linux/drivers/net/skge.c

3747 lines
96 KiB
C
Raw Normal View History

/*
* New driver for Marvell Yukon chipset and SysKonnect Gigabit
* Ethernet adapters. Based on earlier sk98lin, e100 and
* FreeBSD if_sk drivers.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <asm/irq.h>
#include "skge.h"
#define DRV_NAME "skge"
#define DRV_VERSION "1.9"
#define PFX DRV_NAME " "
#define DEFAULT_TX_RING_SIZE 128
#define DEFAULT_RX_RING_SIZE 512
#define MAX_TX_RING_SIZE 1024
#define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
#define MAX_RX_RING_SIZE 4096
#define RX_COPY_THRESHOLD 128
#define RX_BUF_SIZE 1536
#define PHY_RETRIES 1000
#define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define BLINK_MS 250
#define LINK_HZ (HZ/2)
MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg
= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
| NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static const struct pci_device_id skge_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);
static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_phy_reset(struct skge_port *skge);
static void skge_tx_clean(struct net_device *dev);
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);
/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
static int skge_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of whole control register region
* Note: skip RAM address register because accessing it will
* cause bus hangs!
*/
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct skge_port *skge = netdev_priv(dev);
const void __iomem *io = skge->hw->regs;
regs->version = 1;
memset(p, 0, regs->len);
memcpy_fromio(p, io, B3_RAM_ADDR);
memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
regs->len - B3_RI_WTO_R1);
}
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
static int wol_supported(const struct skge_hw *hw)
{
return !((hw->chip_id == CHIP_ID_GENESIS ||
(hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
}
static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}
static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
return -EOPNOTSUPP;
if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
return -EOPNOTSUPP;
skge->wol = wol->wolopts == WAKE_MAGIC;
if (skge->wol) {
memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
skge_write16(hw, WOL_CTRL_STAT,
WOL_CTL_ENA_PME_ON_MAGIC_PKT |
WOL_CTL_ENA_MAGIC_PKT_UNIT);
} else
skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
return 0;
}
/* Determine supported/advertised modes based on hardware.
* Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
*/
static u32 skge_supported_modes(const struct skge_hw *hw)
{
u32 supported;
if (hw->copper) {
supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg| SUPPORTED_TP;
if (hw->chip_id == CHIP_ID_GENESIS)
supported &= ~(SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full);
else if (hw->chip_id == CHIP_ID_YUKON)
supported &= ~SUPPORTED_1000baseT_Half;
} else
supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
| SUPPORTED_FIBRE | SUPPORTED_Autoneg;
return supported;
}
static int skge_get_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = skge_supported_modes(hw);
if (hw->copper) {
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy_addr;
} else
ecmd->port = PORT_FIBRE;
ecmd->advertising = skge->advertising;
ecmd->autoneg = skge->autoneg;
ecmd->speed = skge->speed;
ecmd->duplex = skge->duplex;
return 0;
}
static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
const struct skge_hw *hw = skge->hw;
u32 supported = skge_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
skge->duplex = -1;
skge->speed = -1;
} else {
u32 setting;
switch (ecmd->speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
skge->speed = ecmd->speed;
skge->duplex = ecmd->duplex;
}
skge->autoneg = ecmd->autoneg;
skge->advertising = ecmd->advertising;
if (netif_running(dev))
skge_phy_reset(skge);
return (0);
}
static void skge_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct skge_port *skge = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(skge->hw->pdev));
}
static const struct skge_stat {
char name[ETH_GSTRING_LEN];
u16 xmac_offset;
u16 gma_offset;
} skge_stats[] = {
{ "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
{ "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
{ "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
{ "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
{ "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
{ "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
{ "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
{ "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
{ "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
{ "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
{ "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
{ "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
{ "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
{ "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
{ "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
{ "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
{ "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
{ "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
{ "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};
static int skge_get_stats_count(struct net_device *dev)
{
return ARRAY_SIZE(skge_stats);
}
static void skge_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->hw->chip_id == CHIP_ID_GENESIS)
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
u64 data[ARRAY_SIZE(skge_stats)];
if (skge->hw->chip_id == CHIP_ID_GENESIS)
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
skge->net_stats.tx_bytes = data[0];
skge->net_stats.rx_bytes = data[1];
skge->net_stats.tx_packets = data[2] + data[4] + data[6];
skge->net_stats.rx_packets = data[3] + data[5] + data[7];
skge->net_stats.multicast = data[3] + data[5];
skge->net_stats.collisions = data[10];
skge->net_stats.tx_aborted_errors = data[12];
return &skge->net_stats;
}
static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
skge_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static void skge_get_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
p->rx_max_pending = MAX_RX_RING_SIZE;
p->tx_max_pending = MAX_TX_RING_SIZE;
p->rx_mini_max_pending = 0;
p->rx_jumbo_max_pending = 0;
p->rx_pending = skge->rx_ring.count;
p->tx_pending = skge->tx_ring.count;
p->rx_mini_pending = 0;
p->rx_jumbo_pending = 0;
}
static int skge_set_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
int err;
if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
return -EINVAL;
skge->rx_ring.count = p->rx_pending;
skge->tx_ring.count = p->tx_pending;
if (netif_running(dev)) {
skge_down(dev);
err = skge_up(dev);
if (err)
dev_close(dev);
}
return 0;
}
static u32 skge_get_msglevel(struct net_device *netdev)
{
struct skge_port *skge = netdev_priv(netdev);
return skge->msg_enable;
}
static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
struct skge_port *skge = netdev_priv(netdev);
skge->msg_enable = value;
}
static int skge_nway_reset(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
return -EINVAL;
skge_phy_reset(skge);
return 0;
}
static int skge_set_sg(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
return ethtool_op_set_sg(dev, data);
}
static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
return ethtool_op_set_tx_csum(dev, data);
}
static u32 skge_get_rx_csum(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
return skge->rx_csum;
}
/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
skge->rx_csum = data;
return 0;
}
static void skge_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
|| (skge->flow_control == FLOW_MODE_SYM_OR_REM);
ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
}
static int skge_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct ethtool_pauseparam old;
skge_get_pauseparam(dev, &old);
if (ecmd->autoneg != old.autoneg)
skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
else {
if (ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYMMETRIC;
else if (ecmd->rx_pause && !ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYM_OR_REM;
else if (!ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_LOC_SEND;
else
skge->flow_control = FLOW_MODE_NONE;
}
if (netif_running(dev))
skge_phy_reset(skge);
return 0;
}
/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
}
/* Chip HZ to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
return (ticks * 1000) / hwkhz(hw);
}
/* Microseconds to chip HZ */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
return hwkhz(hw) * usec / 1000;
}
static int skge_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
ecmd->rx_coalesce_usecs = 0;
ecmd->tx_coalesce_usecs = 0;
if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
u32 msk = skge_read32(hw, B2_IRQM_MSK);
if (msk & rxirqmask[port])
ecmd->rx_coalesce_usecs = delay;
if (msk & txirqmask[port])
ecmd->tx_coalesce_usecs = delay;
}
return 0;
}
/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 msk = skge_read32(hw, B2_IRQM_MSK);
u32 delay = 25;
if (ecmd->rx_coalesce_usecs == 0)
msk &= ~rxirqmask[port];
else if (ecmd->rx_coalesce_usecs < 25 ||
ecmd->rx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= rxirqmask[port];
delay = ecmd->rx_coalesce_usecs;
}
if (ecmd->tx_coalesce_usecs == 0)
msk &= ~txirqmask[port];
else if (ecmd->tx_coalesce_usecs < 25 ||
ecmd->tx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= txirqmask[port];
delay = min(delay, ecmd->rx_coalesce_usecs);
}
skge_write32(hw, B2_IRQM_MSK, msk);
if (msk == 0)
skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
else {
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
}
return 0;
}
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
mutex_lock(&hw->phy_mutex);
if (hw->chip_id == CHIP_ID_GENESIS) {
switch (mode) {
case LED_MODE_OFF:
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
else {
skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
}
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
break;
case LED_MODE_ON:
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
break;
case LED_MODE_TST:
skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
else {
skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
}
}
} else {
switch (mode) {
case LED_MODE_OFF:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
break;
case LED_MODE_ON:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
PHY_M_LED_PULS_DUR(PULS_170MS) |
PHY_M_LED_BLINK_RT(BLINK_84MS) |
PHY_M_LEDC_TX_CTRL |
PHY_M_LEDC_DP_CTRL);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_RX(MO_LED_OFF) |
(skge->speed == SPEED_100 ?
PHY_M_LED_MO_100(MO_LED_ON) : 0));
break;
case LED_MODE_TST:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON));
}
}
mutex_unlock(&hw->phy_mutex);
}
/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
unsigned long ms;
enum led_mode mode = LED_MODE_TST;
if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
else
ms = data * 1000;
while (ms > 0) {
skge_led(skge, mode);
mode ^= LED_MODE_TST;
if (msleep_interruptible(BLINK_MS))
break;
ms -= BLINK_MS;
}
/* back to regular LED state */
skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
return 0;
}
static const struct ethtool_ops skge_ethtool_ops = {
.get_settings = skge_get_settings,
.set_settings = skge_set_settings,
.get_drvinfo = skge_get_drvinfo,
.get_regs_len = skge_get_regs_len,
.get_regs = skge_get_regs,
.get_wol = skge_get_wol,
.set_wol = skge_set_wol,
.get_msglevel = skge_get_msglevel,
.set_msglevel = skge_set_msglevel,
.nway_reset = skge_nway_reset,
.get_link = ethtool_op_get_link,
.get_ringparam = skge_get_ring_param,
.set_ringparam = skge_set_ring_param,
.get_pauseparam = skge_get_pauseparam,
.set_pauseparam = skge_set_pauseparam,
.get_coalesce = skge_get_coalesce,
.set_coalesce = skge_set_coalesce,
.get_sg = ethtool_op_get_sg,
.set_sg = skge_set_sg,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = skge_set_tx_csum,
.get_rx_csum = skge_get_rx_csum,
.set_rx_csum = skge_set_rx_csum,
.get_strings = skge_get_strings,
.phys_id = skge_phys_id,
.get_stats_count = skge_get_stats_count,
.get_ethtool_stats = skge_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
/*
* Allocate ring elements and chain them together
* One-to-one association of board descriptors with ring elements
*/
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
{
struct skge_tx_desc *d;
struct skge_element *e;
int i;
ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
if (!ring->start)
return -ENOMEM;
for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
e->desc = d;
if (i == ring->count - 1) {
e->next = ring->start;
d->next_offset = base;
} else {
e->next = e + 1;
d->next_offset = base + (i+1) * sizeof(*d);
}
}
ring->to_use = ring->to_clean = ring->start;
return 0;
}
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
struct sk_buff *skb, unsigned int bufsize)
{
struct skge_rx_desc *rd = e->desc;
u64 map;
map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
PCI_DMA_FROMDEVICE);
rd->dma_lo = map;
rd->dma_hi = map >> 32;
e->skb = skb;
rd->csum1_start = ETH_HLEN;
rd->csum2_start = ETH_HLEN;
rd->csum1 = 0;
rd->csum2 = 0;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, bufsize);
}
/* Resume receiving using existing skb,
* Note: DMA address is not changed by chip.
* MTU not changed while receiver active.
*/
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
struct skge_rx_desc *rd = e->desc;
rd->csum2 = 0;
rd->csum2_start = ETH_HLEN;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}
/* Free all buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct skge_rx_desc *rd = e->desc;
rd->control = 0;
if (e->skb) {
pci_unmap_single(hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(e->skb);
e->skb = NULL;
}
} while ((e = e->next) != ring->start);
}
/* Allocate buffers for receive ring
* For receive: to_clean is next received frame.
*/
static int skge_rx_fill(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct sk_buff *skb;
skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, NET_IP_ALIGN);
skge_rx_setup(skge, e, skb, skge->rx_buf_size);
} while ( (e = e->next) != ring->start);
ring->to_clean = ring->start;
return 0;
}
static const char *skge_pause(enum pause_status status)
{
switch(status) {
case FLOW_STAT_NONE:
return "none";
case FLOW_STAT_REM_SEND:
return "rx only";
case FLOW_STAT_LOC_SEND:
return "tx_only";
case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
return "both";
default:
return "indeterminated";
}
}
static void skge_link_up(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
netif_carrier_on(skge->netdev);
netif_wake_queue(skge->netdev);
if (netif_msg_link(skge)) {
printk(KERN_INFO PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
skge->netdev->name, skge->speed,
skge->duplex == DUPLEX_FULL ? "full" : "half",
skge_pause(skge->flow_status));
}
}
static void skge_link_down(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
netif_carrier_off(skge->netdev);
netif_stop_queue(skge->netdev);
if (netif_msg_link(skge))
printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}
static void xm_link_down(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 cmd, msk;
if (hw->phy_type == SK_PHY_XMAC) {
msk = xm_read16(hw, port, XM_IMSK);
msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
xm_write16(hw, port, XM_IMSK, msk);
}
cmd = xm_read16(hw, port, XM_MMU_CMD);
cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
xm_write16(hw, port, XM_MMU_CMD, cmd);
/* dummy read to ensure writing */
(void) xm_read16(hw, port, XM_MMU_CMD);
if (netif_carrier_ok(dev))
skge_link_down(skge);
}
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
*val = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type == SK_PHY_XMAC)
goto ready;
for (i = 0; i < PHY_RETRIES; i++) {
if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
goto ready;
udelay(1);
}
return -ETIMEDOUT;
ready:
*val = xm_read16(hw, port, XM_PHY_DATA);
return 0;
}
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__xm_phy_read(hw, port, reg, &v))
printk(KERN_WARNING PFX "%s: phy read timed out\n",
hw->dev[port]->name);
return v;
}
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready;
udelay(1);
}
return -EIO;
ready:
xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void genesis_init(struct skge_hw *hw)
{
/* set blink source counter */
skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
skge_write8(hw, B2_BSC_CTRL, BSC_START);
/* configure mac arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure mac arbiter timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* configure packet arbiter timeout */
skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}
static void genesis_reset(struct skge_hw *hw, int port)
{
const u8 zero[8] = { 0 };
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* reset the statistics module */
xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable Broadcom PHY IRQ */
if (hw->phy_type == SK_PHY_BCOM)
xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
xm_outhash(hw, port, XM_HSM, zero);
}
/* Convert mode to MII values */
static const u16 phy_pause_map[] = {
[FLOW_MODE_NONE] = 0,
[FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
[FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};
/* special defines for FIBER (88E1011S only) */
static const u16 fiber_pause_map[] = {
[FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
[FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
[FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
[FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
};
/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status;
/* read twice because of latch */
(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
status = xm_phy_read(hw, port, PHY_BCOM_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, aux;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
printk(KERN_NOTICE PFX "%s: remote fault\n",
dev->name);
return;
}
aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
/* Check Duplex mismatch */
switch (aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
default:
printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
* Phy on for 100 or 10Mbit operation
*/
static void bcom_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
u16 id1, r, ext, ctl;
/* magic workaround patterns for Broadcom */
static const struct {
u16 reg;
u16 val;
} A1hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
}, C0hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
};
/* read Id from external PHY (all have the same address) */
id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
r = xm_read16(hw, port, XM_MMU_CMD);
r |= XM_MMU_NO_PRE;
xm_write16(hw, port, XM_MMU_CMD,r);
switch (id1) {
case PHY_BCOM_ID1_C0:
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
break;
case PHY_BCOM_ID1_A1:
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
break;
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
r |= PHY_B_AC_DIS_PM;
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
/* Dummy read */
xm_read16(hw, port, XM_ISRC);
ext = PHY_B_PEC_EN_LTR; /* enable tx led */
ctl = PHY_CT_SP1000; /* always 1000mbit */
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
u16 adv = PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_B_1000C_AFD;
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctl |= PHY_CT_DUP_MD;
/* Force to slave */
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
}
/* Set autonegotiation pause parameters */
xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
/* Handle Jumbo frames */
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
ext |= PHY_B_PEC_HIGH_LA;
}
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
/* Use link status change interrupt */
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
static void xm_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl = 0;
if (skge->autoneg == AUTONEG_ENABLE) {
if (skge->advertising & ADVERTISED_1000baseT_Half)
ctrl |= PHY_X_AN_HD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
ctrl |= PHY_X_AN_FD;
ctrl |= fiber_pause_map[skge->flow_control];
xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
/* Restart Auto-negotiation */
ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* Set DuplexMode in Config register */
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLEs are transmitted
*/
}
xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
/* Poll PHY for status changes */
schedule_delayed_work(&skge->link_thread, LINK_HZ);
}
static void xm_check_link(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 status;
/* read twice because of latch */
(void) xm_phy_read(hw, port, PHY_XMAC_STAT);
status = xm_phy_read(hw, port, PHY_XMAC_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, res;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
printk(KERN_NOTICE PFX "%s: remote fault\n",
dev->name);
return;
}
res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
/* Check Duplex mismatch */
switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
case PHY_X_RS_FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_X_RS_HD:
skge->duplex = DUPLEX_HALF;
break;
default:
printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
(lpa & PHY_X_P_SYM_MD))
skge->flow_status = FLOW_STAT_SYMMETRIC;
else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
/* Enable PAUSE receive, disable PAUSE transmit */
skge->flow_status = FLOW_STAT_REM_SEND;
else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
/* Disable PAUSE receive, enable PAUSE transmit */
skge->flow_status = FLOW_STAT_LOC_SEND;
else
skge->flow_status = FLOW_STAT_NONE;
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
/* Poll to check for link coming up.
* Since internal PHY is wired to a level triggered pin, can't
* get an interrupt when carrier is detected.
*/
static void xm_link_timer(struct work_struct *work)
{
struct skge_port *skge =
container_of(work, struct skge_port, link_thread.work);
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (!netif_running(dev))
return;
if (netif_carrier_ok(dev)) {
xm_read16(hw, port, XM_ISRC);
if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
goto nochange;
} else {
if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
goto nochange;
xm_read16(hw, port, XM_ISRC);
if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
goto nochange;
}
mutex_lock(&hw->phy_mutex);
xm_check_link(dev);
mutex_unlock(&hw->phy_mutex);
nochange:
schedule_delayed_work(&skge->link_thread, LINK_HZ);
}
static void genesis_mac_init(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
int i;
u32 r;
const u8 zero[6] = { 0 };
for (i = 0; i < 10; i++) {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_SET_MAC_RST);
if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
goto reset_ok;
udelay(1);
}
printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
reset_ok:
/* Unreset the XMAC. */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (hw->phy_type != SK_PHY_XMAC) {
/* Take external Phy out of reset */
r = skge_read32(hw, B2_GP_IO);
if (port == 0)
r |= GP_DIR_0|GP_IO_0;
else
r |= GP_DIR_2|GP_IO_2;
skge_write32(hw, B2_GP_IO, r);
/* Enable GMII interface */
xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
}
switch(hw->phy_type) {
case SK_PHY_XMAC:
xm_phy_init(skge);
break;
case SK_PHY_BCOM:
bcom_phy_init(skge);
bcom_check_link(hw, port);
}
/* Set Station Address */
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
/* We don't use match addresses so clear */
for (i = 1; i < 16; i++)
xm_outaddr(hw, port, XM_EXM(i), zero);
/* Clear MIB counters */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* configure Rx High Water Mark (XM_RX_HI_WM) */
xm_write16(hw, port, XM_RX_HI_WM, 1450);
/* We don't need the FCS appended to the packet. */
r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
if (jumbo)
r |= XM_RX_BIG_PK_OK;
if (skge->duplex == DUPLEX_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
r |= XM_RX_DIS_CEXT;
}
xm_write16(hw, port, XM_RX_CMD, r);
/* We want short frames padded to 60 bytes. */
xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
xm_write16(hw, port, XM_TX_THR, 512);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transferring frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
/*
* Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
/* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, 72);
skge_write8(hw, B3_MA_TOINI_RX2, 72);
skge_write8(hw, B3_MA_TOINI_TX1, 72);
skge_write8(hw, B3_MA_TOINI_TX2, 72);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
if (jumbo) {
/* Enable frame flushing if jumbo frames used */
skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
} else {
/* enable timeout timers if normal frames */
skge_write16(hw, B3_PA_CTRL,
(port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
}
}
static void genesis_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 reg;
genesis_reset(hw, port);
/* Clear Tx packet arbiter timeout IRQ */
skge_write16(hw, B3_PA_CTRL,
port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
/*
* If the transfer sticks at the MAC the STOP command will not
* terminate if we don't flush the XMAC's transmit FIFO !
*/
xm_write32(hw, port, XM_MODE,
xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
/* Reset the MAC */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
/* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) {
reg = skge_read32(hw, B2_GP_IO);
if (port == 0) {
reg |= GP_DIR_0;
reg &= ~GP_IO_0;
} else {
reg |= GP_DIR_2;
reg &= ~GP_IO_2;
}
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
}
xm_write16(hw, port, XM_MMU_CMD,
xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
xm_read16(hw, port, XM_MMU_CMD);
}
static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
unsigned long timeout = jiffies + HZ;
xm_write16(hw, port,
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/* wait for update to complete */
while (xm_read16(hw, port, XM_STAT_CMD)
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
if (time_after(jiffies, timeout))
break;
udelay(10);
}
/* special case for 64 bit octet counter */
data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
| xm_read32(hw, port, XM_TXO_OK_LO);
data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
| xm_read32(hw, port, XM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
}
static void genesis_mac_intr(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 status = xm_read16(hw, port, XM_ISRC);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
skge->netdev->name, status);
if (hw->phy_type == SK_PHY_XMAC &&
(status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
xm_link_down(hw, port);
if (status & XM_IS_TXF_UR) {
xm_write32(hw, port, XM_MODE, XM_MD_FTF);
++skge->net_stats.tx_fifo_errors;
}
if (status & XM_IS_RXF_OV) {
xm_write32(hw, port, XM_MODE, XM_MD_FRF);
++skge->net_stats.rx_fifo_errors;
}
}
static void genesis_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 cmd, msk;
u32 mode;
cmd = xm_read16(hw, port, XM_MMU_CMD);
/*
* enabling pause frame reception is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
if (skge->flow_status == FLOW_STAT_NONE ||
skge->flow_status == FLOW_STAT_LOC_SEND)
/* Disable Pause Frame Reception */
cmd |= XM_MMU_IGN_PF;
else
/* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF;
xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
skge->flow_status == FLOW_STAT_LOC_SEND) {
/*
* Configure Pause Frame Generation
* Use internal and external Pause Frame Generation.
* Sending pause frames is edge triggered.
* Send a Pause frame with the maximum pause time if
* internal oder external FIFO full condition occurs.
* Send a zero pause time frame to re-start transmission.
*/
/* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */
xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else {
/*
* disable pause frame generation is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
}
xm_write32(hw, port, XM_MODE, mode);
msk = XM_DEF_MSK;
if (hw->phy_type != SK_PHY_XMAC)
msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */
cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD;
/*
* Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up
*/
if (hw->phy_type == SK_PHY_BCOM) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
& ~PHY_B_AC_DIS_PM);
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
/* enable Rx/Tx */
xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge);
}
static inline void bcom_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 isrc;
isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
skge->netdev->name, isrc);
if (isrc & PHY_B_IS_PSE)
printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
hw->dev[port]->name);
/* Workaround BCom Errata:
* enable and disable loopback mode if "NO HCD" occurs.
*/
if (isrc & PHY_B_IS_NO_HDCL) {
u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP);
}
if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
bcom_check_link(hw, port);
}
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
}
printk(KERN_WARNING PFX "%s: phy write timeout\n",
hw->dev[port]->name);
return -EIO;
}
static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready;
}
return -ETIMEDOUT;
ready:
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__gm_phy_read(hw, port, reg, &v))
printk(KERN_WARNING PFX "%s: phy read timeout\n",
hw->dev[port]->name);
return v;
}
/* Marvell Phy Initialization */
static void yukon_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv;
if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0;
ct1000 = 0;
adv = PHY_AN_CSMA;
if (skge->autoneg == AUTONEG_ENABLE) {
if (hw->copper) {
if (skge->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (skge->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (skge->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (skge->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (skge->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
/* Set Flow-control capabilities */
adv |= phy_pause_map[skge->flow_control];
} else {
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_pause_map[skge->flow_control];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
switch (skge->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
break;
}
ctrl |= PHY_CT_RESET;
}
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
}
static void yukon_reset(struct skge_hw *hw, int port)
{
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
gma_write16(hw, port, GM_RX_CTRL,
gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
u32 reg;
int ret;
if (hw->chip_id != CHIP_ID_YUKON)
return 0;
reg = skge_read32(hw, B2_FAR);
skge_write8(hw, B2_FAR + 3, 0xff);
ret = (skge_read8(hw, B2_FAR + 3) != 0);
skge_write32(hw, B2_FAR, reg);
return ret;
}
static void yukon_mac_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
int i;
u32 reg;
const u8 *addr = hw->dev[port]->dev_addr;
/* WA code for COMA mode -- set PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9 | GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* hard reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* Set hardware config mode */
reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS;
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
if (skge->duplex == DUPLEX_FULL)
reg |= GM_GPCR_DUP_FULL;
} else
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) {
case FLOW_MODE_NONE:
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_LOC_SEND:
/* disable Rx flow-control */
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_SYMMETRIC:
case FLOW_MODE_SYM_OR_REM:
/* enable Tx & Rx flow-control */
break;
}
gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
yukon_init(hw, port);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
/* serial mode register */
reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > 1500)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */
skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (is_yukon_lite_a0(hw))
reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
/*
* because Pause Packet Truncation in GMAC is not working
* we have to increase the Flush Threshold to 64 bytes
* in order to flush pause packets in Rx FIFO on Yukon-1
*/
skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
}
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
u16 ctrl;
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_POL_R_DIS;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* switch IEEE compatible power down mode on */
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_PDOWN;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}
static void yukon_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
yukon_reset(hw, port);
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
gma_read16(hw, port, GM_GP_CTRL);
yukon_suspend(hw, port);
/* set GPHY Control reset */
skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
}
static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = gma_read32(hw, port,
skge_stats[i].gma_offset);
}
static void yukon_mac_intr(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
if (status & GM_IS_RX_FF_OR) {
++skge->net_stats.rx_fifo_errors;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++skge->net_stats.tx_fifo_errors;
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void yukon_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 reg;
/* Enable Transmit FIFO Underrun */
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
skge_link_up(skge);
}
static void yukon_link_down(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
if (skge->flow_status == FLOW_STAT_REM_SEND) {
ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
ctrl |= PHY_M_AN_ASP;
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
}
skge_link_down(skge);
yukon_init(hw, port);
}
static void yukon_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
const char *reason = NULL;
u16 istatus, phystat;
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
skge->netdev->name, istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) {
reason = "remote fault";
goto failed;
}
if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
reason = "master/slave fault";
goto failed;
}
if (!(phystat & PHY_M_PS_SPDUP_RES)) {
reason = "speed/duplex";
goto failed;
}
skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
? DUPLEX_FULL : DUPLEX_HALF;
skge->speed = yukon_speed(hw, phystat);
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (phystat & PHY_M_PS_PAUSE_MSK) {
case PHY_M_PS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_M_PS_RX_P_EN:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_M_PS_TX_P_EN:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
if (skge->flow_status == FLOW_STAT_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge);
return;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
skge->speed = yukon_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
yukon_link_up(skge);
else
yukon_link_down(skge);
}
return;
failed:
printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
skge->netdev->name, reason);
/* XXX restart autonegotiation? */
}
static void skge_phy_reset(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct net_device *dev = hw->dev[port];
netif_stop_queue(skge->netdev);
netif_carrier_off(skge->netdev);
mutex_lock(&hw->phy_mutex);
if (hw->chip_id == CHIP_ID_GENESIS) {
genesis_reset(hw, port);
genesis_mac_init(hw, port);
} else {
yukon_reset(hw, port);
yukon_init(hw, port);
}
mutex_unlock(&hw->phy_mutex);
dev->set_multicast_list(dev);
}
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = hw->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
mutex_lock(&hw->phy_mutex);
if (hw->chip_id == CHIP_ID_GENESIS)
err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
else
err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
mutex_unlock(&hw->phy_mutex);
data->val_out = val;
break;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
mutex_lock(&hw->phy_mutex);
if (hw->chip_id == CHIP_ID_GENESIS)
err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
else
err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
mutex_unlock(&hw->phy_mutex);
break;
}
return err;
}
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
u32 end;
start /= 8;
len /= 8;
end = start + len - 1;
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
skge_write32(hw, RB_ADDR(q, RB_START), start);
skge_write32(hw, RB_ADDR(q, RB_WP), start);
skge_write32(hw, RB_ADDR(q, RB_RP), start);
skge_write32(hw, RB_ADDR(q, RB_END), end);
if (q == Q_R1 || q == Q_R2) {
/* Set thresholds on receive queue's */
skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
start + (2*len)/3);
skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
start + (len/3));
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 4K on Genesis and 1K on Yukon
*/
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}
/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
const struct skge_element *e)
{
struct skge_hw *hw = skge->hw;
u32 watermark = 0x600;
u64 base = skge->dma + (e->desc - skge->mem);
/* optimization to reduce window on 32bit/33mhz */
if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
watermark /= 2;
skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
skge_write32(hw, Q_ADDR(q, Q_F), watermark);
skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}
static int skge_up(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 chunk, ram_addr;
size_t rx_size, tx_size;
int err;
if (netif_msg_ifup(skge))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
if (dev->mtu > RX_BUF_SIZE)
skge->rx_buf_size = dev->mtu + ETH_HLEN;
else
skge->rx_buf_size = RX_BUF_SIZE;
rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
skge->mem_size = tx_size + rx_size;
skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
if (!skge->mem)
return -ENOMEM;
BUG_ON(skge->dma & 7);
if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
err = -EINVAL;
goto free_pci_mem;
}
memset(skge->mem, 0, skge->mem_size);
err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
if (err)
goto free_pci_mem;
err = skge_rx_fill(dev);
if (err)
goto free_rx_ring;
err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
skge->dma + rx_size);
if (err)
goto free_rx_ring;
/* Initialize MAC */
mutex_lock(&hw->phy_mutex);
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_init(hw, port);
else
yukon_mac_init(hw, port);
mutex_unlock(&hw->phy_mutex);
/* Configure RAMbuffers */
chunk = hw->ram_size / ((hw->ports + 1)*2);
ram_addr = hw->ram_offset + 2 * chunk * port;
skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
/* Start receiver BMU */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
skge_led(skge, LED_MODE_ON);
netif_poll_enable(dev);
return 0;
free_rx_ring:
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
free_pci_mem:
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return err;
}
static int skge_down(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (skge->mem == NULL)
return 0;
if (netif_msg_ifdown(skge))
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
netif_stop_queue(dev);
if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
cancel_rearming_delayed_work(&skge->link_thread);
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_stop(skge);
else
yukon_stop(skge);
/* Stop transmitter */
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
/* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
/* Reset the RAM Buffer async Tx queue */
skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
/* stop receiver */
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
} else {
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
}
skge_led(skge, LED_MODE_OFF);
netif_poll_disable(dev);
skge_tx_clean(dev);
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
kfree(skge->tx_ring.start);
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return 0;
}
static inline int skge_avail(const struct skge_ring *ring)
{
return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
+ (ring->to_clean - ring->to_use) - 1;
}
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
struct skge_element *e;
struct skge_tx_desc *td;
int i;
u32 control, len;
u64 map;
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
return NETDEV_TX_BUSY;
e = skge->tx_ring.to_use;
td = e->desc;
BUG_ON(td->control & BMU_OWN);
e->skb = skb;
len = skb_headlen(skb);
map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, len);
td->dma_lo = map;
td->dma_hi = map >> 32;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int offset = skb->h.raw - skb->data;
/* This seems backwards, but it is what the sk98lin
* does. Looks like hardware is wrong?
*/
2005-12-01 04:31:32 -05:00
if (skb->h.ipiph->protocol == IPPROTO_UDP
&& hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
control = BMU_TCP_CHECK;
else
control = BMU_UDP_CHECK;
td->csum_offs = 0;
td->csum_start = offset;
td->csum_write = offset + skb->csum_offset;
} else
control = BMU_CHECK;
if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
control |= BMU_EOF| BMU_IRQ_EOF;
else {
struct skge_tx_desc *tf = td;
control |= BMU_STFWD;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
e = e->next;
e->skb = skb;
tf = e->desc;
BUG_ON(tf->control & BMU_OWN);
tf->dma_lo = map;
tf->dma_hi = (u64) map >> 32;
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, frag->size);
tf->control = BMU_OWN | BMU_SW | control | frag->size;
}
tf->control |= BMU_EOF | BMU_IRQ_EOF;
}
/* Make sure all the descriptors written */
wmb();
td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
wmb();
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
if (unlikely(netif_msg_tx_queued(skge)))
printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
dev->name, e - skge->tx_ring.start, skb->len);
skge->tx_ring.to_use = e->next;
if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
pr_debug("%s: transmit queue full\n", dev->name);
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
/* Free resources associated with this reing element */
static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
u32 control)
{
struct pci_dev *pdev = skge->hw->pdev;
BUG_ON(!e->skb);
/* skb header vs. fragment */
if (control & BMU_STF)
pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
if (control & BMU_EOF) {
if (unlikely(netif_msg_tx_done(skge)))
printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
skge->netdev->name, e - skge->tx_ring.start);
dev_kfree_skb(e->skb);
}
e->skb = NULL;
}
/* Free all buffers in transmit ring */
static void skge_tx_clean(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_element *e;
netif_tx_lock_bh(dev);
for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
struct skge_tx_desc *td = e->desc;
skge_tx_free(skge, e, td->control);
td->control = 0;
}
skge->tx_ring.to_clean = e;
netif_wake_queue(dev);
netif_tx_unlock_bh(dev);
}
static void skge_tx_timeout(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (netif_msg_timer(skge))
printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
skge_tx_clean(dev);
}
static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
int err;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
skge_down(dev);
dev->mtu = new_mtu;
err = skge_up(dev);
if (err)
dev_close(dev);
return err;
}
static void genesis_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i, count = dev->mc_count;
struct dev_mc_list *list = dev->mc_list;
u32 mode;
u8 filter[8];
mode = xm_read32(hw, port, XM_MODE);
mode |= XM_MD_ENA_HASH;
if (dev->flags & IFF_PROMISC)
mode |= XM_MD_ENA_PROM;
else
mode &= ~XM_MD_ENA_PROM;
if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else {
memset(filter, 0, sizeof(filter));
for (i = 0; list && i < count; i++, list = list->next) {
u32 crc, bit;
crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
bit = ~crc & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
}
xm_write32(hw, port, XM_MODE, mode);
xm_outhash(hw, port, XM_HSM, filter);
}
static void yukon_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct dev_mc_list *list = dev->mc_list;
u16 reg;
u8 filter[8];
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI) /* all multicast */
memset(filter, 0xff, sizeof(filter));
else if (dev->mc_count == 0) /* no multicast */
reg &= ~GM_RXCR_MCF_ENA;
else {
int i;
reg |= GM_RXCR_MCF_ENA;
for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16)filter[0] | ((u16)filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16)filter[2] | ((u16)filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16)filter[4] | ((u16)filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16)filter[6] | ((u16)filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return status >> XMR_FS_LEN_SHIFT;
else
return status >> GMR_FS_LEN_SHIFT;
}
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
else
return (status & GMR_FS_ANY_ERR) ||
(status & GMR_FS_RX_OK) == 0;
}
/* Get receive buffer from descriptor.
* Handles copy of small buffers and reallocation failures
*/
static struct sk_buff *skge_rx_get(struct net_device *dev,
struct skge_element *e,
u32 control, u32 status, u16 csum)
{
struct skge_port *skge = netdev_priv(dev);
struct sk_buff *skb;
u16 len = control & BMU_BBC;
if (unlikely(netif_msg_rx_status(skge)))
printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
dev->name, e - skge->rx_ring.start,
status, len);
if (len > skge->rx_buf_size)
goto error;
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
goto error;
if (bad_phy_status(skge->hw, status))
goto error;
if (phy_length(skge->hw, status) != len)
goto error;
if (len < RX_COPY_THRESHOLD) {
skb = netdev_alloc_skb(dev, len + 2);
if (!skb)
goto resubmit;
skb_reserve(skb, 2);
pci_dma_sync_single_for_cpu(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
memcpy(skb->data, e->skb->data, len);
pci_dma_sync_single_for_device(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
skge_rx_reuse(e, skge->rx_buf_size);
} else {
struct sk_buff *nskb;
nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
if (!nskb)
goto resubmit;
skb_reserve(nskb, NET_IP_ALIGN);
pci_unmap_single(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
skb = e->skb;
prefetch(skb->data);
skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
}
skb_put(skb, len);
if (skge->rx_csum) {
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->protocol = eth_type_trans(skb, dev);
return skb;
error:
if (netif_msg_rx_err(skge))
printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
dev->name, e - skge->rx_ring.start,
control, status);
if (skge->hw->chip_id == CHIP_ID_GENESIS) {
if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
skge->net_stats.rx_length_errors++;
if (status & XMR_FS_FRA_ERR)
skge->net_stats.rx_frame_errors++;
if (status & XMR_FS_FCS_ERR)
skge->net_stats.rx_crc_errors++;
} else {
if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
skge->net_stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
skge->net_stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
skge->net_stats.rx_crc_errors++;
}
resubmit:
skge_rx_reuse(e, skge->rx_buf_size);
return NULL;
}
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_tx_done(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->tx_ring;
struct skge_element *e;
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
netif_tx_lock(dev);
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
struct skge_tx_desc *td = e->desc;
if (td->control & BMU_OWN)
break;
skge_tx_free(skge, e, td->control);
}
skge->tx_ring.to_clean = e;
if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
netif_wake_queue(dev);
netif_tx_unlock(dev);
}
static int skge_poll(struct net_device *dev, int *budget)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
unsigned long flags;
int to_do = min(dev->quota, *budget);
int work_done = 0;
skge_tx_done(dev);
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
struct skge_rx_desc *rd = e->desc;
struct sk_buff *skb;
u32 control;
rmb();
control = rd->control;
if (control & BMU_OWN)
break;
skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
if (likely(skb)) {
dev->last_rx = jiffies;
netif_receive_skb(skb);
++work_done;
}
}
ring->to_clean = e;
/* restart receiver */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
*budget -= work_done;
dev->quota -= work_done;
if (work_done >= to_do)
return 1; /* not done */
spin_lock_irqsave(&hw->hw_lock, flags);
__netif_rx_complete(dev);
hw->intr_mask |= irqmask[skge->port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irqrestore(&hw->hw_lock, flags);
return 0;
}
/* Parity errors seem to happen when Genesis is connected to a switch
* with no other ports present. Heartbeat error??
*/
static void skge_mac_parity(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
if (dev) {
struct skge_port *skge = netdev_priv(dev);
++skge->net_stats.tx_heartbeat_errors;
}
if (hw->chip_id == CHIP_ID_GENESIS)
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_CLR_PERR);
else
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
(hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}
static void skge_mac_intr(struct skge_hw *hw, int port)
{
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_intr(hw, port);
else
yukon_mac_intr(hw, port);
}
/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (hw->chip_id == CHIP_ID_GENESIS) {
/* clear xmac errors */
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
} else {
/* Timestamp (unused) overflow */
if (hwstatus & IS_IRQ_TIST_OV)
skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
}
if (hwstatus & IS_RAM_RD_PAR) {
printk(KERN_ERR PFX "Ram read data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
}
if (hwstatus & IS_RAM_WR_PAR) {
printk(KERN_ERR PFX "Ram write data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
}
if (hwstatus & IS_M1_PAR_ERR)
skge_mac_parity(hw, 0);
if (hwstatus & IS_M2_PAR_ERR)
skge_mac_parity(hw, 1);
if (hwstatus & IS_R1_PAR_ERR) {
printk(KERN_ERR PFX "%s: receive queue parity error\n",
hw->dev[0]->name);
skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & IS_R2_PAR_ERR) {
printk(KERN_ERR PFX "%s: receive queue parity error\n",
hw->dev[1]->name);
skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
u16 pci_status, pci_cmd;
pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
pci_name(hw->pdev), pci_cmd, pci_status);
/* Write the error bits back to clear them. */
pci_status &= PCI_STATUS_ERROR_BITS;
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config_word(hw->pdev, PCI_COMMAND,
pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* if error still set then just ignore it */
hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (hwstatus & IS_IRQ_STAT) {
printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
hw->intr_mask &= ~IS_HW_ERR;
}
}
}
/*
* Interrupt from PHY are handled in work queue
* because accessing phy registers requires spin wait which might
* cause excess interrupt latency.
*/
static void skge_extirq(struct work_struct *work)
{
struct skge_hw *hw = container_of(work, struct skge_hw, phy_work);
int port;
mutex_lock(&hw->phy_mutex);
for (port = 0; port < hw->ports; port++) {
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
if (netif_running(dev)) {
if (hw->chip_id != CHIP_ID_GENESIS)
yukon_phy_intr(skge);
else if (hw->phy_type == SK_PHY_BCOM)
bcom_phy_intr(skge);
}
}
mutex_unlock(&hw->phy_mutex);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask |= IS_EXT_REG;
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
static irqreturn_t skge_intr(int irq, void *dev_id)
{
struct skge_hw *hw = dev_id;
u32 status;
int handled = 0;
spin_lock(&hw->hw_lock);
/* Reading this register masks IRQ */
status = skge_read32(hw, B0_SP_ISRC);
if (status == 0 || status == ~0)
goto out;
handled = 1;
status &= hw->intr_mask;
if (status & IS_EXT_REG) {
hw->intr_mask &= ~IS_EXT_REG;
schedule_work(&hw->phy_work);
}
if (status & (IS_XA1_F|IS_R1_F)) {
hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
netif_rx_schedule(hw->dev[0]);
}
if (status & IS_PA_TO_TX1)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
if (status & IS_PA_TO_RX1) {
struct skge_port *skge = netdev_priv(hw->dev[0]);
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
}
if (status & IS_MAC1)
skge_mac_intr(hw, 0);
if (hw->dev[1]) {
if (status & (IS_XA2_F|IS_R2_F)) {
hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
netif_rx_schedule(hw->dev[1]);
}
if (status & IS_PA_TO_RX2) {
struct skge_port *skge = netdev_priv(hw->dev[1]);
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
}
if (status & IS_PA_TO_TX2)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
if (status & IS_MAC2)
skge_mac_intr(hw, 1);
}
if (status & IS_HW_ERR)
skge_error_irq(hw);
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
out:
spin_unlock(&hw->hw_lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
disable_irq(dev->irq);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
skge_intr(dev->irq, skge->hw);
enable_irq(dev->irq);
}
#endif
static int skge_set_mac_address(struct net_device *dev, void *p)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
unsigned port = skge->port;
const struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
mutex_lock(&hw->phy_mutex);
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_1 + port*8,
dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port*8,
dev->dev_addr, ETH_ALEN);
if (hw->chip_id == CHIP_ID_GENESIS)
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
else {
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
}
mutex_unlock(&hw->phy_mutex);
return 0;
}
static const struct {
u8 id;
const char *name;
} skge_chips[] = {
{ CHIP_ID_GENESIS, "Genesis" },
{ CHIP_ID_YUKON, "Yukon" },
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"},
{ CHIP_ID_YUKON_LP, "Yukon-LP"},
};
static const char *skge_board_name(const struct skge_hw *hw)
{
int i;
static char buf[16];
for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
if (skge_chips[i].id == hw->chip_id)
return skge_chips[i].name;
snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
return buf;
}
/*
* Setup the board data structure, but don't bring up
* the port(s)
*/
static int skge_reset(struct skge_hw *hw)
{
u32 reg;
u16 ctst, pci_status;
u8 t8, mac_cfg, pmd_type;
int i;
ctst = skge_read16(hw, B0_CTST);
/* do a SW reset */
skge_write8(hw, B0_CTST, CS_RST_SET);
skge_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
skge_write8(hw, B2_TST_CTRL2, 0);
pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
pci_write_config_word(hw->pdev, PCI_STATUS,
pci_status | PCI_STATUS_ERROR_BITS);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
skge_write8(hw, B0_CTST, CS_MRST_CLR);
/* restore CLK_RUN bits (for Yukon-Lite) */
skge_write16(hw, B0_CTST,
ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
hw->chip_id = skge_read8(hw, B2_CHIP_ID);
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
pmd_type = skge_read8(hw, B2_PMD_TYP);
hw->copper = (pmd_type == 'T' || pmd_type == '1');
switch (hw->chip_id) {
case CHIP_ID_GENESIS:
switch (hw->phy_type) {
case SK_PHY_XMAC:
hw->phy_addr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM:
hw->phy_addr = PHY_ADDR_BCOM;
break;
default:
printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
pci_name(hw->pdev), hw->phy_type);
return -EOPNOTSUPP;
}
break;
case CHIP_ID_YUKON:
case CHIP_ID_YUKON_LITE:
case CHIP_ID_YUKON_LP:
if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
hw->copper = 1;
hw->phy_addr = PHY_ADDR_MARV;
break;
default:
printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
pci_name(hw->pdev), hw->chip_id);
return -EOPNOTSUPP;
}
mac_cfg = skge_read8(hw, B2_MAC_CFG);
hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
/* read the adapters RAM size */
t8 = skge_read8(hw, B2_E_0);
if (hw->chip_id == CHIP_ID_GENESIS) {
if (t8 == 3) {
/* special case: 4 x 64k x 36, offset = 0x80000 */
hw->ram_size = 0x100000;
hw->ram_offset = 0x80000;
} else
hw->ram_size = t8 * 512;
}
else if (t8 == 0)
hw->ram_size = 0x20000;
else
hw->ram_size = t8 * 4096;
hw->intr_mask = IS_HW_ERR | IS_PORT_1;
if (hw->ports > 1)
hw->intr_mask |= IS_PORT_2;
if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
hw->intr_mask |= IS_EXT_REG;
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_init(hw);
else {
/* switch power to VCC (WA for VAUX problem) */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* avoid boards with stuck Hardware error bits */
if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
(skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
hw->intr_mask &= ~IS_HW_ERR;
}
/* Clear PHY COMA */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
reg &= ~PCI_PHY_COMA;
pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
}
/* turn off hardware timer (unused) */
skge_write8(hw, B2_TI_CTRL, TIM_STOP);
skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
skge_write8(hw, B0_LED, LED_STAT_ON);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
/* Set interrupt moderation for Transmit only
* Receive interrupts avoided by NAPI
*/
skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
skge_write32(hw, B0_IMSK, hw->intr_mask);
mutex_lock(&hw->phy_mutex);
for (i = 0; i < hw->ports; i++) {
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_reset(hw, i);
else
yukon_reset(hw, i);
}
mutex_unlock(&hw->phy_mutex);
return 0;
}
/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
int highmem)
{
struct skge_port *skge;
struct net_device *dev = alloc_etherdev(sizeof(*skge));
if (!dev) {
printk(KERN_ERR "skge etherdev alloc failed");
return NULL;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->open = skge_up;
dev->stop = skge_down;
dev->do_ioctl = skge_ioctl;
dev->hard_start_xmit = skge_xmit_frame;
dev->get_stats = skge_get_stats;
if (hw->chip_id == CHIP_ID_GENESIS)
dev->set_multicast_list = genesis_set_multicast;
else
dev->set_multicast_list = yukon_set_multicast;
dev->set_mac_address = skge_set_mac_address;
dev->change_mtu = skge_change_mtu;
SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
dev->tx_timeout = skge_tx_timeout;
dev->watchdog_timeo = TX_WATCHDOG;
dev->poll = skge_poll;
dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = skge_netpoll;
#endif
dev->irq = hw->pdev->irq;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
skge = netdev_priv(dev);
skge->netdev = dev;
skge->hw = hw;
skge->msg_enable = netif_msg_init(debug, default_msg);
skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
/* Auto speed and flow control */
skge->autoneg = AUTONEG_ENABLE;
skge->flow_control = FLOW_MODE_SYM_OR_REM;
skge->duplex = -1;
skge->speed = -1;
skge->advertising = skge_supported_modes(hw);
hw->dev[port] = dev;
skge->port = port;
/* Only used for Genesis XMAC */
INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer);
if (hw->chip_id != CHIP_ID_GENESIS) {
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
skge->rx_csum = 1;
}
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* device is off until link detection */
netif_carrier_off(dev);
netif_stop_queue(dev);
return dev;
}
static void __devinit skge_show_addr(struct net_device *dev)
{
const struct skge_port *skge = netdev_priv(dev);
if (netif_msg_probe(skge))
printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}
static int __devinit skge_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev, *dev1;
struct skge_hw *hw;
int err, using_dac = 0;
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "%s cannot enable PCI device\n",
pci_name(pdev));
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
pci_name(pdev));
goto err_out_disable_pdev;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
using_dac = 0;
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
}
if (err) {
printk(KERN_ERR PFX "%s no usable DMA configuration\n",
pci_name(pdev));
goto err_out_free_regions;
}
#ifdef __BIG_ENDIAN
/* byte swap descriptors in hardware */
{
u32 reg;
pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
reg |= PCI_REV_DESC;
pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
}
#endif
err = -ENOMEM;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw) {
printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
pci_name(pdev));
goto err_out_free_regions;
}
hw->pdev = pdev;
mutex_init(&hw->phy_mutex);
INIT_WORK(&hw->phy_work, skge_extirq);
spin_lock_init(&hw->hw_lock);
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
printk(KERN_ERR PFX "%s: cannot map device registers\n",
pci_name(pdev));
goto err_out_free_hw;
}
err = skge_reset(hw);
if (err)
goto err_out_iounmap;
printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
skge_board_name(hw), hw->chip_rev);
dev = skge_devinit(hw, 0, using_dac);
if (!dev)
goto err_out_led_off;
if (!is_valid_ether_addr(dev->dev_addr)) {
printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
pci_name(pdev));
err = -EIO;
goto err_out_free_netdev;
}
err = register_netdev(dev);
if (err) {
printk(KERN_ERR PFX "%s: cannot register net device\n",
pci_name(pdev));
goto err_out_free_netdev;
}
err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
if (err) {
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
dev->name, pdev->irq);
goto err_out_unregister;
}
skge_show_addr(dev);
if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
if (register_netdev(dev1) == 0)
skge_show_addr(dev1);
else {
/* Failure to register second port need not be fatal */
printk(KERN_WARNING PFX "register of second port failed\n");
hw->dev[1] = NULL;
free_netdev(dev1);
}
}
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister:
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_led_off:
skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return err;
}
static void __devexit skge_remove(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
if ((dev1 = hw->dev[1]))
unregister_netdev(dev1);
dev0 = hw->dev[0];
unregister_netdev(dev0);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask = 0;
skge_write32(hw, B0_IMSK, 0);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
skge_write16(hw, B0_LED, LED_STAT_OFF);
skge_write8(hw, B0_CTST, CS_RST_SET);
flush_scheduled_work();
free_irq(pdev->irq, hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
if (dev1)
free_netdev(dev1);
free_netdev(dev0);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, wol = 0;
pci_save_state(pdev);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
struct skge_port *skge = netdev_priv(dev);
netif_carrier_off(dev);
if (skge->wol)
netif_stop_queue(dev);
else
skge_down(dev);
wol |= skge->wol;
}
netif_device_detach(dev);
}
skge_write32(hw, B0_IMSK, 0);
pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int skge_resume(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
err = skge_reset(hw);
if (err)
goto out;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
netif_device_attach(dev);
if (netif_running(dev)) {
err = skge_up(dev);
if (err) {
printk(KERN_ERR PFX "%s: could not up: %d\n",
dev->name, err);
dev_close(dev);
goto out;
}
}
}
out:
return err;
}
#endif
static struct pci_driver skge_driver = {
.name = DRV_NAME,
.id_table = skge_id_table,
.probe = skge_probe,
.remove = __devexit_p(skge_remove),
#ifdef CONFIG_PM
.suspend = skge_suspend,
.resume = skge_resume,
#endif
};
static int __init skge_init_module(void)
{
return pci_register_driver(&skge_driver);
}
static void __exit skge_cleanup_module(void)
{
pci_unregister_driver(&skge_driver);
}
module_init(skge_init_module);
module_exit(skge_cleanup_module);