f ) > = 0 )
2018-01-06 01:09:26 +01:00
pins [ npins + + ] = i ;
}
2018-12-20 15:44:31 +01:00
if ( ! npins )
continue ;
2018-01-06 01:09:26 +01:00
info - > func [ f ] . ngroups = npins ;
2018-12-20 15:44:31 +01:00
info - > func [ f ] . groups = devm_kcalloc ( dev , npins , sizeof ( char * ) ,
GFP_KERNEL ) ;
if ( ! info - > func [ f ] . groups ) {
kfree ( pins ) ;
2018-01-06 01:09:26 +01:00
return - ENOMEM ;
2018-12-20 15:44:31 +01:00
}
2018-01-06 01:09:26 +01:00
for ( i = 0 ; i < npins ; i + + )
2020-06-15 15:32:37 +02:00
info - > func [ f ] . groups [ i ] =
info - > desc - > pins [ pins [ i ] ] . name ;
2018-01-06 01:09:26 +01:00
}
2018-12-20 15:44:31 +01:00
kfree ( pins ) ;
2018-01-06 01:09:26 +01:00
return 0 ;
}
static int ocelot_pinctrl_register ( struct platform_device * pdev ,
struct ocelot_pinctrl * info )
{
int ret ;
ret = ocelot_create_group_func_map ( & pdev - > dev , info ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " Unable to create group func map. \n " ) ;
return ret ;
}
2018-12-20 15:44:31 +01:00
info - > pctl = devm_pinctrl_register ( & pdev - > dev , info - > desc , info ) ;
2018-01-06 01:09:26 +01:00
if ( IS_ERR ( info - > pctl ) ) {
dev_err ( & pdev - > dev , " Failed to register pinctrl \n " ) ;
return PTR_ERR ( info - > pctl ) ;
}
return 0 ;
}
static int ocelot_gpio_get ( struct gpio_chip * chip , unsigned int offset )
{
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
unsigned int val ;
2018-12-20 15:44:31 +01:00
regmap_read ( info - > map , REG ( OCELOT_GPIO_IN , info , offset ) , & val ) ;
2018-01-06 01:09:26 +01:00
2018-12-20 15:44:31 +01:00
return ! ! ( val & BIT ( offset % 32 ) ) ;
2018-01-06 01:09:26 +01:00
}
static void ocelot_gpio_set ( struct gpio_chip * chip , unsigned int offset ,
int value )
{
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
if ( value )
2018-12-20 15:44:31 +01:00
regmap_write ( info - > map , REG ( OCELOT_GPIO_OUT_SET , info , offset ) ,
BIT ( offset % 32 ) ) ;
2018-01-06 01:09:26 +01:00
else
2018-12-20 15:44:31 +01:00
regmap_write ( info - > map , REG ( OCELOT_GPIO_OUT_CLR , info , offset ) ,
BIT ( offset % 32 ) ) ;
2018-01-06 01:09:26 +01:00
}
static int ocelot_gpio_get_direction ( struct gpio_chip * chip ,
unsigned int offset )
{
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
unsigned int val ;
2018-12-20 15:44:31 +01:00
regmap_read ( info - > map , REG ( OCELOT_GPIO_OE , info , offset ) , & val ) ;
2018-01-06 01:09:26 +01:00
2020-02-14 15:57:12 +02:00
if ( val & BIT ( offset % 32 ) )
return GPIO_LINE_DIRECTION_OUT ;
return GPIO_LINE_DIRECTION_IN ;
2018-01-06 01:09:26 +01:00
}
static int ocelot_gpio_direction_input ( struct gpio_chip * chip ,
unsigned int offset )
{
return pinctrl_gpio_direction_input ( chip - > base + offset ) ;
}
static int ocelot_gpio_direction_output ( struct gpio_chip * chip ,
unsigned int offset , int value )
{
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
2018-12-20 15:44:31 +01:00
unsigned int pin = BIT ( offset % 32 ) ;
2018-01-06 01:09:26 +01:00
if ( value )
2018-12-20 15:44:31 +01:00
regmap_write ( info - > map , REG ( OCELOT_GPIO_OUT_SET , info , offset ) ,
pin ) ;
2018-01-06 01:09:26 +01:00
else
2018-12-20 15:44:31 +01:00
regmap_write ( info - > map , REG ( OCELOT_GPIO_OUT_CLR , info , offset ) ,
pin ) ;
2018-01-06 01:09:26 +01:00
return pinctrl_gpio_direction_output ( chip - > base + offset ) ;
}
static const struct gpio_chip ocelot_gpiolib_chip = {
. request = gpiochip_generic_request ,
. free = gpiochip_generic_free ,
. set = ocelot_gpio_set ,
. get = ocelot_gpio_get ,
. get_direction = ocelot_gpio_get_direction ,
. direction_input = ocelot_gpio_direction_input ,
. direction_output = ocelot_gpio_direction_output ,
. owner = THIS_MODULE ,
} ;
2018-07-25 14:26:21 +02:00
static void ocelot_irq_mask ( struct irq_data * data )
{
struct gpio_chip * chip = irq_data_get_irq_chip_data ( data ) ;
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
unsigned int gpio = irqd_to_hwirq ( data ) ;
2018-12-20 15:44:31 +01:00
regmap_update_bits ( info - > map , REG ( OCELOT_GPIO_INTR_ENA , info , gpio ) ,
BIT ( gpio % 32 ) , 0 ) ;
2022-07-06 17:15:53 +02:00
gpiochip_disable_irq ( chip , gpio ) ;
2018-07-25 14:26:21 +02:00
}
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
static void ocelot_irq_work ( struct work_struct * work )
{
struct ocelot_irq_work * w = container_of ( work , struct ocelot_irq_work , irq_work ) ;
struct irq_chip * parent_chip = irq_desc_get_chip ( w - > irq_desc ) ;
struct gpio_chip * chip = irq_desc_get_chip_data ( w - > irq_desc ) ;
struct irq_data * data = irq_desc_get_irq_data ( w - > irq_desc ) ;
unsigned int gpio = irqd_to_hwirq ( data ) ;
local_irq_disable ( ) ;
chained_irq_enter ( parent_chip , w - > irq_desc ) ;
generic_handle_domain_irq ( chip - > irq . domain , gpio ) ;
chained_irq_exit ( parent_chip , w - > irq_desc ) ;
local_irq_enable ( ) ;
kfree ( w ) ;
}
static void ocelot_irq_unmask_level ( struct irq_data * data )
{
struct gpio_chip * chip = irq_data_get_irq_chip_data ( data ) ;
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
struct irq_desc * desc = irq_data_to_desc ( data ) ;
unsigned int gpio = irqd_to_hwirq ( data ) ;
unsigned int bit = BIT ( gpio % 32 ) ;
bool ack = false , active = false ;
u8 trigger_level ;
int val ;
trigger_level = irqd_get_trigger_type ( data ) ;
/* Check if the interrupt line is still active. */
regmap_read ( info - > map , REG ( OCELOT_GPIO_IN , info , gpio ) , & val ) ;
if ( ( ! ( val & bit ) & & trigger_level = = IRQ_TYPE_LEVEL_LOW ) | |
( val & bit & & trigger_level = = IRQ_TYPE_LEVEL_HIGH ) )
active = true ;
/*
* Check if the interrupt controller has seen any changes in the
* interrupt line .
*/
regmap_read ( info - > map , REG ( OCELOT_GPIO_INTR , info , gpio ) , & val ) ;
if ( val & bit )
ack = true ;
2022-10-18 09:09:59 +02:00
/* Try to clear any rising edges */
if ( ! active & & ack )
regmap_write_bits ( info - > map , REG ( OCELOT_GPIO_INTR , info , gpio ) ,
bit , bit ) ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
/* Enable the interrupt now */
gpiochip_enable_irq ( chip , gpio ) ;
regmap_update_bits ( info - > map , REG ( OCELOT_GPIO_INTR_ENA , info , gpio ) ,
bit , bit ) ;
/*
2022-10-18 09:09:59 +02:00
* In case the interrupt line is still active then it means that
* there happen another interrupt while the line was active .
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
* So we missed that one , so we need to kick the interrupt again
* handler .
*/
2022-10-18 09:09:59 +02:00
regmap_read ( info - > map , REG ( OCELOT_GPIO_IN , info , gpio ) , & val ) ;
if ( ( ! ( val & bit ) & & trigger_level = = IRQ_TYPE_LEVEL_LOW ) | |
( val & bit & & trigger_level = = IRQ_TYPE_LEVEL_HIGH ) )
active = true ;
if ( active ) {
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
struct ocelot_irq_work * work ;
work = kmalloc ( sizeof ( * work ) , GFP_ATOMIC ) ;
if ( ! work )
return ;
work - > irq_desc = desc ;
INIT_WORK ( & work - > irq_work , ocelot_irq_work ) ;
queue_work ( info - > wq , & work - > irq_work ) ;
}
}
2018-07-25 14:26:21 +02:00
static void ocelot_irq_unmask ( struct irq_data * data )
{
struct gpio_chip * chip = irq_data_get_irq_chip_data ( data ) ;
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
unsigned int gpio = irqd_to_hwirq ( data ) ;
2022-07-06 17:15:53 +02:00
gpiochip_enable_irq ( chip , gpio ) ;
2018-12-20 15:44:31 +01:00
regmap_update_bits ( info - > map , REG ( OCELOT_GPIO_INTR_ENA , info , gpio ) ,
BIT ( gpio % 32 ) , BIT ( gpio % 32 ) ) ;
2018-07-25 14:26:21 +02:00
}
static void ocelot_irq_ack ( struct irq_data * data )
{
struct gpio_chip * chip = irq_data_get_irq_chip_data ( data ) ;
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
unsigned int gpio = irqd_to_hwirq ( data ) ;
2018-12-20 15:44:31 +01:00
regmap_write_bits ( info - > map , REG ( OCELOT_GPIO_INTR , info , gpio ) ,
BIT ( gpio % 32 ) , BIT ( gpio % 32 ) ) ;
2018-07-25 14:26:21 +02:00
}
static int ocelot_irq_set_type ( struct irq_data * data , unsigned int type ) ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
static struct irq_chip ocelot_level_irqchip = {
2018-07-25 14:26:21 +02:00
. name = " gpio " ,
. irq_mask = ocelot_irq_mask ,
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
. irq_ack = ocelot_irq_ack ,
. irq_unmask = ocelot_irq_unmask_level ,
. flags = IRQCHIP_IMMUTABLE ,
2018-07-25 14:26:21 +02:00
. irq_set_type = ocelot_irq_set_type ,
2022-07-06 17:15:53 +02:00
GPIOCHIP_IRQ_RESOURCE_HELPERS
2018-07-25 14:26:21 +02:00
} ;
static struct irq_chip ocelot_irqchip = {
. name = " gpio " ,
. irq_mask = ocelot_irq_mask ,
. irq_ack = ocelot_irq_ack ,
. irq_unmask = ocelot_irq_unmask ,
. irq_set_type = ocelot_irq_set_type ,
2022-07-06 17:15:53 +02:00
. flags = IRQCHIP_IMMUTABLE ,
GPIOCHIP_IRQ_RESOURCE_HELPERS
2018-07-25 14:26:21 +02:00
} ;
static int ocelot_irq_set_type ( struct irq_data * data , unsigned int type )
{
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
if ( type & ( IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW ) )
irq_set_chip_handler_name_locked ( data , & ocelot_level_irqchip ,
handle_level_irq , NULL ) ;
2018-07-25 14:26:21 +02:00
if ( type & IRQ_TYPE_EDGE_BOTH )
irq_set_chip_handler_name_locked ( data , & ocelot_irqchip ,
handle_edge_irq , NULL ) ;
return 0 ;
}
static void ocelot_irq_handler ( struct irq_desc * desc )
{
struct irq_chip * parent_chip = irq_desc_get_chip ( desc ) ;
struct gpio_chip * chip = irq_desc_get_handler_data ( desc ) ;
struct ocelot_pinctrl * info = gpiochip_get_data ( chip ) ;
2020-05-13 14:55:21 +02:00
unsigned int id_reg = OCELOT_GPIO_INTR_IDENT * info - > stride ;
2018-12-20 15:44:31 +01:00
unsigned int reg = 0 , irq , i ;
2018-07-25 14:26:21 +02:00
unsigned long irqs ;
2018-12-20 15:44:31 +01:00
for ( i = 0 ; i < info - > stride ; i + + ) {
2020-05-13 14:55:21 +02:00
regmap_read ( info - > map , id_reg + 4 * i , & reg ) ;
2018-12-20 15:44:31 +01:00
if ( ! reg )
continue ;
2018-07-25 14:26:21 +02:00
2018-12-20 15:44:31 +01:00
chained_irq_enter ( parent_chip , desc ) ;
2018-07-25 14:26:21 +02:00
2018-12-20 15:44:31 +01:00
irqs = reg ;
2018-07-25 14:26:21 +02:00
2018-12-20 15:44:31 +01:00
for_each_set_bit ( irq , & irqs ,
min ( 32U , info - > desc - > npins - 32 * i ) )
2021-05-04 17:42:18 +01:00
generic_handle_domain_irq ( chip - > irq . domain , irq + 32 * i ) ;
2018-07-25 14:26:21 +02:00
2018-12-20 15:44:31 +01:00
chained_irq_exit ( parent_chip , desc ) ;
}
2018-07-25 14:26:21 +02:00
}
2018-01-06 01:09:26 +01:00
static int ocelot_gpiochip_register ( struct platform_device * pdev ,
struct ocelot_pinctrl * info )
{
struct gpio_chip * gc ;
2019-10-02 13:44:54 +02:00
struct gpio_irq_chip * girq ;
2020-09-21 21:10:57 +08:00
int irq ;
2018-01-06 01:09:26 +01:00
info - > gpio_chip = ocelot_gpiolib_chip ;
gc = & info - > gpio_chip ;
2018-12-20 15:44:31 +01:00
gc - > ngpio = info - > desc - > npins ;
2018-01-06 01:09:26 +01:00
gc - > parent = & pdev - > dev ;
2021-11-19 11:59:26 -08:00
gc - > base = - 1 ;
2018-01-06 01:09:26 +01:00
gc - > label = " ocelot-gpio " ;
2022-03-04 15:44:32 +01:00
irq = platform_get_irq_optional ( pdev , 0 ) ;
if ( irq > 0 ) {
2020-05-13 14:55:19 +02:00
girq = & gc - > irq ;
2022-07-06 17:15:53 +02:00
gpio_irq_chip_set_chip ( girq , & ocelot_irqchip ) ;
2020-05-13 14:55:19 +02:00
girq - > parent_handler = ocelot_irq_handler ;
girq - > num_parents = 1 ;
girq - > parents = devm_kcalloc ( & pdev - > dev , 1 ,
sizeof ( * girq - > parents ) ,
GFP_KERNEL ) ;
if ( ! girq - > parents )
return - ENOMEM ;
girq - > parents [ 0 ] = irq ;
girq - > default_type = IRQ_TYPE_NONE ;
girq - > handler = handle_edge_irq ;
}
2019-10-02 13:44:54 +02:00
2020-09-21 21:10:57 +08:00
return devm_gpiochip_add_data ( & pdev - > dev , gc , info ) ;
2018-01-06 01:09:26 +01:00
}
static const struct of_device_id ocelot_pinctrl_of_match [ ] = {
2020-11-06 10:31:17 +01:00
{ . compatible = " mscc,luton-pinctrl " , . data = & luton_desc } ,
2020-11-06 10:31:18 +01:00
{ . compatible = " mscc,serval-pinctrl " , . data = & serval_desc } ,
2018-12-20 15:44:31 +01:00
{ . compatible = " mscc,ocelot-pinctrl " , . data = & ocelot_desc } ,
{ . compatible = " mscc,jaguar2-pinctrl " , . data = & jaguar2_desc } ,
2022-01-25 14:18:58 +01:00
{ . compatible = " mscc,servalt-pinctrl " , . data = & servalt_desc } ,
2020-06-15 15:32:37 +02:00
{ . compatible = " microchip,sparx5-pinctrl " , . data = & sparx5_desc } ,
2021-11-18 16:55:48 +05:30
{ . compatible = " microchip,lan966x-pinctrl " , . data = & lan966x_desc } ,
2018-01-06 01:09:26 +01:00
{ } ,
} ;
2022-06-17 12:35:48 +02:00
MODULE_DEVICE_TABLE ( of , ocelot_pinctrl_of_match ) ;
2018-01-06 01:09:26 +01:00
2022-07-13 21:37:50 +02:00
static struct regmap * ocelot_pinctrl_create_pincfg ( struct platform_device * pdev ,
const struct ocelot_pinctrl * info )
2021-11-19 11:59:27 -08:00
{
void __iomem * base ;
const struct regmap_config regmap_config = {
. reg_bits = 32 ,
. val_bits = 32 ,
. reg_stride = 4 ,
2022-07-13 21:37:50 +02:00
. max_register = info - > desc - > npins * 4 ,
2022-02-16 13:27:27 +01:00
. name = " pincfg " ,
2021-11-19 11:59:27 -08:00
} ;
2022-02-16 09:20:20 +01:00
base = devm_platform_ioremap_resource ( pdev , 1 ) ;
2021-11-19 11:59:27 -08:00
if ( IS_ERR ( base ) ) {
dev_dbg ( & pdev - > dev , " Failed to ioremap config registers (no extended pinconf) \n " ) ;
return NULL ;
}
return devm_regmap_init_mmio ( & pdev - > dev , base , & regmap_config ) ;
}
2022-09-25 10:12:58 +08:00
static void ocelot_destroy_workqueue ( void * data )
{
destroy_workqueue ( data ) ;
}
2018-02-08 14:24:37 +00:00
static int ocelot_pinctrl_probe ( struct platform_device * pdev )
2018-01-06 01:09:26 +01:00
{
2022-07-13 21:37:49 +02:00
const struct ocelot_match_data * data ;
2018-01-06 01:09:26 +01:00
struct device * dev = & pdev - > dev ;
struct ocelot_pinctrl * info ;
2022-04-20 21:19:26 +02:00
struct reset_control * reset ;
2021-11-19 11:59:27 -08:00
struct regmap * pincfg ;
2018-01-06 01:09:26 +01:00
int ret ;
2018-12-20 15:44:31 +01:00
struct regmap_config regmap_config = {
. reg_bits = 32 ,
. val_bits = 32 ,
. reg_stride = 4 ,
} ;
2018-01-06 01:09:26 +01:00
info = devm_kzalloc ( dev , sizeof ( * info ) , GFP_KERNEL ) ;
if ( ! info )
return - ENOMEM ;
2022-07-13 21:37:49 +02:00
data = device_get_match_data ( dev ) ;
if ( ! data )
return - EINVAL ;
info - > desc = devm_kmemdup ( dev , & data - > desc , sizeof ( * info - > desc ) ,
GFP_KERNEL ) ;
if ( ! info - > desc )
return - ENOMEM ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
info - > wq = alloc_ordered_workqueue ( " ocelot_ordered " , 0 ) ;
if ( ! info - > wq )
return - ENOMEM ;
2022-09-25 10:12:58 +08:00
ret = devm_add_action_or_reset ( dev , ocelot_destroy_workqueue ,
info - > wq ) ;
if ( ret )
return ret ;
2022-07-13 21:37:49 +02:00
info - > pincfg_data = & data - > pincfg_data ;
2018-12-20 15:44:31 +01:00
2022-04-20 21:19:26 +02:00
reset = devm_reset_control_get_optional_shared ( dev , " switch " ) ;
if ( IS_ERR ( reset ) )
return dev_err_probe ( dev , PTR_ERR ( reset ) ,
" Failed to get reset \n " ) ;
reset_control_reset ( reset ) ;
2018-12-20 15:44:31 +01:00
info - > stride = 1 + ( info - > desc - > npins - 1 ) / 32 ;
2020-06-15 15:32:37 +02:00
2018-12-20 15:44:31 +01:00
regmap_config . max_register = OCELOT_GPIO_SD_MAP * info - > stride + 15 * 4 ;
2022-09-05 09:21:27 -07:00
info - > map = ocelot_regmap_from_resource ( pdev , 0 , & regmap_config ) ;
if ( IS_ERR ( info - > map ) )
return dev_err_probe ( dev , PTR_ERR ( info - > map ) ,
" Failed to create regmap \n " ) ;
pinctrl: ocelot: Fix interrupt controller
When an external device generated a level based interrupt then the
interrupt controller could miss the interrupt. The reason is that the
interrupt controller can detect only link changes.
In the following example, if there is a PHY that generates an interrupt
then the following would happen. The GPIO detected that the interrupt
line changed, and then the 'ocelot_irq_handler' was called. Here it
detects which GPIO line saw the change and for that will call the
following:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
And this works fine for simple cases, but if the PHY generates many
interrupts, for example when doing PTP timestamping, then the following
could happen. Again the function 'ocelot_irq_handler' will be called
and then from here the following could happen:
1. irq_mask
2. phy interrupt routine
3. irq_eoi
4. irq_unmask
Right before step 3(irq_eoi), the PHY will generate another interrupt.
Now the interrupt controller will acknowledge the change in the
interrupt line. So we miss the interrupt.
A solution will be to use 'handle_level_irq' instead of
'handle_fasteoi_irq', because for this will change routine order of
handling the interrupt.
1. irq_mask
2. irq_ack
3. phy interrupt routine
4. irq_unmask
And now if the PHY will generate a new interrupt before irq_unmask, the
interrupt controller will detect this because it already acknowledge the
change in interrupt line at step 2(irq_ack).
But this is not the full solution because there is another issue. In
case there are 2 PHYs that share the interrupt line. For example phy1
generates an interrupt, then the following can happen:
1.irq_mask
2.irq_ack
3.phy0 interrupt routine
4.phy1 interrupt routine
5.irq_unmask
In case phy0 will generate an interrupt while clearing the interrupt
source in phy1, then the interrupt line will be kept down by phy0. So
the interrupt controller will not see any changes in the interrupt line.
The solution here is to update 'irq_unmask' such that it can detect if
the interrupt line is still active or not. And if it is active then call
again the procedure to clear the interrupts. But we don't want to do it
every time, only if we know that the interrupt controller has not seen
already that the interrupt line has changed.
While at this, add support also for IRQ_TYPE_LEVEL_LOW.
Fixes: be36abb71d878f ("pinctrl: ocelot: add support for interrupt controller")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20220909145942.844102-1-horatiu.vultur@microchip.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2022-09-09 16:59:42 +02:00
dev_set_drvdata ( dev , info ) ;
2018-01-06 01:09:26 +01:00
info - > dev = dev ;
2020-06-15 15:32:37 +02:00
/* Pinconf registers */
if ( info - > desc - > confops ) {
2022-07-13 21:37:50 +02:00
pincfg = ocelot_pinctrl_create_pincfg ( pdev , info ) ;
2021-11-19 11:59:27 -08:00
if ( IS_ERR ( pincfg ) )
dev_dbg ( dev , " Failed to create pincfg regmap \n " ) ;
2020-06-15 15:32:37 +02:00
else
2021-11-19 11:59:27 -08:00
info - > pincfg = pincfg ;
2020-06-15 15:32:37 +02:00
}
2018-01-06 01:09:26 +01:00
ret = ocelot_pinctrl_register ( pdev , info ) ;
if ( ret )
return ret ;
ret = ocelot_gpiochip_register ( pdev , info ) ;
if ( ret )
return ret ;
2020-06-15 15:32:37 +02:00
dev_info ( dev , " driver registered \n " ) ;
2018-01-06 01:09:26 +01:00
return 0 ;
}
static struct platform_driver ocelot_pinctrl_driver = {
. driver = {
. name = " pinctrl-ocelot " ,
. of_match_table = of_match_ptr ( ocelot_pinctrl_of_match ) ,
. suppress_bind_attrs = true ,
} ,
. probe = ocelot_pinctrl_probe ,
} ;
2022-06-17 12:35:48 +02:00
module_platform_driver ( ocelot_pinctrl_driver ) ;
2022-09-09 08:38:02 -07:00
MODULE_DESCRIPTION ( " Ocelot Chip Pinctrl Driver " ) ;
2022-06-17 12:35:48 +02:00
MODULE_LICENSE ( " Dual MIT/GPL " ) ;