linux/arch/powerpc/Kconfig

1300 lines
39 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
# SPDX-License-Identifier: GPL-2.0
source "arch/powerpc/platforms/Kconfig.cputype"
config CC_HAS_ELFV2
def_bool PPC64 && $(cc-option, -mabi=elfv2)
config 32BIT
bool
default y if PPC32
config 64BIT
bool
default y if PPC64
config LIVEPATCH_64
def_bool PPC64
depends on LIVEPATCH
config MMU
bool
default y
powerpc/mm: Add support for runtime configuration of ASLR limits Add powerpc support for mmap_rnd_bits and mmap_rnd_compat_bits, which are two sysctls that allow a user to configure the number of bits of randomness used for ASLR. Because of the way the Kconfig for ARCH_MMAP_RND_BITS is defined, we have to construct at least the MIN value in Kconfig, vs in a header which would be more natural. Given that we just go ahead and do it all in Kconfig. At least according to the code (the documentation makes no mention of it), the value is defined as the number of bits of randomisation *of the page*, not the address. This makes some sense, with larger page sizes more of the low bits are forced to zero, which would reduce the randomisation if we didn't take the PAGE_SIZE into account. However it does mean the min/max values have to change depending on the PAGE_SIZE in order to actually limit the amount of address space consumed by the randomisation. The result of that is that we have to define the default values based on both 32-bit vs 64-bit, but also the configured PAGE_SIZE. Furthermore now that we have 128TB address space support on Book3S, we also have to take that into account. Finally we can wire up the value in arch_mmap_rnd(). Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com> Tested-by: Bhupesh Sharma <bhsharma@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2017-04-21 00:36:20 +10:00
config ARCH_MMAP_RND_BITS_MAX
# On Book3S 64, the default virtual address space for 64-bit processes
# is 2^47 (128TB). As a maximum, allow randomisation to consume up to
# 32T of address space (2^45), which should ensure a reasonable gap
# between bottom-up and top-down allocations for applications that
# consume "normal" amounts of address space. Book3S 64 only supports 64K
# and 4K page sizes.
default 29 if PPC_BOOK3S_64 && PPC_64K_PAGES # 29 = 45 (32T) - 16 (64K)
default 33 if PPC_BOOK3S_64 # 33 = 45 (32T) - 12 (4K)
#
# On all other 64-bit platforms (currently only Book3E), the virtual
# address space is 2^46 (64TB). Allow randomisation to consume up to 16T
# of address space (2^44). Only 4K page sizes are supported.
default 32 if 64BIT # 32 = 44 (16T) - 12 (4K)
#
# For 32-bit, use the compat values, as they're the same.
default ARCH_MMAP_RND_COMPAT_BITS_MAX
config ARCH_MMAP_RND_BITS_MIN
# Allow randomisation to consume up to 1GB of address space (2^30).
default 14 if 64BIT && PPC_64K_PAGES # 14 = 30 (1GB) - 16 (64K)
default 18 if 64BIT # 18 = 30 (1GB) - 12 (4K)
#
# For 32-bit, use the compat values, as they're the same.
default ARCH_MMAP_RND_COMPAT_BITS_MIN
config ARCH_MMAP_RND_COMPAT_BITS_MAX
# Total virtual address space for 32-bit processes is 2^31 (2GB).
# Allow randomisation to consume up to 512MB of address space (2^29).
default 11 if PPC_256K_PAGES # 11 = 29 (512MB) - 18 (256K)
default 13 if PPC_64K_PAGES # 13 = 29 (512MB) - 16 (64K)
default 15 if PPC_16K_PAGES # 15 = 29 (512MB) - 14 (16K)
powerpc/mm: Add support for runtime configuration of ASLR limits Add powerpc support for mmap_rnd_bits and mmap_rnd_compat_bits, which are two sysctls that allow a user to configure the number of bits of randomness used for ASLR. Because of the way the Kconfig for ARCH_MMAP_RND_BITS is defined, we have to construct at least the MIN value in Kconfig, vs in a header which would be more natural. Given that we just go ahead and do it all in Kconfig. At least according to the code (the documentation makes no mention of it), the value is defined as the number of bits of randomisation *of the page*, not the address. This makes some sense, with larger page sizes more of the low bits are forced to zero, which would reduce the randomisation if we didn't take the PAGE_SIZE into account. However it does mean the min/max values have to change depending on the PAGE_SIZE in order to actually limit the amount of address space consumed by the randomisation. The result of that is that we have to define the default values based on both 32-bit vs 64-bit, but also the configured PAGE_SIZE. Furthermore now that we have 128TB address space support on Book3S, we also have to take that into account. Finally we can wire up the value in arch_mmap_rnd(). Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com> Tested-by: Bhupesh Sharma <bhsharma@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2017-04-21 00:36:20 +10:00
default 17 # 17 = 29 (512MB) - 12 (4K)
config ARCH_MMAP_RND_COMPAT_BITS_MIN
# Total virtual address space for 32-bit processes is 2^31 (2GB).
# Allow randomisation to consume up to 8MB of address space (2^23).
default 5 if PPC_256K_PAGES # 5 = 23 (8MB) - 18 (256K)
default 7 if PPC_64K_PAGES # 7 = 23 (8MB) - 16 (64K)
default 9 if PPC_16K_PAGES # 9 = 23 (8MB) - 14 (16K)
default 11 # 11 = 23 (8MB) - 12 (4K)
config NR_IRQS
int "Number of virtual interrupt numbers"
range 32 1048576
default "512"
help
This defines the number of virtual interrupt numbers the kernel
can manage. Virtual interrupt numbers are what you see in
/proc/interrupts. If you configure your system to have too few,
drivers will fail to load or worse - handle with care.
config NMI_IPI
bool
powerpc/64s: implement arch-specific hardlockup watchdog Implement an arch-speicfic watchdog rather than use the perf-based hardlockup detector. The new watchdog takes the soft-NMI directly, rather than going through perf. Perf interrupts are to be made maskable in future, so that would prevent the perf detector from working in those regions. Additionally, implement a SMP based detector where all CPUs watch one another by pinging a shared cpumask. This is because powerpc Book3S does not have a true periodic local NMI, but some platforms do implement a true NMI IPI. If a CPU is stuck with interrupts hard disabled, the soft-NMI watchdog does not work, but the SMP watchdog will. Even on platforms without a true NMI IPI to get a good trace from the stuck CPU, other CPUs will notice the lockup sufficiently to report it and panic. [npiggin@gmail.com: honor watchdog disable at boot/hotplug] Link: http://lkml.kernel.org/r/20170621001346.5bb337c9@roar.ozlabs.ibm.com [npiggin@gmail.com: fix false positive warning at CPU unplug] Link: http://lkml.kernel.org/r/20170630080740.20766-1-npiggin@gmail.com [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170616065715.18390-6-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Don Zickus <dzickus@redhat.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:35:52 -07:00
depends on SMP && (DEBUGGER || KEXEC_CORE || HARDLOCKUP_DETECTOR)
default y
config PPC_WATCHDOG
bool
depends on HARDLOCKUP_DETECTOR
depends on HAVE_HARDLOCKUP_DETECTOR_ARCH
default y
help
This is a placeholder when the powerpc hardlockup detector
watchdog is selected (arch/powerpc/kernel/watchdog.c). It is
selected via the generic lockup detector menu which is why we
have no standalone config option for it here.
config STACKTRACE_SUPPORT
bool
default y
config LOCKDEP_SUPPORT
bool
default y
config GENERIC_LOCKBREAK
bool
default y
depends on SMP && PREEMPTION && !PPC_QUEUED_SPINLOCKS
config GENERIC_HWEIGHT
bool
default y
config PPC
bool
default y
#
# Please keep this list sorted alphabetically.
#
select ARCH_32BIT_OFF_T if PPC32
powerpc: Book3S 64-bit outline-only KASAN support Implement a limited form of KASAN for Book3S 64-bit machines running under the Radix MMU, supporting only outline mode. - Enable the compiler instrumentation to check addresses and maintain the shadow region. (This is the guts of KASAN which we can easily reuse.) - Require kasan-vmalloc support to handle modules and anything else in vmalloc space. - KASAN needs to be able to validate all pointer accesses, but we can't instrument all kernel addresses - only linear map and vmalloc. On boot, set up a single page of read-only shadow that marks all iomap and vmemmap accesses as valid. - Document KASAN in powerpc docs. Background ---------- KASAN support on Book3S is a bit tricky to get right: - It would be good to support inline instrumentation so as to be able to catch stack issues that cannot be caught with outline mode. - Inline instrumentation requires a fixed offset. - Book3S runs code with translations off ("real mode") during boot, including a lot of generic device-tree parsing code which is used to determine MMU features. [ppc64 mm note: The kernel installs a linear mapping at effective address c000...-c008.... This is a one-to-one mapping with physical memory from 0000... onward. Because of how memory accesses work on powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the same memory both with translations on (accessing as an 'effective address'), and with translations off (accessing as a 'real address'). This works in both guests and the hypervisor. For more details, see s5.7 of Book III of version 3 of the ISA, in particular the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this KASAN implementation currently only supports Radix.] - Some code - most notably a lot of KVM code - also runs with translations off after boot. - Therefore any offset has to point to memory that is valid with translations on or off. One approach is just to give up on inline instrumentation. This way boot-time checks can be delayed until after the MMU is set is up, and we can just not instrument any code that runs with translations off after booting. Take this approach for now and require outline instrumentation. Previous attempts allowed inline instrumentation. However, they came with some unfortunate restrictions: only physically contiguous memory could be used and it had to be specified at compile time. Maybe we can do better in the future. [paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with CONFIG_KASAN=y will crash during boot on a machine using HPT translation because not all the entry points to the generic KASAN code are protected with a call to kasan_arch_is_ready().] Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> [mpe: Update copyright year and comment formatting] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 20:05:31 +10:00
select ARCH_DISABLE_KASAN_INLINE if PPC_RADIX_MMU
mm: generalize ARCH_ENABLE_MEMORY_[HOTPLUG|HOTREMOVE] ARCH_ENABLE_MEMORY_[HOTPLUG|HOTREMOVE] configs have duplicate definitions on platforms that subscribe them. Instead, just make them generic options which can be selected on applicable platforms. Link: https://lkml.kernel.org/r/1617259448-22529-4-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390] Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Helge Deller <deller@gmx.de> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:38:17 -07:00
select ARCH_ENABLE_MEMORY_HOTPLUG
select ARCH_ENABLE_MEMORY_HOTREMOVE
select ARCH_HAS_COPY_MC if PPC64
usercopy: Check valid lifetime via stack depth One of the things that CONFIG_HARDENED_USERCOPY sanity-checks is whether an object that is about to be copied to/from userspace is overlapping the stack at all. If it is, it performs a number of inexpensive bounds checks. One of the finer-grained checks is whether an object crosses stack frames within the stack region. Doing this on x86 with CONFIG_FRAME_POINTER was cheap/easy. Doing it with ORC was deemed too heavy, and was left out (a while ago), leaving the courser whole-stack check. The LKDTM tests USERCOPY_STACK_FRAME_TO and USERCOPY_STACK_FRAME_FROM try to exercise these cross-frame cases to validate the defense is working. They have been failing ever since ORC was added (which was expected). While Muhammad was investigating various LKDTM failures[1], he asked me for additional details on them, and I realized that when exact stack frame boundary checking is not available (i.e. everything except x86 with FRAME_POINTER), it could check if a stack object is at least "current depth valid", in the sense that any object within the stack region but not between start-of-stack and current_stack_pointer should be considered unavailable (i.e. its lifetime is from a call no longer present on the stack). Introduce ARCH_HAS_CURRENT_STACK_POINTER to track which architectures have actually implemented the common global register alias. Additionally report usercopy bounds checking failures with an offset from current_stack_pointer, which may assist with diagnosing failures. The LKDTM USERCOPY_STACK_FRAME_TO and USERCOPY_STACK_FRAME_FROM tests (once slightly adjusted in a separate patch) pass again with this fixed. [1] https://github.com/kernelci/kernelci-project/issues/84 Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Signed-off-by: Kees Cook <keescook@chromium.org> --- v1: https://lore.kernel.org/lkml/20220216201449.2087956-1-keescook@chromium.org v2: https://lore.kernel.org/lkml/20220224060342.1855457-1-keescook@chromium.org v3: https://lore.kernel.org/lkml/20220225173345.3358109-1-keescook@chromium.org v4: - improve commit log (akpm)
2022-02-16 12:05:28 -08:00
select ARCH_HAS_CURRENT_STACK_POINTER
powerpc: implement CONFIG_DEBUG_VIRTUAL This patch implements CONFIG_DEBUG_VIRTUAL to warn about incorrect use of virt_to_phys() and page_to_phys() Below is the result of test_debug_virtual: [ 1.438746] WARNING: CPU: 0 PID: 1 at ./arch/powerpc/include/asm/io.h:808 test_debug_virtual_init+0x3c/0xd4 [ 1.448156] CPU: 0 PID: 1 Comm: swapper Not tainted 4.20.0-rc5-00560-g6bfb52e23a00-dirty #532 [ 1.457259] NIP: c066c550 LR: c0650ccc CTR: c066c514 [ 1.462257] REGS: c900bdb0 TRAP: 0700 Not tainted (4.20.0-rc5-00560-g6bfb52e23a00-dirty) [ 1.471184] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 48000422 XER: 20000000 [ 1.477811] [ 1.477811] GPR00: c0650ccc c900be60 c60d0000 00000000 006000c0 c9000000 00009032 c7fa0020 [ 1.477811] GPR08: 00002400 00000001 09000000 00000000 c07b5d04 00000000 c00037d8 00000000 [ 1.477811] GPR16: 00000000 00000000 00000000 00000000 c0760000 c0740000 00000092 c0685bb0 [ 1.477811] GPR24: c065042c c068a734 c0685b8c 00000006 00000000 c0760000 c075c3c0 ffffffff [ 1.512711] NIP [c066c550] test_debug_virtual_init+0x3c/0xd4 [ 1.518315] LR [c0650ccc] do_one_initcall+0x8c/0x1cc [ 1.523163] Call Trace: [ 1.525595] [c900be60] [c0567340] 0xc0567340 (unreliable) [ 1.530954] [c900be90] [c0650ccc] do_one_initcall+0x8c/0x1cc [ 1.536551] [c900bef0] [c0651000] kernel_init_freeable+0x1f4/0x2cc [ 1.542658] [c900bf30] [c00037ec] kernel_init+0x14/0x110 [ 1.547913] [c900bf40] [c000e1d0] ret_from_kernel_thread+0x14/0x1c [ 1.553971] Instruction dump: [ 1.556909] 3ca50100 bfa10024 54a5000e 3fa0c076 7c0802a6 3d454000 813dc204 554893be [ 1.564566] 7d294010 7d294910 90010034 39290001 <0f090000> 7c3e0b78 955e0008 3fe0c062 [ 1.572425] ---[ end trace 6f6984225b280ad6 ]--- [ 1.577467] PA: 0x09000000 for VA: 0xc9000000 [ 1.581799] PA: 0x061e8f50 for VA: 0xc61e8f50 Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-12-19 07:09:39 +00:00
select ARCH_HAS_DEBUG_VIRTUAL
select ARCH_HAS_DEBUG_VM_PGTABLE
select ARCH_HAS_DEBUG_WX if STRICT_KERNEL_RWX
select ARCH_HAS_DEVMEM_IS_ALLOWED
select ARCH_HAS_DMA_MAP_DIRECT if PPC_PSERIES
include/linux/string.h: add the option of fortified string.h functions This adds support for compiling with a rough equivalent to the glibc _FORTIFY_SOURCE=1 feature, providing compile-time and runtime buffer overflow checks for string.h functions when the compiler determines the size of the source or destination buffer at compile-time. Unlike glibc, it covers buffer reads in addition to writes. GNU C __builtin_*_chk intrinsics are avoided because they would force a much more complex implementation. They aren't designed to detect read overflows and offer no real benefit when using an implementation based on inline checks. Inline checks don't add up to much code size and allow full use of the regular string intrinsics while avoiding the need for a bunch of _chk functions and per-arch assembly to avoid wrapper overhead. This detects various overflows at compile-time in various drivers and some non-x86 core kernel code. There will likely be issues caught in regular use at runtime too. Future improvements left out of initial implementation for simplicity, as it's all quite optional and can be done incrementally: * Some of the fortified string functions (strncpy, strcat), don't yet place a limit on reads from the source based on __builtin_object_size of the source buffer. * Extending coverage to more string functions like strlcat. * It should be possible to optionally use __builtin_object_size(x, 1) for some functions (C strings) to detect intra-object overflows (like glibc's _FORTIFY_SOURCE=2), but for now this takes the conservative approach to avoid likely compatibility issues. * The compile-time checks should be made available via a separate config option which can be enabled by default (or always enabled) once enough time has passed to get the issues it catches fixed. Kees said: "This is great to have. While it was out-of-tree code, it would have blocked at least CVE-2016-3858 from being exploitable (improper size argument to strlcpy()). I've sent a number of fixes for out-of-bounds-reads that this detected upstream already" [arnd@arndb.de: x86: fix fortified memcpy] Link: http://lkml.kernel.org/r/20170627150047.660360-1-arnd@arndb.de [keescook@chromium.org: avoid panic() in favor of BUG()] Link: http://lkml.kernel.org/r/20170626235122.GA25261@beast [keescook@chromium.org: move from -mm, add ARCH_HAS_FORTIFY_SOURCE, tweak Kconfig help] Link: http://lkml.kernel.org/r/20170526095404.20439-1-danielmicay@gmail.com Link: http://lkml.kernel.org/r/1497903987-21002-8-git-send-email-keescook@chromium.org Signed-off-by: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Daniel Axtens <dja@axtens.net> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:10 -07:00
select ARCH_HAS_FORTIFY_SOURCE
select ARCH_HAS_GCOV_PROFILE_ALL
select ARCH_HAS_HUGEPD if HUGETLB_PAGE
select ARCH_HAS_KCOV
select ARCH_HAS_MEMBARRIER_CALLBACKS
select ARCH_HAS_MEMBARRIER_SYNC_CORE
select ARCH_HAS_MEMREMAP_COMPAT_ALIGN if PPC_64S_HASH_MMU
select ARCH_HAS_MMIOWB if PPC64
select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
select ARCH_HAS_PHYS_TO_DMA
select ARCH_HAS_PMEM_API
select ARCH_HAS_PTE_DEVMAP if PPC_BOOK3S_64
mm: introduce ARCH_HAS_PTE_SPECIAL Currently the PTE special supports is turned on in per architecture header files. Most of the time, it is defined in arch/*/include/asm/pgtable.h depending or not on some other per architecture static definition. This patch introduce a new configuration variable to manage this directly in the Kconfig files. It would later replace __HAVE_ARCH_PTE_SPECIAL. Here notes for some architecture where the definition of __HAVE_ARCH_PTE_SPECIAL is not obvious: arm __HAVE_ARCH_PTE_SPECIAL which is currently defined in arch/arm/include/asm/pgtable-3level.h which is included by arch/arm/include/asm/pgtable.h when CONFIG_ARM_LPAE is set. So select ARCH_HAS_PTE_SPECIAL if ARM_LPAE. powerpc __HAVE_ARCH_PTE_SPECIAL is defined in 2 files: - arch/powerpc/include/asm/book3s/64/pgtable.h - arch/powerpc/include/asm/pte-common.h The first one is included if (PPC_BOOK3S & PPC64) while the second is included in all the other cases. So select ARCH_HAS_PTE_SPECIAL all the time. sparc: __HAVE_ARCH_PTE_SPECIAL is defined if defined(__sparc__) && defined(__arch64__) which are defined through the compiler in sparc/Makefile if !SPARC32 which I assume to be if SPARC64. So select ARCH_HAS_PTE_SPECIAL if SPARC64 There is no functional change introduced by this patch. Link: http://lkml.kernel.org/r/1523433816-14460-2-git-send-email-ldufour@linux.vnet.ibm.com Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com> Suggested-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: David S. Miller <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Albert Ou <albert@sifive.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Christophe LEROY <christophe.leroy@c-s.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:08 -07:00
select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_SCALED_CPUTIME if VIRT_CPU_ACCOUNTING_NATIVE && PPC_BOOK3S_64
2021-06-09 11:34:23 +10:00
select ARCH_HAS_SET_MEMORY
select ARCH_HAS_STRICT_KERNEL_RWX if (PPC_BOOK3S || PPC_8xx || 40x) && !HIBERNATION
select ARCH_HAS_STRICT_KERNEL_RWX if PPC_85xx && !HIBERNATION && !RANDOMIZE_BASE
select ARCH_HAS_STRICT_MODULE_RWX if ARCH_HAS_STRICT_KERNEL_RWX
powerpc: Provide syscall wrapper Implement syscall wrapper as per s390, x86, arm64. When enabled cause handlers to accept parameters from a stack frame rather than from user scratch register state. This allows for user registers to be safely cleared in order to reduce caller influence on speculation within syscall routine. The wrapper is a macro that emits syscall handler symbols that call into the target handler, obtaining its parameters from a struct pt_regs on the stack. As registers are already saved to the stack prior to calling system_call_exception, it appears that this function is executed more efficiently with the new stack-pointer convention than with parameters passed by registers, avoiding the allocation of a stack frame for this method. On a 32-bit system, we see >20% performance increases on the null_syscall microbenchmark, and on a Power 8 the performance gains amortise the cost of clearing and restoring registers which is implemented at the end of this series, seeing final result of ~5.6% performance improvement on null_syscall. Syscalls are wrapped in this fashion on all platforms except for the Cell processor as this commit does not provide SPU support. This can be quickly fixed in a successive patch, but requires spu_sys_callback to allocate a pt_regs structure to satisfy the wrapped calling convention. Co-developed-by: Andrew Donnellan <ajd@linux.ibm.com> Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com> Signed-off-by: Rohan McLure <rmclure@linux.ibm.com> Reviewed-by: Nicholas Piggin <npiggin@gmai.com> [mpe: Make incompatible with COMPAT to retain clearing of high bits of args] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220921065605.1051927-22-rmclure@linux.ibm.com
2022-09-21 16:56:01 +10:00
select ARCH_HAS_SYSCALL_WRAPPER if !SPU_BASE && !COMPAT
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_HAS_UACCESS_FLUSHCACHE
select ARCH_HAS_UBSAN_SANITIZE_ALL
select ARCH_HAVE_NMI_SAFE_CMPXCHG
mm: memblock: make keeping memblock memory opt-in rather than opt-out Most architectures do not need the memblock memory after the page allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the arch Kconfig. Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the logic makes it clear which architectures actually use memblock after system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK to the architectures that are still missing that option. Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-13 17:22:59 -07:00
select ARCH_KEEP_MEMBLOCK
select ARCH_MIGHT_HAVE_PC_PARPORT
select ARCH_MIGHT_HAVE_PC_SERIO
select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX
select ARCH_OPTIONAL_KERNEL_RWX_DEFAULT
select ARCH_SPLIT_ARG64 if PPC32
select ARCH_STACKWALK
select ARCH_SUPPORTS_ATOMIC_RMW
select ARCH_SUPPORTS_DEBUG_PAGEALLOC if PPC_BOOK3S || PPC_8xx || 40x
select ARCH_USE_BUILTIN_BSWAP
select ARCH_USE_CMPXCHG_LOCKREF if PPC64
select ARCH_USE_MEMTEST
powerpc/64s: Implement queued spinlocks and rwlocks These have shown significantly improved performance and fairness when spinlock contention is moderate to high on very large systems. With this series including subsequent patches, on a 16 socket 1536 thread POWER9, a stress test such as same-file open/close from all CPUs gets big speedups, 11620op/s aggregate with simple spinlocks vs 384158op/s (33x faster), where the difference in throughput between the fastest and slowest thread goes from 7x to 1.4x. Thanks to the fast path being identical in terms of atomics and barriers (after a subsequent optimisation patch), single threaded performance is not changed (no measurable difference). On smaller systems, performance and fairness seems to be generally improved. Using dbench on tmpfs as a test (that starts to run into kernel spinlock contention), a 2-socket OpenPOWER POWER9 system was tested with bare metal and KVM guest configurations. Results can be found here: https://github.com/linuxppc/issues/issues/305#issuecomment-663487453 Observations are: - Queued spinlocks are equal when contention is insignificant, as expected and as measured with microbenchmarks. - When there is contention, on bare metal queued spinlocks have better throughput and max latency at all points. - When virtualised, queued spinlocks are slightly worse approaching peak throughput, but significantly better throughput and max latency at all points beyond peak, until queued spinlock maximum latency rises when clients are 2x vCPUs. The regressions haven't been analysed very well yet, there are a lot of things that can be tuned, particularly the paravirtualised locking, but the numbers already look like a good net win even on relatively small systems. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200724131423.1362108-4-npiggin@gmail.com
2020-07-24 23:14:20 +10:00
select ARCH_USE_QUEUED_RWLOCKS if PPC_QUEUED_SPINLOCKS
select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
select ARCH_WANT_IPC_PARSE_VERSION
select ARCH_WANT_IRQS_OFF_ACTIVATE_MM
select ARCH_WANT_LD_ORPHAN_WARN
select ARCH_WANTS_MODULES_DATA_IN_VMALLOC if PPC_BOOK3S_32 || PPC_8xx
powerpc: Book3S 64-bit outline-only KASAN support Implement a limited form of KASAN for Book3S 64-bit machines running under the Radix MMU, supporting only outline mode. - Enable the compiler instrumentation to check addresses and maintain the shadow region. (This is the guts of KASAN which we can easily reuse.) - Require kasan-vmalloc support to handle modules and anything else in vmalloc space. - KASAN needs to be able to validate all pointer accesses, but we can't instrument all kernel addresses - only linear map and vmalloc. On boot, set up a single page of read-only shadow that marks all iomap and vmemmap accesses as valid. - Document KASAN in powerpc docs. Background ---------- KASAN support on Book3S is a bit tricky to get right: - It would be good to support inline instrumentation so as to be able to catch stack issues that cannot be caught with outline mode. - Inline instrumentation requires a fixed offset. - Book3S runs code with translations off ("real mode") during boot, including a lot of generic device-tree parsing code which is used to determine MMU features. [ppc64 mm note: The kernel installs a linear mapping at effective address c000...-c008.... This is a one-to-one mapping with physical memory from 0000... onward. Because of how memory accesses work on powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the same memory both with translations on (accessing as an 'effective address'), and with translations off (accessing as a 'real address'). This works in both guests and the hypervisor. For more details, see s5.7 of Book III of version 3 of the ISA, in particular the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this KASAN implementation currently only supports Radix.] - Some code - most notably a lot of KVM code - also runs with translations off after boot. - Therefore any offset has to point to memory that is valid with translations on or off. One approach is just to give up on inline instrumentation. This way boot-time checks can be delayed until after the MMU is set is up, and we can just not instrument any code that runs with translations off after booting. Take this approach for now and require outline instrumentation. Previous attempts allowed inline instrumentation. However, they came with some unfortunate restrictions: only physically contiguous memory could be used and it had to be specified at compile time. Maybe we can do better in the future. [paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with CONFIG_KASAN=y will crash during boot on a machine using HPT translation because not all the entry points to the generic KASAN code are protected with a call to kasan_arch_is_ready().] Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> [mpe: Update copyright year and comment formatting] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 20:05:31 +10:00
select ARCH_WANTS_NO_INSTR
select ARCH_WEAK_RELEASE_ACQUIRE
select BINFMT_ELF
select BUILDTIME_TABLE_SORT
select CLONE_BACKWARDS
select CPUMASK_OFFSTACK if NR_CPUS >= 8192
select DCACHE_WORD_ACCESS if PPC64 && CPU_LITTLE_ENDIAN
select DMA_OPS_BYPASS if PPC64
select DMA_OPS if PPC64
select DYNAMIC_FTRACE if FUNCTION_TRACER
select EDAC_ATOMIC_SCRUB
select EDAC_SUPPORT
select GENERIC_ATOMIC64 if PPC32
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
select GENERIC_CMOS_UPDATE
select GENERIC_CPU_AUTOPROBE
select GENERIC_CPU_VULNERABILITIES if PPC_BARRIER_NOSPEC
select GENERIC_EARLY_IOREMAP
select GENERIC_GETTIMEOFDAY
select GENERIC_IRQ_SHOW
select GENERIC_IRQ_SHOW_LEVEL
select GENERIC_PCI_IOMAP if PCI
select GENERIC_PTDUMP
select GENERIC_SMP_IDLE_THREAD
powerpc: Convert VDSO update function to use new update_vsyscall interface This converts the powerpc VDSO time update function to use the new interface introduced in commit 576094b7f0aa ("time: Introduce new GENERIC_TIME_VSYSCALL", 2012-09-11). Where the old interface gave us the time as of the last update in seconds and whole nanoseconds, with the new interface we get the nanoseconds part effectively in a binary fixed-point format with tk->tkr_mono.shift bits to the right of the binary point. With the old interface, the fractional nanoseconds got truncated, meaning that the value returned by the VDSO clock_gettime function would have about 1ns of jitter in it compared to the value computed by the generic timekeeping code in the kernel. The powerpc VDSO time functions (clock_gettime and gettimeofday) already work in units of 2^-32 seconds, or 0.23283 ns, because that makes it simple to split the result into seconds and fractional seconds, and represent the fractional seconds in either microseconds or nanoseconds. This is good enough accuracy for now, so this patch avoids changing how the VDSO works or the interface in the VDSO data page. This patch converts the powerpc update_vsyscall_old to be called update_vsyscall and use the new interface. We convert the fractional second to units of 2^-32 seconds without truncating to whole nanoseconds. (There is still a conversion to whole nanoseconds for any legacy users of the vdso_data/systemcfg stamp_xtime field.) In addition, this improves the accuracy of the computation of tb_to_xs for those systems with high-frequency timebase clocks (>= 268.5 MHz) by doing the right shift in two parts, one before the multiplication and one after, rather than doing the right shift before the multiplication. (We can't do all of the right shift after the multiplication unless we use 128-bit arithmetic.) Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Acked-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-05-27 18:04:52 +10:00
select GENERIC_TIME_VSYSCALL
select GENERIC_VDSO_TIME_NS
select HAVE_ARCH_AUDITSYSCALL
select HAVE_ARCH_HUGE_VMALLOC if HAVE_ARCH_HUGE_VMAP
select HAVE_ARCH_HUGE_VMAP if PPC_RADIX_MMU || PPC_8xx
select HAVE_ARCH_JUMP_LABEL
select HAVE_ARCH_JUMP_LABEL_RELATIVE
select HAVE_ARCH_KASAN if PPC32 && PPC_PAGE_SHIFT <= 14
powerpc: Book3S 64-bit outline-only KASAN support Implement a limited form of KASAN for Book3S 64-bit machines running under the Radix MMU, supporting only outline mode. - Enable the compiler instrumentation to check addresses and maintain the shadow region. (This is the guts of KASAN which we can easily reuse.) - Require kasan-vmalloc support to handle modules and anything else in vmalloc space. - KASAN needs to be able to validate all pointer accesses, but we can't instrument all kernel addresses - only linear map and vmalloc. On boot, set up a single page of read-only shadow that marks all iomap and vmemmap accesses as valid. - Document KASAN in powerpc docs. Background ---------- KASAN support on Book3S is a bit tricky to get right: - It would be good to support inline instrumentation so as to be able to catch stack issues that cannot be caught with outline mode. - Inline instrumentation requires a fixed offset. - Book3S runs code with translations off ("real mode") during boot, including a lot of generic device-tree parsing code which is used to determine MMU features. [ppc64 mm note: The kernel installs a linear mapping at effective address c000...-c008.... This is a one-to-one mapping with physical memory from 0000... onward. Because of how memory accesses work on powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the same memory both with translations on (accessing as an 'effective address'), and with translations off (accessing as a 'real address'). This works in both guests and the hypervisor. For more details, see s5.7 of Book III of version 3 of the ISA, in particular the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this KASAN implementation currently only supports Radix.] - Some code - most notably a lot of KVM code - also runs with translations off after boot. - Therefore any offset has to point to memory that is valid with translations on or off. One approach is just to give up on inline instrumentation. This way boot-time checks can be delayed until after the MMU is set is up, and we can just not instrument any code that runs with translations off after booting. Take this approach for now and require outline instrumentation. Previous attempts allowed inline instrumentation. However, they came with some unfortunate restrictions: only physically contiguous memory could be used and it had to be specified at compile time. Maybe we can do better in the future. [paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with CONFIG_KASAN=y will crash during boot on a machine using HPT translation because not all the entry points to the generic KASAN code are protected with a call to kasan_arch_is_ready().] Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> [mpe: Update copyright year and comment formatting] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 20:05:31 +10:00
select HAVE_ARCH_KASAN if PPC_RADIX_MMU
select HAVE_ARCH_KASAN if PPC_BOOK3E_64
powerpc: Book3S 64-bit outline-only KASAN support Implement a limited form of KASAN for Book3S 64-bit machines running under the Radix MMU, supporting only outline mode. - Enable the compiler instrumentation to check addresses and maintain the shadow region. (This is the guts of KASAN which we can easily reuse.) - Require kasan-vmalloc support to handle modules and anything else in vmalloc space. - KASAN needs to be able to validate all pointer accesses, but we can't instrument all kernel addresses - only linear map and vmalloc. On boot, set up a single page of read-only shadow that marks all iomap and vmemmap accesses as valid. - Document KASAN in powerpc docs. Background ---------- KASAN support on Book3S is a bit tricky to get right: - It would be good to support inline instrumentation so as to be able to catch stack issues that cannot be caught with outline mode. - Inline instrumentation requires a fixed offset. - Book3S runs code with translations off ("real mode") during boot, including a lot of generic device-tree parsing code which is used to determine MMU features. [ppc64 mm note: The kernel installs a linear mapping at effective address c000...-c008.... This is a one-to-one mapping with physical memory from 0000... onward. Because of how memory accesses work on powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the same memory both with translations on (accessing as an 'effective address'), and with translations off (accessing as a 'real address'). This works in both guests and the hypervisor. For more details, see s5.7 of Book III of version 3 of the ISA, in particular the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this KASAN implementation currently only supports Radix.] - Some code - most notably a lot of KVM code - also runs with translations off after boot. - Therefore any offset has to point to memory that is valid with translations on or off. One approach is just to give up on inline instrumentation. This way boot-time checks can be delayed until after the MMU is set is up, and we can just not instrument any code that runs with translations off after booting. Take this approach for now and require outline instrumentation. Previous attempts allowed inline instrumentation. However, they came with some unfortunate restrictions: only physically contiguous memory could be used and it had to be specified at compile time. Maybe we can do better in the future. [paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with CONFIG_KASAN=y will crash during boot on a machine using HPT translation because not all the entry points to the generic KASAN code are protected with a call to kasan_arch_is_ready().] Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> [mpe: Update copyright year and comment formatting] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 20:05:31 +10:00
select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
select HAVE_ARCH_KFENCE if ARCH_SUPPORTS_DEBUG_PAGEALLOC
select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
select HAVE_ARCH_KGDB
powerpc/mm: Add support for runtime configuration of ASLR limits Add powerpc support for mmap_rnd_bits and mmap_rnd_compat_bits, which are two sysctls that allow a user to configure the number of bits of randomness used for ASLR. Because of the way the Kconfig for ARCH_MMAP_RND_BITS is defined, we have to construct at least the MIN value in Kconfig, vs in a header which would be more natural. Given that we just go ahead and do it all in Kconfig. At least according to the code (the documentation makes no mention of it), the value is defined as the number of bits of randomisation *of the page*, not the address. This makes some sense, with larger page sizes more of the low bits are forced to zero, which would reduce the randomisation if we didn't take the PAGE_SIZE into account. However it does mean the min/max values have to change depending on the PAGE_SIZE in order to actually limit the amount of address space consumed by the randomisation. The result of that is that we have to define the default values based on both 32-bit vs 64-bit, but also the configured PAGE_SIZE. Furthermore now that we have 128TB address space support on Book3S, we also have to take that into account. Finally we can wire up the value in arch_mmap_rnd(). Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com> Tested-by: Bhupesh Sharma <bhsharma@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2017-04-21 00:36:20 +10:00
select HAVE_ARCH_MMAP_RND_BITS
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
select HAVE_ARCH_NVRAM_OPS
select HAVE_ARCH_SECCOMP_FILTER
select HAVE_ARCH_TRACEHOOK
select HAVE_ASM_MODVERSIONS
select HAVE_CONTEXT_TRACKING_USER if PPC64
select HAVE_C_RECORDMCOUNT
select HAVE_DEBUG_KMEMLEAK
select HAVE_DEBUG_STACKOVERFLOW
select HAVE_DYNAMIC_FTRACE
select HAVE_DYNAMIC_FTRACE_WITH_ARGS if MPROFILE_KERNEL || PPC32
select HAVE_DYNAMIC_FTRACE_WITH_REGS if MPROFILE_KERNEL || PPC32
powerpc/bpf: Implement extended BPF on PPC32 Implement Extended Berkeley Packet Filter on Powerpc 32 Test result with test_bpf module: test_bpf: Summary: 378 PASSED, 0 FAILED, [354/366 JIT'ed] Registers mapping: [BPF_REG_0] = r11-r12 /* function arguments */ [BPF_REG_1] = r3-r4 [BPF_REG_2] = r5-r6 [BPF_REG_3] = r7-r8 [BPF_REG_4] = r9-r10 [BPF_REG_5] = r21-r22 (Args 9 and 10 come in via the stack) /* non volatile registers */ [BPF_REG_6] = r23-r24 [BPF_REG_7] = r25-r26 [BPF_REG_8] = r27-r28 [BPF_REG_9] = r29-r30 /* frame pointer aka BPF_REG_10 */ [BPF_REG_FP] = r17-r18 /* eBPF jit internal registers */ [BPF_REG_AX] = r19-r20 [TMP_REG] = r31 As PPC32 doesn't have a redzone in the stack, a stack frame must always be set in order to host at least the tail count counter. The stack frame remains for tail calls, it is set by the first callee and freed by the last callee. r0 is used as temporary register as much as possible. It is referenced directly in the code in order to avoid misusing it, because some instructions interpret it as value 0 instead of register r0 (ex: addi, addis, stw, lwz, ...) The following operations are not implemented: case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */ case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */ case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */ The following operations are only implemented for power of two constants: case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */ case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */ Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/61d8b149176ddf99e7d5cef0b6dc1598583ca202.1616430991.git.christophe.leroy@csgroup.eu
2021-03-22 16:37:52 +00:00
select HAVE_EBPF_JIT
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select HAVE_FAST_GUP
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_FUNCTION_DESCRIPTORS if PPC64_ELF_ABI_V1
select HAVE_FUNCTION_ERROR_INJECTION
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_FUNCTION_TRACER
select HAVE_GCC_PLUGINS if GCC_VERSION >= 50200 # plugin support on gcc <= 5.1 is buggy on PPC
powerpc/vdso: Switch VDSO to generic C implementation. With the C VDSO, the performance is slightly lower, but it is worth it as it will ease maintenance and evolution, and also brings clocks that are not supported with the ASM VDSO. On an 8xx at 132 MHz, vdsotest with the ASM VDSO: gettimeofday: vdso: 828 nsec/call clock-getres-realtime-coarse: vdso: 391 nsec/call clock-gettime-realtime-coarse: vdso: 614 nsec/call clock-getres-realtime: vdso: 460 nsec/call clock-gettime-realtime: vdso: 876 nsec/call clock-getres-monotonic-coarse: vdso: 399 nsec/call clock-gettime-monotonic-coarse: vdso: 691 nsec/call clock-getres-monotonic: vdso: 460 nsec/call clock-gettime-monotonic: vdso: 1026 nsec/call On an 8xx at 132 MHz, vdsotest with the C VDSO: gettimeofday: vdso: 955 nsec/call clock-getres-realtime-coarse: vdso: 545 nsec/call clock-gettime-realtime-coarse: vdso: 592 nsec/call clock-getres-realtime: vdso: 545 nsec/call clock-gettime-realtime: vdso: 941 nsec/call clock-getres-monotonic-coarse: vdso: 545 nsec/call clock-gettime-monotonic-coarse: vdso: 591 nsec/call clock-getres-monotonic: vdso: 545 nsec/call clock-gettime-monotonic: vdso: 940 nsec/call It is even better for gettime with monotonic clocks. Unsupported clocks with ASM VDSO: clock-gettime-boottime: vdso: 3851 nsec/call clock-gettime-tai: vdso: 3852 nsec/call clock-gettime-monotonic-raw: vdso: 3396 nsec/call Same clocks with C VDSO: clock-gettime-tai: vdso: 941 nsec/call clock-gettime-monotonic-raw: vdso: 1001 nsec/call clock-gettime-monotonic-coarse: vdso: 591 nsec/call On an 8321E at 333 MHz, vdsotest with the ASM VDSO: gettimeofday: vdso: 220 nsec/call clock-getres-realtime-coarse: vdso: 102 nsec/call clock-gettime-realtime-coarse: vdso: 178 nsec/call clock-getres-realtime: vdso: 129 nsec/call clock-gettime-realtime: vdso: 235 nsec/call clock-getres-monotonic-coarse: vdso: 105 nsec/call clock-gettime-monotonic-coarse: vdso: 208 nsec/call clock-getres-monotonic: vdso: 129 nsec/call clock-gettime-monotonic: vdso: 274 nsec/call On an 8321E at 333 MHz, vdsotest with the C VDSO: gettimeofday: vdso: 272 nsec/call clock-getres-realtime-coarse: vdso: 160 nsec/call clock-gettime-realtime-coarse: vdso: 184 nsec/call clock-getres-realtime: vdso: 166 nsec/call clock-gettime-realtime: vdso: 281 nsec/call clock-getres-monotonic-coarse: vdso: 160 nsec/call clock-gettime-monotonic-coarse: vdso: 184 nsec/call clock-getres-monotonic: vdso: 169 nsec/call clock-gettime-monotonic: vdso: 275 nsec/call On a Power9 Nimbus DD2.2 at 3.8GHz, with the ASM VDSO: clock-gettime-monotonic: vdso: 35 nsec/call clock-getres-monotonic: vdso: 16 nsec/call clock-gettime-monotonic-coarse: vdso: 18 nsec/call clock-getres-monotonic-coarse: vdso: 522 nsec/call clock-gettime-monotonic-raw: vdso: 598 nsec/call clock-getres-monotonic-raw: vdso: 520 nsec/call clock-gettime-realtime: vdso: 34 nsec/call clock-getres-realtime: vdso: 16 nsec/call clock-gettime-realtime-coarse: vdso: 18 nsec/call clock-getres-realtime-coarse: vdso: 517 nsec/call getcpu: vdso: 8 nsec/call gettimeofday: vdso: 25 nsec/call And with the C VDSO: clock-gettime-monotonic: vdso: 37 nsec/call clock-getres-monotonic: vdso: 20 nsec/call clock-gettime-monotonic-coarse: vdso: 21 nsec/call clock-getres-monotonic-coarse: vdso: 19 nsec/call clock-gettime-monotonic-raw: vdso: 38 nsec/call clock-getres-monotonic-raw: vdso: 20 nsec/call clock-gettime-realtime: vdso: 37 nsec/call clock-getres-realtime: vdso: 20 nsec/call clock-gettime-realtime-coarse: vdso: 20 nsec/call clock-getres-realtime-coarse: vdso: 19 nsec/call getcpu: vdso: 8 nsec/call gettimeofday: vdso: 28 nsec/call Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-8-mpe@ellerman.id.au
2020-11-27 00:10:05 +11:00
select HAVE_GENERIC_VDSO
select HAVE_HARDLOCKUP_DETECTOR_ARCH if PPC_BOOK3S_64 && SMP
select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI && !HAVE_HARDLOCKUP_DETECTOR_ARCH
select HAVE_HW_BREAKPOINT if PERF_EVENTS && (PPC_BOOK3S || PPC_8xx)
select HAVE_IOREMAP_PROT
select HAVE_IRQ_TIME_ACCOUNTING
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZMA if DEFAULT_UIMAGE
select HAVE_KERNEL_LZO if DEFAULT_UIMAGE
select HAVE_KERNEL_XZ if PPC_BOOK3S || 44x
select HAVE_KPROBES
select HAVE_KPROBES_ON_FTRACE
select HAVE_KRETPROBES
select HAVE_LD_DEAD_CODE_DATA_ELIMINATION
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
select HAVE_MOD_ARCH_SPECIFIC
powerpc/64s: implement arch-specific hardlockup watchdog Implement an arch-speicfic watchdog rather than use the perf-based hardlockup detector. The new watchdog takes the soft-NMI directly, rather than going through perf. Perf interrupts are to be made maskable in future, so that would prevent the perf detector from working in those regions. Additionally, implement a SMP based detector where all CPUs watch one another by pinging a shared cpumask. This is because powerpc Book3S does not have a true periodic local NMI, but some platforms do implement a true NMI IPI. If a CPU is stuck with interrupts hard disabled, the soft-NMI watchdog does not work, but the SMP watchdog will. Even on platforms without a true NMI IPI to get a good trace from the stuck CPU, other CPUs will notice the lockup sufficiently to report it and panic. [npiggin@gmail.com: honor watchdog disable at boot/hotplug] Link: http://lkml.kernel.org/r/20170621001346.5bb337c9@roar.ozlabs.ibm.com [npiggin@gmail.com: fix false positive warning at CPU unplug] Link: http://lkml.kernel.org/r/20170630080740.20766-1-npiggin@gmail.com [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170616065715.18390-6-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Don Zickus <dzickus@redhat.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:35:52 -07:00
select HAVE_NMI if PERF_EVENTS || (PPC64 && PPC_BOOK3S)
select HAVE_OPTPROBES
select HAVE_OBJTOOL if PPC32 || MPROFILE_KERNEL
select HAVE_OBJTOOL_MCOUNT if HAVE_OBJTOOL
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 12:02:48 +02:00
select HAVE_PERF_EVENTS
select HAVE_PERF_EVENTS_NMI if PPC64
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_RELIABLE_STACKTRACE
select HAVE_RSEQ
mm: percpu: generalize percpu related config Patch series "mm: percpu: Cleanup percpu first chunk function". When supporting page mapping percpu first chunk allocator on arm64, we found there are lots of duplicated codes in percpu embed/page first chunk allocator. This patchset is aimed to cleanup them and should no function change. The currently supported status about 'embed' and 'page' in Archs shows below, embed: NEED_PER_CPU_PAGE_FIRST_CHUNK page: NEED_PER_CPU_EMBED_FIRST_CHUNK embed page ------------------------ arm64 Y Y mips Y N powerpc Y Y riscv Y N sparc Y Y x86 Y Y ------------------------ There are two interfaces about percpu first chunk allocator, extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); extern int __init pcpu_page_first_chunk(size_t reserved_size, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn, - pcpu_fc_populate_pte_fn_t populate_pte_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); The pcpu_fc_alloc_fn_t/pcpu_fc_free_fn_t is killed, we provide generic pcpu_fc_alloc() and pcpu_fc_free() function, which are called in the pcpu_embed/page_first_chunk(). 1) For pcpu_embed_first_chunk(), pcpu_fc_cpu_to_node_fn_t is needed to be provided when archs supported NUMA. 2) For pcpu_page_first_chunk(), the pcpu_fc_populate_pte_fn_t is killed too, a generic pcpu_populate_pte() which marked '__weak' is provided, if you need a different function to populate pte on the arch(like x86), please provide its own implementation. [1] https://github.com/kevin78/linux.git percpu-cleanup This patch (of 4): The HAVE_SETUP_PER_CPU_AREA/NEED_PER_CPU_EMBED_FIRST_CHUNK/ NEED_PER_CPU_PAGE_FIRST_CHUNK/USE_PERCPU_NUMA_NODE_ID configs, which have duplicate definitions on platforms that subscribe it. Move them into mm, drop these redundant definitions and instead just select it on applicable platforms. Link: https://lkml.kernel.org/r/20211216112359.103822-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20211216112359.103822-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Cc: Will Deacon <will@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-19 18:07:41 -08:00
select HAVE_SETUP_PER_CPU_AREA if PPC64
select HAVE_SOFTIRQ_ON_OWN_STACK
select HAVE_STACKPROTECTOR if PPC32 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r2)
select HAVE_STACKPROTECTOR if PPC64 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r13)
powerpc/32: Add support for out-of-line static calls Add support for out-of-line static calls on PPC32. This change improve performance of calls to global function pointers by using direct calls instead of indirect calls. The trampoline is initialy populated with a 'blr' or branch to target, followed by an unreachable long jump sequence. In order to cater with parallele execution, the trampoline needs to be updated in a way that ensures it remains consistent at all time. This means we can't use the traditional lis/addi to load r12 with the target address, otherwise there would be a window during which the first instruction contains the upper part of the new target address while the second instruction still contains the lower part of the old target address. To avoid that the target address is stored just after the 'bctr' and loaded from there with a single instruction. Then, depending on the target distance, arch_static_call_transform() will either replace the first instruction by a direct 'bl <target>' or 'nop' in order to have the trampoline fall through the long jump sequence. For the special case of __static_call_return0(), to avoid the risk of a far branch, a version of it is inlined at the end of the trampoline. Performancewise the long jump sequence is probably not better than the indirect calls set by GCC when we don't use static calls, but such calls are unlikely to be required on powerpc32: With most configurations the kernel size is far below 32 Mbytes so only modules may happen to be too far. And even modules are likely to be close enough as they are allocated below the kernel core and as close as possible of the kernel text. static_call selftest is running successfully with this change. With this patch, __do_irq() has the following sequence to trace irq entries: c0004a00 <__SCT__tp_func_irq_entry>: c0004a00: 48 00 00 e0 b c0004ae0 <__traceiter_irq_entry> c0004a04: 3d 80 c0 00 lis r12,-16384 c0004a08: 81 8c 4a 1c lwz r12,18972(r12) c0004a0c: 7d 89 03 a6 mtctr r12 c0004a10: 4e 80 04 20 bctr c0004a14: 38 60 00 00 li r3,0 c0004a18: 4e 80 00 20 blr c0004a1c: 00 00 00 00 .long 0x0 ... c0005654 <__do_irq>: ... c0005664: 7c 7f 1b 78 mr r31,r3 ... c00056a0: 81 22 00 00 lwz r9,0(r2) c00056a4: 39 29 00 01 addi r9,r9,1 c00056a8: 91 22 00 00 stw r9,0(r2) c00056ac: 3d 20 c0 af lis r9,-16209 c00056b0: 81 29 74 cc lwz r9,29900(r9) c00056b4: 2c 09 00 00 cmpwi r9,0 c00056b8: 41 82 00 10 beq c00056c8 <__do_irq+0x74> c00056bc: 80 69 00 04 lwz r3,4(r9) c00056c0: 7f e4 fb 78 mr r4,r31 c00056c4: 4b ff f3 3d bl c0004a00 <__SCT__tp_func_irq_entry> Before this patch, __do_irq() was doing the following to trace irq entries: c0005700 <__do_irq>: ... c0005710: 7c 7e 1b 78 mr r30,r3 ... c000574c: 93 e1 00 0c stw r31,12(r1) c0005750: 81 22 00 00 lwz r9,0(r2) c0005754: 39 29 00 01 addi r9,r9,1 c0005758: 91 22 00 00 stw r9,0(r2) c000575c: 3d 20 c0 af lis r9,-16209 c0005760: 83 e9 f4 cc lwz r31,-2868(r9) c0005764: 2c 1f 00 00 cmpwi r31,0 c0005768: 41 82 00 24 beq c000578c <__do_irq+0x8c> c000576c: 81 3f 00 00 lwz r9,0(r31) c0005770: 80 7f 00 04 lwz r3,4(r31) c0005774: 7d 29 03 a6 mtctr r9 c0005778: 7f c4 f3 78 mr r4,r30 c000577c: 4e 80 04 21 bctrl c0005780: 85 3f 00 0c lwzu r9,12(r31) c0005784: 2c 09 00 00 cmpwi r9,0 c0005788: 40 82 ff e4 bne c000576c <__do_irq+0x6c> Behind the fact of now using a direct 'bl' instead of a 'load/mtctr/bctr' sequence, we can also see that we get one less register on the stack. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/6ec2a7865ed6a5ec54ab46d026785bafe1d837ea.1630484892.git.christophe.leroy@csgroup.eu
2021-09-01 08:30:21 +00:00
select HAVE_STATIC_CALL if PPC32
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_VIRT_CPU_ACCOUNTING
select HUGETLB_PAGE_SIZE_VARIABLE if PPC_BOOK3S_64 && HUGETLB_PAGE
select IOMMU_HELPER if PPC64
select IRQ_DOMAIN
select IRQ_FORCED_THREADING
select KASAN_VMALLOC if KASAN && MODULES
select MMU_GATHER_PAGE_SIZE
select MMU_GATHER_RCU_TABLE_FREE
select MMU_GATHER_MERGE_VMAS
2012-09-28 14:31:03 +09:30
select MODULES_USE_ELF_RELA
select NEED_DMA_MAP_STATE if PPC64 || NOT_COHERENT_CACHE
mm: percpu: generalize percpu related config Patch series "mm: percpu: Cleanup percpu first chunk function". When supporting page mapping percpu first chunk allocator on arm64, we found there are lots of duplicated codes in percpu embed/page first chunk allocator. This patchset is aimed to cleanup them and should no function change. The currently supported status about 'embed' and 'page' in Archs shows below, embed: NEED_PER_CPU_PAGE_FIRST_CHUNK page: NEED_PER_CPU_EMBED_FIRST_CHUNK embed page ------------------------ arm64 Y Y mips Y N powerpc Y Y riscv Y N sparc Y Y x86 Y Y ------------------------ There are two interfaces about percpu first chunk allocator, extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); extern int __init pcpu_page_first_chunk(size_t reserved_size, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn, - pcpu_fc_populate_pte_fn_t populate_pte_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); The pcpu_fc_alloc_fn_t/pcpu_fc_free_fn_t is killed, we provide generic pcpu_fc_alloc() and pcpu_fc_free() function, which are called in the pcpu_embed/page_first_chunk(). 1) For pcpu_embed_first_chunk(), pcpu_fc_cpu_to_node_fn_t is needed to be provided when archs supported NUMA. 2) For pcpu_page_first_chunk(), the pcpu_fc_populate_pte_fn_t is killed too, a generic pcpu_populate_pte() which marked '__weak' is provided, if you need a different function to populate pte on the arch(like x86), please provide its own implementation. [1] https://github.com/kevin78/linux.git percpu-cleanup This patch (of 4): The HAVE_SETUP_PER_CPU_AREA/NEED_PER_CPU_EMBED_FIRST_CHUNK/ NEED_PER_CPU_PAGE_FIRST_CHUNK/USE_PERCPU_NUMA_NODE_ID configs, which have duplicate definitions on platforms that subscribe it. Move them into mm, drop these redundant definitions and instead just select it on applicable platforms. Link: https://lkml.kernel.org/r/20211216112359.103822-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20211216112359.103822-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Cc: Will Deacon <will@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-19 18:07:41 -08:00
select NEED_PER_CPU_EMBED_FIRST_CHUNK if PPC64
select NEED_PER_CPU_PAGE_FIRST_CHUNK if PPC64
select NEED_SG_DMA_LENGTH
select OF
select OF_DMA_DEFAULT_COHERENT if !NOT_COHERENT_CACHE
select OF_EARLY_FLATTREE
select OLD_SIGACTION if PPC32
select OLD_SIGSUSPEND
select PCI_DOMAINS if PCI
select PCI_MSI_ARCH_FALLBACKS if PCI_MSI
select PCI_SYSCALL if PCI
select PPC_DAWR if PPC64
select RTC_LIB
select SPARSE_IRQ
select STRICT_KERNEL_RWX if STRICT_MODULE_RWX
select SYSCTL_EXCEPTION_TRACE
select THREAD_INFO_IN_TASK
select TRACE_IRQFLAGS_SUPPORT
#
# Please keep this list sorted alphabetically.
#
config PPC_LONG_DOUBLE_128
depends on PPC64 && ALTIVEC
def_bool $(success,test "$(shell,echo __LONG_DOUBLE_128__ | $(CC) -E -P -)" = 1)
config PPC_BARRIER_NOSPEC
bool
default y
depends on PPC_BOOK3S_64 || PPC_E500
config PPC_HAS_LBARX_LHARX
bool
config EARLY_PRINTK
bool
default y
config PANIC_TIMEOUT
int
default 180
config COMPAT
bool "Enable support for 32bit binaries"
depends on PPC64
depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
default y if !CPU_LITTLE_ENDIAN
2012-03-15 13:13:38 -04:00
select ARCH_WANT_OLD_COMPAT_IPC
select COMPAT_OLD_SIGACTION
config SCHED_OMIT_FRAME_POINTER
bool
default y
config ARCH_MAY_HAVE_PC_FDC
bool
default PCI
config PPC_UDBG_16550
bool
config GENERIC_TBSYNC
bool
default y if PPC32 && SMP
config AUDIT_ARCH
bool
default y
config GENERIC_BUG
bool
default y
depends on BUG
config GENERIC_BUG_RELATIVE_POINTERS
def_bool y
depends on GENERIC_BUG
config SYS_SUPPORTS_APM_EMULATION
default y if PMAC_APM_EMU
bool
config EPAPR_BOOT
bool
help
Used to allow a board to specify it wants an ePAPR compliant wrapper.
config DEFAULT_UIMAGE
bool
help
Used to allow a board to specify it wants a uImage built by default
config ARCH_HIBERNATION_POSSIBLE
bool
default y
config ARCH_SUSPEND_POSSIBLE
def_bool y
depends on ADB_PMU || PPC_EFIKA || PPC_LITE5200 || PPC_83xx || \
(PPC_85xx && !PPC_E500MC) || PPC_86xx || PPC_PSERIES \
|| 44x || 40x
config ARCH_SUSPEND_NONZERO_CPU
def_bool y
depends on PPC_POWERNV || PPC_PSERIES
powerpc/memhotplug: Add add_pages override for PPC With commit ffa0b64e3be5 ("powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit") the kernel now validate the addr against high_memory value. This results in the below BUG_ON with dax pfns. [ 635.798741][T26531] kernel BUG at mm/page_alloc.c:5521! 1:mon> e cpu 0x1: Vector: 700 (Program Check) at [c000000007287630] pc: c00000000055ed48: free_pages.part.0+0x48/0x110 lr: c00000000053ca70: tlb_finish_mmu+0x80/0xd0 sp: c0000000072878d0 msr: 800000000282b033 current = 0xc00000000afabe00 paca = 0xc00000037ffff300 irqmask: 0x03 irq_happened: 0x05 pid = 26531, comm = 50-landscape-sy kernel BUG at :5521! Linux version 5.19.0-rc3-14659-g4ec05be7c2e1 (kvaneesh@ltc-boston8) (gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #625 SMP Thu Jun 23 00:35:43 CDT 2022 1:mon> t [link register ] c00000000053ca70 tlb_finish_mmu+0x80/0xd0 [c0000000072878d0] c00000000053ca54 tlb_finish_mmu+0x64/0xd0 (unreliable) [c000000007287900] c000000000539424 exit_mmap+0xe4/0x2a0 [c0000000072879e0] c00000000019fc1c mmput+0xcc/0x210 [c000000007287a20] c000000000629230 begin_new_exec+0x5e0/0xf40 [c000000007287ae0] c00000000070b3cc load_elf_binary+0x3ac/0x1e00 [c000000007287c10] c000000000627af0 bprm_execve+0x3b0/0xaf0 [c000000007287cd0] c000000000628414 do_execveat_common.isra.0+0x1e4/0x310 [c000000007287d80] c00000000062858c sys_execve+0x4c/0x60 [c000000007287db0] c00000000002c1b0 system_call_exception+0x160/0x2c0 [c000000007287e10] c00000000000c53c system_call_common+0xec/0x250 The fix is to make sure we update high_memory on memory hotplug. This is similar to what x86 does in commit 3072e413e305 ("mm/memory_hotplug: introduce add_pages") Fixes: ffa0b64e3be5 ("powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit") Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220629050925.31447-1-aneesh.kumar@linux.ibm.com
2022-06-29 10:39:25 +05:30
config ARCH_HAS_ADD_PAGES
def_bool y
depends on ARCH_ENABLE_MEMORY_HOTPLUG
config PPC_DCR_NATIVE
bool
config PPC_DCR_MMIO
bool
config PPC_DCR
bool
depends on PPC_DCR_NATIVE || PPC_DCR_MMIO
default y
config PPC_PCI_BUS_NUM_DOMAIN_DEPENDENT
depends on PPC32
depends on !PPC_PMAC && !PPC_CHRP
bool "Assign PCI bus numbers from zero individually for each PCI domain"
help
By default on PPC32 were PCI bus numbers unique across all PCI domains.
So system could have only 256 PCI buses independently of available
PCI domains. When this option is enabled then PCI bus numbers are
PCI domain dependent and each PCI controller on own domain can have
256 PCI buses, like it is on other Linux architectures.
config PPC_OF_PLATFORM_PCI
bool
depends on PCI
depends on PPC64 # not supported on 32 bits yet
config ARCH_SUPPORTS_UPROBES
def_bool y
config PPC_ADV_DEBUG_REGS
bool
depends on 40x || BOOKE
default y
config PPC_ADV_DEBUG_IACS
int
depends on PPC_ADV_DEBUG_REGS
default 4 if 44x
default 2
config PPC_ADV_DEBUG_DACS
int
depends on PPC_ADV_DEBUG_REGS
default 2
config PPC_ADV_DEBUG_DVCS
int
depends on PPC_ADV_DEBUG_REGS
default 2 if 44x
default 0
config PPC_ADV_DEBUG_DAC_RANGE
bool
depends on PPC_ADV_DEBUG_REGS && 44x
default y
config PPC_DAWR
bool
config PGTABLE_LEVELS
int
default 2 if !PPC64
default 4
source "arch/powerpc/sysdev/Kconfig"
source "arch/powerpc/platforms/Kconfig"
menu "Kernel options"
config HIGHMEM
bool "High memory support"
depends on PPC32
select KMAP_LOCAL
source "kernel/Kconfig.hz"
config MATH_EMULATION
bool "Math emulation"
depends on 4xx || PPC_8xx || PPC_MPC832x || BOOKE || PPC_MICROWATT
select PPC_FPU_REGS
help
Some PowerPC chips designed for embedded applications do not have
a floating-point unit and therefore do not implement the
floating-point instructions in the PowerPC instruction set. If you
say Y here, the kernel will include code to emulate a floating-point
unit, which will allow programs that use floating-point
instructions to run.
This is also useful to emulate missing (optional) instructions
such as fsqrt on cores that do have an FPU but do not implement
them (such as Freescale BookE).
choice
prompt "Math emulation options"
default MATH_EMULATION_FULL
depends on MATH_EMULATION
config MATH_EMULATION_FULL
bool "Emulate all the floating point instructions"
help
Select this option will enable the kernel to support to emulate
all the floating point instructions. If your SoC doesn't have
a FPU, you should select this.
config MATH_EMULATION_HW_UNIMPLEMENTED
bool "Just emulate the FPU unimplemented instructions"
help
Select this if you know there does have a hardware FPU on your
SoC, but some floating point instructions are not implemented by that.
endchoice
config PPC_TRANSACTIONAL_MEM
bool "Transactional Memory support for POWERPC"
depends on PPC_BOOK3S_64
depends on SMP
select ALTIVEC
select VSX
help
Support user-mode Transactional Memory on POWERPC.
config PPC_UV
bool "Ultravisor support"
depends on KVM_BOOK3S_HV_POSSIBLE
depends on DEVICE_PRIVATE
default n
help
This option paravirtualizes the kernel to run in POWER platforms that
supports the Protected Execution Facility (PEF). On such platforms,
the ultravisor firmware runs at a privilege level above the
hypervisor.
If unsure, say "N".
config LD_HEAD_STUB_CATCH
bool "Reserve 256 bytes to cope with linker stubs in HEAD text" if EXPERT
depends on PPC64
help
Very large kernels can cause linker branch stubs to be generated by
code in head_64.S, which moves the head text sections out of their
specified location. This option can work around the problem.
If unsure, say "N".
config MPROFILE_KERNEL
depends on PPC64 && CPU_LITTLE_ENDIAN && FUNCTION_TRACER
def_bool $(success,$(srctree)/arch/powerpc/tools/gcc-check-mprofile-kernel.sh $(CC) -I$(srctree)/include -D__KERNEL__)
config HOTPLUG_CPU
bool "Support for enabling/disabling CPUs"
depends on SMP && (PPC_PSERIES || \
PPC_PMAC || PPC_POWERNV || FSL_SOC_BOOKE)
help
Say Y here to be able to disable and re-enable individual
CPUs at runtime on SMP machines.
Say N if you are unsure.
config INTERRUPT_SANITIZE_REGISTERS
bool "Clear gprs on interrupt arrival"
depends on PPC64 && ARCH_HAS_SYSCALL_WRAPPER
default PPC_BOOK3E_64 || PPC_PSERIES || PPC_POWERNV
help
Reduce the influence of user register state on interrupt handlers and
syscalls through clearing user state from registers before handling
the exception.
powerpc/64s: Implement queued spinlocks and rwlocks These have shown significantly improved performance and fairness when spinlock contention is moderate to high on very large systems. With this series including subsequent patches, on a 16 socket 1536 thread POWER9, a stress test such as same-file open/close from all CPUs gets big speedups, 11620op/s aggregate with simple spinlocks vs 384158op/s (33x faster), where the difference in throughput between the fastest and slowest thread goes from 7x to 1.4x. Thanks to the fast path being identical in terms of atomics and barriers (after a subsequent optimisation patch), single threaded performance is not changed (no measurable difference). On smaller systems, performance and fairness seems to be generally improved. Using dbench on tmpfs as a test (that starts to run into kernel spinlock contention), a 2-socket OpenPOWER POWER9 system was tested with bare metal and KVM guest configurations. Results can be found here: https://github.com/linuxppc/issues/issues/305#issuecomment-663487453 Observations are: - Queued spinlocks are equal when contention is insignificant, as expected and as measured with microbenchmarks. - When there is contention, on bare metal queued spinlocks have better throughput and max latency at all points. - When virtualised, queued spinlocks are slightly worse approaching peak throughput, but significantly better throughput and max latency at all points beyond peak, until queued spinlock maximum latency rises when clients are 2x vCPUs. The regressions haven't been analysed very well yet, there are a lot of things that can be tuned, particularly the paravirtualised locking, but the numbers already look like a good net win even on relatively small systems. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200724131423.1362108-4-npiggin@gmail.com
2020-07-24 23:14:20 +10:00
config PPC_QUEUED_SPINLOCKS
bool "Queued spinlocks" if EXPERT
powerpc/64s: Implement queued spinlocks and rwlocks These have shown significantly improved performance and fairness when spinlock contention is moderate to high on very large systems. With this series including subsequent patches, on a 16 socket 1536 thread POWER9, a stress test such as same-file open/close from all CPUs gets big speedups, 11620op/s aggregate with simple spinlocks vs 384158op/s (33x faster), where the difference in throughput between the fastest and slowest thread goes from 7x to 1.4x. Thanks to the fast path being identical in terms of atomics and barriers (after a subsequent optimisation patch), single threaded performance is not changed (no measurable difference). On smaller systems, performance and fairness seems to be generally improved. Using dbench on tmpfs as a test (that starts to run into kernel spinlock contention), a 2-socket OpenPOWER POWER9 system was tested with bare metal and KVM guest configurations. Results can be found here: https://github.com/linuxppc/issues/issues/305#issuecomment-663487453 Observations are: - Queued spinlocks are equal when contention is insignificant, as expected and as measured with microbenchmarks. - When there is contention, on bare metal queued spinlocks have better throughput and max latency at all points. - When virtualised, queued spinlocks are slightly worse approaching peak throughput, but significantly better throughput and max latency at all points beyond peak, until queued spinlock maximum latency rises when clients are 2x vCPUs. The regressions haven't been analysed very well yet, there are a lot of things that can be tuned, particularly the paravirtualised locking, but the numbers already look like a good net win even on relatively small systems. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200724131423.1362108-4-npiggin@gmail.com
2020-07-24 23:14:20 +10:00
depends on SMP
default PPC_BOOK3S_64
powerpc/64s: Implement queued spinlocks and rwlocks These have shown significantly improved performance and fairness when spinlock contention is moderate to high on very large systems. With this series including subsequent patches, on a 16 socket 1536 thread POWER9, a stress test such as same-file open/close from all CPUs gets big speedups, 11620op/s aggregate with simple spinlocks vs 384158op/s (33x faster), where the difference in throughput between the fastest and slowest thread goes from 7x to 1.4x. Thanks to the fast path being identical in terms of atomics and barriers (after a subsequent optimisation patch), single threaded performance is not changed (no measurable difference). On smaller systems, performance and fairness seems to be generally improved. Using dbench on tmpfs as a test (that starts to run into kernel spinlock contention), a 2-socket OpenPOWER POWER9 system was tested with bare metal and KVM guest configurations. Results can be found here: https://github.com/linuxppc/issues/issues/305#issuecomment-663487453 Observations are: - Queued spinlocks are equal when contention is insignificant, as expected and as measured with microbenchmarks. - When there is contention, on bare metal queued spinlocks have better throughput and max latency at all points. - When virtualised, queued spinlocks are slightly worse approaching peak throughput, but significantly better throughput and max latency at all points beyond peak, until queued spinlock maximum latency rises when clients are 2x vCPUs. The regressions haven't been analysed very well yet, there are a lot of things that can be tuned, particularly the paravirtualised locking, but the numbers already look like a good net win even on relatively small systems. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200724131423.1362108-4-npiggin@gmail.com
2020-07-24 23:14:20 +10:00
help
Say Y here to use queued spinlocks which give better scalability and
fairness on large SMP and NUMA systems without harming single threaded
performance.
config ARCH_CPU_PROBE_RELEASE
def_bool y
depends on HOTPLUG_CPU
config PPC64_SUPPORTS_MEMORY_FAILURE
bool "Add support for memory hwpoison"
depends on PPC_BOOK3S_64
default "y" if PPC_POWERNV
select ARCH_SUPPORTS_MEMORY_FAILURE
config KEXEC
bool "kexec system call"
depends on PPC_BOOK3S || PPC_E500 || (44x && !SMP)
2015-09-09 15:38:55 -07:00
select KEXEC_CORE
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
The name comes from the similarity to the exec system call.
It is an ongoing process to be certain the hardware in a machine
is properly shutdown, so do not be surprised if this code does not
initially work for you. As of this writing the exact hardware
interface is strongly in flux, so no good recommendation can be
made.
config KEXEC_FILE
bool "kexec file based system call"
select KEXEC_CORE
select HAVE_IMA_KEXEC if IMA
select KEXEC_ELF
depends on PPC64
depends on CRYPTO=y
depends on CRYPTO_SHA256=y
help
This is a new version of the kexec system call. This call is
file based and takes in file descriptors as system call arguments
for kernel and initramfs as opposed to a list of segments as is the
case for the older kexec call.
kexec_file: make use of purgatory optional Patch series "kexec_file, x86, powerpc: refactoring for other architecutres", v2. This is a preparatory patchset for adding kexec_file support on arm64. It was originally included in a arm64 patch set[1], but Philipp is also working on their kexec_file support on s390[2] and some changes are now conflicting. So these common parts were extracted and put into a separate patch set for better integration. What's more, my original patch#4 was split into a few small chunks for easier review after Dave's comment. As such, the resulting code is basically identical with my original, and the only *visible* differences are: - renaming of _kexec_kernel_image_probe() and _kimage_file_post_load_cleanup() - change one of types of arguments at prepare_elf64_headers() Those, unfortunately, require a couple of trivial changes on the rest (#1, #6 to #13) of my arm64 kexec_file patch set[1]. Patch #1 allows making a use of purgatory optional, particularly useful for arm64. Patch #2 commonalizes arch_kexec_kernel_{image_probe, image_load, verify_sig}() and arch_kimage_file_post_load_cleanup() across architectures. Patches #3-#7 are also intended to generalize parse_elf64_headers(), along with exclude_mem_range(), to be made best re-use of. [1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-February/561182.html [2] http://lkml.iu.edu//hypermail/linux/kernel/1802.1/02596.html This patch (of 7): On arm64, crash dump kernel's usable memory is protected by *unmapping* it from kernel virtual space unlike other architectures where the region is just made read-only. It is highly unlikely that the region is accidentally corrupted and this observation rationalizes that digest check code can also be dropped from purgatory. The resulting code is so simple as it doesn't require a bit ugly re-linking/relocation stuff, i.e. arch_kexec_apply_relocations_add(). Please see: http://lists.infradead.org/pipermail/linux-arm-kernel/2017-December/545428.html All that the purgatory does is to shuffle arguments and jump into a new kernel, while we still need to have some space for a hash value (purgatory_sha256_digest) which is never checked against. As such, it doesn't make sense to have trampline code between old kernel and new kernel on arm64. This patch introduces a new configuration, ARCH_HAS_KEXEC_PURGATORY, and allows related code to be compiled in only if necessary. [takahiro.akashi@linaro.org: fix trivial screwup] Link: http://lkml.kernel.org/r/20180309093346.GF25863@linaro.org Link: http://lkml.kernel.org/r/20180306102303.9063-2-takahiro.akashi@linaro.org Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Acked-by: Dave Young <dyoung@redhat.com> Tested-by: Dave Young <dyoung@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-13 15:35:45 -07:00
config ARCH_HAS_KEXEC_PURGATORY
def_bool KEXEC_FILE
config PPC64_BIG_ENDIAN_ELF_ABI_V2
bool "Build big-endian kernel using ELF ABI V2 (EXPERIMENTAL)"
depends on PPC64 && CPU_BIG_ENDIAN
depends on CC_HAS_ELFV2
depends on LD_IS_BFD && LD_VERSION >= 22400
default n
help
This builds the kernel image using the "Power Architecture 64-Bit ELF
V2 ABI Specification", which has a reduced stack overhead and faster
function calls. This internal kernel ABI option does not affect
userspace compatibility.
The V2 ABI is standard for 64-bit little-endian, but for big-endian
it is less well tested by kernel and toolchain. However some distros
build userspace this way, and it can produce a functioning kernel.
This requires GCC and binutils 2.24 or newer.
config RELOCATABLE
bool "Build a relocatable kernel"
depends on PPC64 || (FLATMEM && (44x || PPC_85xx))
select NONSTATIC_KERNEL
help
This builds a kernel image that is capable of running at the
location the kernel is loaded at. For ppc32, there is no any
alignment restrictions, and this feature is a superset of
DYNAMIC_MEMSTART and hence overrides it. For ppc64, we should use
16k-aligned base address. The kernel is linked as a
position-independent executable (PIE) and contains dynamic relocations
which are processed early in the bootup process.
One use is for the kexec on panic case where the recovery kernel
must live at a different physical address than the primary
kernel.
Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
it has been loaded at and the compile time physical addresses
CONFIG_PHYSICAL_START is ignored. However CONFIG_PHYSICAL_START
setting can still be useful to bootwrappers that need to know the
load address of the kernel (eg. u-boot/mkimage).
config RANDOMIZE_BASE
bool "Randomize the address of the kernel image"
depends on PPC_85xx && FLATMEM
depends on RELOCATABLE
help
Randomizes the virtual address at which the kernel image is
loaded, as a security feature that deters exploit attempts
relying on knowledge of the location of kernel internals.
If unsure, say Y.
config RELOCATABLE_TEST
bool "Test relocatable kernel"
depends on (PPC64 && RELOCATABLE)
help
This runs the relocatable kernel at the address it was initially
loaded at, which tends to be non-zero and therefore test the
relocation code.
config CRASH_DUMP
bool "Build a dump capture kernel"
depends on PPC64 || PPC_BOOK3S_32 || PPC_85xx || (44x && !SMP)
select RELOCATABLE if PPC64 || 44x || PPC_85xx
help
Build a kernel suitable for use as a dump capture kernel.
The same kernel binary can be used as production kernel and dump
capture kernel.
config FA_DUMP
bool "Firmware-assisted dump"
depends on PPC64 && (PPC_RTAS || PPC_POWERNV)
select CRASH_CORE
select CRASH_DUMP
help
A robust mechanism to get reliable kernel crash dump with
assistance from firmware. This approach does not use kexec,
instead firmware assists in booting the capture kernel
while preserving memory contents. Firmware-assisted dump
is meant to be a kdump replacement offering robustness and
speed not possible without system firmware assistance.
If unsure, say "y". Only special kernels like petitboot may
need to say "N" here.
config PRESERVE_FA_DUMP
bool "Preserve Firmware-assisted dump"
depends on PPC64 && PPC_POWERNV && !FA_DUMP
help
On a kernel with FA_DUMP disabled, this option helps to preserve
crash data from a previously crash'ed kernel. Useful when the next
memory preserving kernel boot would process this crash data.
Petitboot kernel is the typical usecase for this option.
config OPAL_CORE
bool "Export OPAL memory as /sys/firmware/opal/core"
depends on PPC64 && PPC_POWERNV
help
This option uses the MPIPL support in firmware to provide an
ELF core of OPAL memory after a crash. The ELF core is exported
as /sys/firmware/opal/core file which is helpful in debugging
OPAL crashes using GDB.
config IRQ_ALL_CPUS
bool "Distribute interrupts on all CPUs by default"
depends on SMP
help
This option gives the kernel permission to distribute IRQs across
multiple CPUs. Saying N here will route all IRQs to the first
CPU. Generally saying Y is safe, although some problems have been
reported with SMP Power Macintoshes with this option enabled.
config NUMA
bool "NUMA Memory Allocation and Scheduler Support"
depends on PPC64 && SMP
default y if PPC_PSERIES || PPC_POWERNV
mm: percpu: generalize percpu related config Patch series "mm: percpu: Cleanup percpu first chunk function". When supporting page mapping percpu first chunk allocator on arm64, we found there are lots of duplicated codes in percpu embed/page first chunk allocator. This patchset is aimed to cleanup them and should no function change. The currently supported status about 'embed' and 'page' in Archs shows below, embed: NEED_PER_CPU_PAGE_FIRST_CHUNK page: NEED_PER_CPU_EMBED_FIRST_CHUNK embed page ------------------------ arm64 Y Y mips Y N powerpc Y Y riscv Y N sparc Y Y x86 Y Y ------------------------ There are two interfaces about percpu first chunk allocator, extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); extern int __init pcpu_page_first_chunk(size_t reserved_size, - pcpu_fc_alloc_fn_t alloc_fn, - pcpu_fc_free_fn_t free_fn, - pcpu_fc_populate_pte_fn_t populate_pte_fn); + pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn); The pcpu_fc_alloc_fn_t/pcpu_fc_free_fn_t is killed, we provide generic pcpu_fc_alloc() and pcpu_fc_free() function, which are called in the pcpu_embed/page_first_chunk(). 1) For pcpu_embed_first_chunk(), pcpu_fc_cpu_to_node_fn_t is needed to be provided when archs supported NUMA. 2) For pcpu_page_first_chunk(), the pcpu_fc_populate_pte_fn_t is killed too, a generic pcpu_populate_pte() which marked '__weak' is provided, if you need a different function to populate pte on the arch(like x86), please provide its own implementation. [1] https://github.com/kevin78/linux.git percpu-cleanup This patch (of 4): The HAVE_SETUP_PER_CPU_AREA/NEED_PER_CPU_EMBED_FIRST_CHUNK/ NEED_PER_CPU_PAGE_FIRST_CHUNK/USE_PERCPU_NUMA_NODE_ID configs, which have duplicate definitions on platforms that subscribe it. Move them into mm, drop these redundant definitions and instead just select it on applicable platforms. Link: https://lkml.kernel.org/r/20211216112359.103822-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20211216112359.103822-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Cc: Will Deacon <will@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-19 18:07:41 -08:00
select USE_PERCPU_NUMA_NODE_ID
help
Enable NUMA (Non-Uniform Memory Access) support.
The kernel will try to allocate memory used by a CPU on the
local memory controller of the CPU and add some more
NUMA awareness to the kernel.
[PATCH] Configurable NODES_SHIFT Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5 NODES_SHIFT values in the current git tree. But it looks a bit messy. SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has been changeable by config. Suitable node's number may be changed in the future even if it is other architecture. So, I wrote configurable node's number. This patch set defines just default value for each arch which needs multi nodes except ia64. But, it is easy to change to configurable if necessary. On ia64 the number of nodes can be already configured in generic ia64 and SN2 config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It would be simpler. See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2 Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jack Steiner <steiner@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-10 22:53:53 -07:00
config NODES_SHIFT
int
default "8" if PPC64
[PATCH] Configurable NODES_SHIFT Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5 NODES_SHIFT values in the current git tree. But it looks a bit messy. SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has been changeable by config. Suitable node's number may be changed in the future even if it is other architecture. So, I wrote configurable node's number. This patch set defines just default value for each arch which needs multi nodes except ia64. But, it is easy to change to configurable if necessary. On ia64 the number of nodes can be already configured in generic ia64 and SN2 config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It would be simpler. See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2 Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jack Steiner <steiner@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-10 22:53:53 -07:00
default "4"
depends on NUMA
[PATCH] Configurable NODES_SHIFT Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5 NODES_SHIFT values in the current git tree. But it looks a bit messy. SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has been changeable by config. Suitable node's number may be changed in the future even if it is other architecture. So, I wrote configurable node's number. This patch set defines just default value for each arch which needs multi nodes except ia64. But, it is easy to change to configurable if necessary. On ia64 the number of nodes can be already configured in generic ia64 and SN2 config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It would be simpler. See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2 Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jack Steiner <steiner@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-10 22:53:53 -07:00
powerpc/numa: Enable CONFIG_HAVE_MEMORYLESS_NODES Based off fd1197f1 for ia64, enable CONFIG_HAVE_MEMORYLESS_NODES if NUMA. Initialize the local memory node in start_secondary. With this commit and the preceding to enable CONFIG_USER_PERCPU_NUMA_NODE_ID, which is a prerequisite, in a PowerKVM guest with the following topology: numactl --hardware available: 3 nodes (0-2) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 node 0 size: 1998 MB node 0 free: 521 MB node 1 cpus: 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 node 1 size: 0 MB node 1 free: 0 MB node 2 cpus: node 2 size: 2039 MB node 2 free: 1739 MB node distances: node 0 1 2 0: 10 40 40 1: 40 10 40 2: 40 40 10 the unreclaimable slab is reduced by close to 130M: Before: Slab: 418176 kB SReclaimable: 26624 kB SUnreclaim: 391552 kB After: Slab: 298944 kB SReclaimable: 31744 kB SUnreclaim: 267200 kB Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-16 16:41:20 -07:00
config HAVE_MEMORYLESS_NODES
def_bool y
depends on NUMA
config ARCH_SELECT_MEMORY_MODEL
def_bool y
depends on PPC64
config ARCH_FLATMEM_ENABLE
def_bool y
depends on (PPC64 && !NUMA) || PPC32
config ARCH_SPARSEMEM_ENABLE
def_bool y
depends on PPC64
select SPARSEMEM_VMEMMAP_ENABLE
config ARCH_SPARSEMEM_DEFAULT
def_bool y
depends on PPC_BOOK3S_64
config ILLEGAL_POINTER_VALUE
hex
# This is roughly half way between the top of user space and the bottom
# of kernel space, which seems about as good as we can get.
default 0x5deadbeef0000000 if PPC64
default 0
config ARCH_MEMORY_PROBE
def_bool y
depends on MEMORY_HOTPLUG
choice
prompt "Page size"
default PPC_64K_PAGES if PPC_BOOK3S_64
default PPC_4K_PAGES
help
Select the kernel logical page size. Increasing the page size
will reduce software overhead at each page boundary, allow
hardware prefetch mechanisms to be more effective, and allow
larger dma transfers increasing IO efficiency and reducing
overhead. However the utilization of memory will increase.
For example, each cached file will using a multiple of the
page size to hold its contents and the difference between the
end of file and the end of page is wasted.
Some dedicated systems, such as software raid serving with
accelerated calculations, have shown significant increases.
If you configure a 64 bit kernel for 64k pages but the
processor does not support them, then the kernel will simulate
them with 4k pages, loading them on demand, but with the
reduced software overhead and larger internal fragmentation.
For the 32 bit kernel, a large page option will not be offered
unless it is supported by the configured processor.
If unsure, choose 4K_PAGES.
config PPC_4K_PAGES
bool "4k page size"
select HAVE_ARCH_SOFT_DIRTY if PPC_BOOK3S_64
config PPC_16K_PAGES
bool "16k page size"
depends on 44x || PPC_8xx
config PPC_64K_PAGES
bool "64k page size"
depends on 44x || PPC_BOOK3S_64
select HAVE_ARCH_SOFT_DIRTY if PPC_BOOK3S_64
powerpc/44x: Support for 256KB PAGE_SIZE This patch adds support for 256KB pages on ppc44x-based boards. For simplification of implementation with 256KB pages we still assume 2-level paging. As a side effect this leads to wasting extra memory space reserved for PTE tables: only 1/4 of pages allocated for PTEs are actually used. But this may be an acceptable trade-off to achieve the high performance we have with big PAGE_SIZEs in some applications (e.g. RAID). Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize the risk of stack overflows in the cases of on-stack arrays, which size depends on the page size (e.g. multipage BIOs, NTFS, etc.). With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be occupied by PKMAP addresses leaving no place for vmalloc. We do not separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that value of 10 in support for 16K/64K had been selected rather intuitively. Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB, one) we have 512 pages for PKMAP. Because ELF standard supports only page sizes up to 64K, then you should use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K for building applications, which are to be run with the 256KB-page sized kernel. If using the older binutils, then you should patch them like follows: --- binutils/bfd/elf32-ppc.c.orig +++ binutils/bfd/elf32-ppc.c -#define ELF_MAXPAGESIZE 0x10000 +#define ELF_MAXPAGESIZE 0x40000 One more restriction we currently have with 256KB page sizes is inability to use shmem safely, so, for now, the 256KB is available only if you turn the CONFIG_SHMEM option off (another variant is to use BROKEN). Though, if you need shmem with 256KB pages, you can always remove the !SHMEM dependency in 'config PPC_256K_PAGES', and use the workaround available here: http://lkml.org/lkml/2008/12/19/20 Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
config PPC_256K_PAGES
bool "256k page size (Requires non-standard binutils settings)"
depends on 44x && !PPC_47x
powerpc/44x: Support for 256KB PAGE_SIZE This patch adds support for 256KB pages on ppc44x-based boards. For simplification of implementation with 256KB pages we still assume 2-level paging. As a side effect this leads to wasting extra memory space reserved for PTE tables: only 1/4 of pages allocated for PTEs are actually used. But this may be an acceptable trade-off to achieve the high performance we have with big PAGE_SIZEs in some applications (e.g. RAID). Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize the risk of stack overflows in the cases of on-stack arrays, which size depends on the page size (e.g. multipage BIOs, NTFS, etc.). With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be occupied by PKMAP addresses leaving no place for vmalloc. We do not separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that value of 10 in support for 16K/64K had been selected rather intuitively. Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB, one) we have 512 pages for PKMAP. Because ELF standard supports only page sizes up to 64K, then you should use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K for building applications, which are to be run with the 256KB-page sized kernel. If using the older binutils, then you should patch them like follows: --- binutils/bfd/elf32-ppc.c.orig +++ binutils/bfd/elf32-ppc.c -#define ELF_MAXPAGESIZE 0x10000 +#define ELF_MAXPAGESIZE 0x40000 One more restriction we currently have with 256KB page sizes is inability to use shmem safely, so, for now, the 256KB is available only if you turn the CONFIG_SHMEM option off (another variant is to use BROKEN). Though, if you need shmem with 256KB pages, you can always remove the !SHMEM dependency in 'config PPC_256K_PAGES', and use the workaround available here: http://lkml.org/lkml/2008/12/19/20 Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
help
Make the page size 256k.
The kernel will only be able to run applications that have been
compiled with '-zmax-page-size' set to 256K (the default is 64K) using
binutils later than 2.17.50.0.3, or by patching the ELF_MAXPAGESIZE
definition from 0x10000 to 0x40000 in older versions.
powerpc/44x: Support for 256KB PAGE_SIZE This patch adds support for 256KB pages on ppc44x-based boards. For simplification of implementation with 256KB pages we still assume 2-level paging. As a side effect this leads to wasting extra memory space reserved for PTE tables: only 1/4 of pages allocated for PTEs are actually used. But this may be an acceptable trade-off to achieve the high performance we have with big PAGE_SIZEs in some applications (e.g. RAID). Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize the risk of stack overflows in the cases of on-stack arrays, which size depends on the page size (e.g. multipage BIOs, NTFS, etc.). With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be occupied by PKMAP addresses leaving no place for vmalloc. We do not separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that value of 10 in support for 16K/64K had been selected rather intuitively. Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB, one) we have 512 pages for PKMAP. Because ELF standard supports only page sizes up to 64K, then you should use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K for building applications, which are to be run with the 256KB-page sized kernel. If using the older binutils, then you should patch them like follows: --- binutils/bfd/elf32-ppc.c.orig +++ binutils/bfd/elf32-ppc.c -#define ELF_MAXPAGESIZE 0x10000 +#define ELF_MAXPAGESIZE 0x40000 One more restriction we currently have with 256KB page sizes is inability to use shmem safely, so, for now, the 256KB is available only if you turn the CONFIG_SHMEM option off (another variant is to use BROKEN). Though, if you need shmem with 256KB pages, you can always remove the !SHMEM dependency in 'config PPC_256K_PAGES', and use the workaround available here: http://lkml.org/lkml/2008/12/19/20 Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
endchoice
config PAGE_SIZE_4KB
def_bool y
depends on PPC_4K_PAGES
config PAGE_SIZE_16KB
def_bool y
depends on PPC_16K_PAGES
config PAGE_SIZE_64KB
def_bool y
depends on PPC_64K_PAGES
config PAGE_SIZE_256KB
def_bool y
depends on PPC_256K_PAGES
config PPC_PAGE_SHIFT
int
default 18 if PPC_256K_PAGES
default 16 if PPC_64K_PAGES
default 14 if PPC_16K_PAGES
default 12
config THREAD_SHIFT
int "Thread shift" if EXPERT
range 13 15
default "15" if PPC_256K_PAGES
default "14" if PPC64
default "13"
help
Used to define the stack size. The default is almost always what you
want. Only change this if you know what you are doing.
config DATA_SHIFT_BOOL
bool "Set custom data alignment"
depends on ADVANCED_OPTIONS
depends on STRICT_KERNEL_RWX || DEBUG_PAGEALLOC || KFENCE
depends on PPC_BOOK3S_32 || (PPC_8xx && !PIN_TLB_DATA && !STRICT_KERNEL_RWX) || \
PPC_85xx
help
This option allows you to set the kernel data alignment. When
RAM is mapped by blocks, the alignment needs to fit the size and
number of possible blocks. The default should be OK for most configs.
Say N here unless you know what you are doing.
config DATA_SHIFT
int "Data shift" if DATA_SHIFT_BOOL
default 24 if STRICT_KERNEL_RWX && PPC64
range 17 28 if (STRICT_KERNEL_RWX || DEBUG_PAGEALLOC || KFENCE) && PPC_BOOK3S_32
range 19 23 if (STRICT_KERNEL_RWX || DEBUG_PAGEALLOC || KFENCE) && PPC_8xx
range 20 24 if (STRICT_KERNEL_RWX || DEBUG_PAGEALLOC || KFENCE) && PPC_85xx
powerpc/mm/32s: Use BATs for STRICT_KERNEL_RWX Today, STRICT_KERNEL_RWX is based on the use of regular pages to map kernel pages. On Book3s 32, it has three consequences: - Using pages instead of BAT for mapping kernel linear memory severely impacts performance. - Exec protection is not effective because no-execute cannot be set at page level (except on 603 which doesn't have hash tables) - Write protection is not effective because PP bits do not provide RO mode for kernel-only pages (except on 603 which handles it in software via PAGE_DIRTY) On the 603+, we have: - Independent IBAT and DBAT allowing limitation of exec parts. - NX bit can be set in segment registers to forbit execution on memory mapped by pages. - RO mode on DBATs even for kernel-only blocks. On the 601, there is nothing much we can do other than warn the user about it, because: - BATs are common to instructions and data. - BAT do not provide RO mode for kernel-only blocks. - segment registers don't have the NX bit. In order to use IBAT for exec protection, this patch: - Aligns _etext to BAT block sizes (128kb) - Set NX bit in kernel segment register (Except on vmalloc area when CONFIG_MODULES is selected) - Maps kernel text with IBATs. In order to use DBAT for exec protection, this patch: - Aligns RW DATA to BAT block sizes (4M) - Maps kernel RO area with write prohibited DBATs - Maps remaining memory with remaining DBATs Here is what we get with this patch on a 832x when activating STRICT_KERNEL_RWX: Symbols: c0000000 T _stext c0680000 R __start_rodata c0680000 R _etext c0800000 T __init_begin c0800000 T _sinittext ~# cat /sys/kernel/debug/block_address_translation ---[ Instruction Block Address Translation ]--- 0: 0xc0000000-0xc03fffff 0x00000000 Kernel EXEC coherent 1: 0xc0400000-0xc05fffff 0x00400000 Kernel EXEC coherent 2: 0xc0600000-0xc067ffff 0x00600000 Kernel EXEC coherent 3: - 4: - 5: - 6: - 7: - ---[ Data Block Address Translation ]--- 0: 0xc0000000-0xc07fffff 0x00000000 Kernel RO coherent 1: 0xc0800000-0xc0ffffff 0x00800000 Kernel RW coherent 2: 0xc1000000-0xc1ffffff 0x01000000 Kernel RW coherent 3: 0xc2000000-0xc3ffffff 0x02000000 Kernel RW coherent 4: 0xc4000000-0xc7ffffff 0x04000000 Kernel RW coherent 5: 0xc8000000-0xcfffffff 0x08000000 Kernel RW coherent 6: 0xd0000000-0xdfffffff 0x10000000 Kernel RW coherent 7: - ~# cat /sys/kernel/debug/segment_registers ---[ User Segments ]--- 0x00000000-0x0fffffff Kern key 1 User key 1 VSID 0xa085d0 0x10000000-0x1fffffff Kern key 1 User key 1 VSID 0xa086e1 0x20000000-0x2fffffff Kern key 1 User key 1 VSID 0xa087f2 0x30000000-0x3fffffff Kern key 1 User key 1 VSID 0xa08903 0x40000000-0x4fffffff Kern key 1 User key 1 VSID 0xa08a14 0x50000000-0x5fffffff Kern key 1 User key 1 VSID 0xa08b25 0x60000000-0x6fffffff Kern key 1 User key 1 VSID 0xa08c36 0x70000000-0x7fffffff Kern key 1 User key 1 VSID 0xa08d47 0x80000000-0x8fffffff Kern key 1 User key 1 VSID 0xa08e58 0x90000000-0x9fffffff Kern key 1 User key 1 VSID 0xa08f69 0xa0000000-0xafffffff Kern key 1 User key 1 VSID 0xa0907a 0xb0000000-0xbfffffff Kern key 1 User key 1 VSID 0xa0918b ---[ Kernel Segments ]--- 0xc0000000-0xcfffffff Kern key 0 User key 1 No Exec VSID 0x000ccc 0xd0000000-0xdfffffff Kern key 0 User key 1 No Exec VSID 0x000ddd 0xe0000000-0xefffffff Kern key 0 User key 1 No Exec VSID 0x000eee 0xf0000000-0xffffffff Kern key 0 User key 1 No Exec VSID 0x000fff Aligning _etext to 128kb allows to map up to 32Mb text with 8 IBATs: 16Mb + 8Mb + 4Mb + 2Mb + 1Mb + 512kb + 256kb + 128kb (+ 128kb) = 32Mb (A 9th IBAT is unneeded as 32Mb would need only a single 32Mb block) Aligning data to 4M allows to map up to 512Mb data with 8 DBATs: 16Mb + 8Mb + 4Mb + 4Mb + 32Mb + 64Mb + 128Mb + 256Mb = 512Mb Because some processors only have 4 BATs and because some targets need DBATs for mapping other areas, the following patch will allow to modify _etext and data alignment. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-02-21 19:08:49 +00:00
default 22 if STRICT_KERNEL_RWX && PPC_BOOK3S_32
default 18 if (DEBUG_PAGEALLOC || KFENCE) && PPC_BOOK3S_32
default 23 if STRICT_KERNEL_RWX && PPC_8xx
default 23 if (DEBUG_PAGEALLOC || KFENCE) && PPC_8xx && PIN_TLB_DATA
default 19 if (DEBUG_PAGEALLOC || KFENCE) && PPC_8xx
default 24 if STRICT_KERNEL_RWX && PPC_85xx
default PPC_PAGE_SHIFT
help
On Book3S 32 (603+), DBATs are used to map kernel text and rodata RO.
Smaller is the alignment, greater is the number of necessary DBATs.
On 8xx, large pages (512kb or 8M) are used to map kernel linear
memory. Aligning to 8M reduces TLB misses as only 8M pages are used
in that case. If PIN_TLB is selected, it must be aligned to 8M as
8M pages will be pinned.
config ARCH_FORCE_MAX_ORDER
int "Maximum zone order"
range 8 9 if PPC64 && PPC_64K_PAGES
default "9" if PPC64 && PPC_64K_PAGES
range 13 13 if PPC64 && !PPC_64K_PAGES
default "13" if PPC64 && !PPC_64K_PAGES
range 9 64 if PPC32 && PPC_16K_PAGES
default "9" if PPC32 && PPC_16K_PAGES
range 7 64 if PPC32 && PPC_64K_PAGES
default "7" if PPC32 && PPC_64K_PAGES
range 5 64 if PPC32 && PPC_256K_PAGES
default "5" if PPC32 && PPC_256K_PAGES
range 11 64
default "11"
help
The kernel memory allocator divides physically contiguous memory
blocks into "zones", where each zone is a power of two number of
pages. This option selects the largest power of two that the kernel
keeps in the memory allocator. If you need to allocate very large
blocks of physically contiguous memory, then you may need to
increase this value.
This config option is actually maximum order plus one. For example,
a value of 11 means that the largest free memory block is 2^10 pages.
The page size is not necessarily 4KB. For example, on 64-bit
systems, 64KB pages can be enabled via CONFIG_PPC_64K_PAGES. Keep
this in mind when choosing a value for this option.
[POWERPC] Provide a way to protect 4k subpages when using 64k pages Using 64k pages on 64-bit PowerPC systems makes life difficult for emulators that are trying to emulate an ISA, such as x86, which use a smaller page size, since the emulator can no longer use the MMU and the normal system calls for controlling page protections. Of course, the emulator can emulate the MMU by checking and possibly remapping the address for each memory access in software, but that is pretty slow. This provides a facility for such programs to control the access permissions on individual 4k sub-pages of 64k pages. The idea is that the emulator supplies an array of protection masks to apply to a specified range of virtual addresses. These masks are applied at the level where hardware PTEs are inserted into the hardware page table based on the Linux PTEs, so the Linux PTEs are not affected. Note that this new mechanism does not allow any access that would otherwise be prohibited; it can only prohibit accesses that would otherwise be allowed. This new facility is only available on 64-bit PowerPC and only when the kernel is configured for 64k pages. The masks are supplied using a new subpage_prot system call, which takes a starting virtual address and length, and a pointer to an array of protection masks in memory. The array has a 32-bit word per 64k page to be protected; each 32-bit word consists of 16 2-bit fields, for which 0 allows any access (that is otherwise allowed), 1 prevents write accesses, and 2 or 3 prevent any access. Implicit in this is that the regions of the address space that are protected are switched to use 4k hardware pages rather than 64k hardware pages (on machines with hardware 64k page support). In fact the whole process is switched to use 4k hardware pages when the subpage_prot system call is used, but this could be improved in future to switch only the affected segments. The subpage protection bits are stored in a 3 level tree akin to the page table tree. The top level of this tree is stored in a structure that is appended to the top level of the page table tree, i.e., the pgd array. Since it will often only be 32-bit addresses (below 4GB) that are protected, the pointers to the first four bottom level pages are also stored in this structure (each bottom level page contains the protection bits for 1GB of address space), so the protection bits for addresses below 4GB can be accessed with one fewer loads than those for higher addresses. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-24 08:35:13 +11:00
config PPC_SUBPAGE_PROT
bool "Support setting protections for 4k subpages (subpage_prot syscall)"
default n
depends on PPC_64S_HASH_MMU && PPC_64K_PAGES
[POWERPC] Provide a way to protect 4k subpages when using 64k pages Using 64k pages on 64-bit PowerPC systems makes life difficult for emulators that are trying to emulate an ISA, such as x86, which use a smaller page size, since the emulator can no longer use the MMU and the normal system calls for controlling page protections. Of course, the emulator can emulate the MMU by checking and possibly remapping the address for each memory access in software, but that is pretty slow. This provides a facility for such programs to control the access permissions on individual 4k sub-pages of 64k pages. The idea is that the emulator supplies an array of protection masks to apply to a specified range of virtual addresses. These masks are applied at the level where hardware PTEs are inserted into the hardware page table based on the Linux PTEs, so the Linux PTEs are not affected. Note that this new mechanism does not allow any access that would otherwise be prohibited; it can only prohibit accesses that would otherwise be allowed. This new facility is only available on 64-bit PowerPC and only when the kernel is configured for 64k pages. The masks are supplied using a new subpage_prot system call, which takes a starting virtual address and length, and a pointer to an array of protection masks in memory. The array has a 32-bit word per 64k page to be protected; each 32-bit word consists of 16 2-bit fields, for which 0 allows any access (that is otherwise allowed), 1 prevents write accesses, and 2 or 3 prevent any access. Implicit in this is that the regions of the address space that are protected are switched to use 4k hardware pages rather than 64k hardware pages (on machines with hardware 64k page support). In fact the whole process is switched to use 4k hardware pages when the subpage_prot system call is used, but this could be improved in future to switch only the affected segments. The subpage protection bits are stored in a 3 level tree akin to the page table tree. The top level of this tree is stored in a structure that is appended to the top level of the page table tree, i.e., the pgd array. Since it will often only be 32-bit addresses (below 4GB) that are protected, the pointers to the first four bottom level pages are also stored in this structure (each bottom level page contains the protection bits for 1GB of address space), so the protection bits for addresses below 4GB can be accessed with one fewer loads than those for higher addresses. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-24 08:35:13 +11:00
help
This option adds support for system call to allow user programs
[POWERPC] Provide a way to protect 4k subpages when using 64k pages Using 64k pages on 64-bit PowerPC systems makes life difficult for emulators that are trying to emulate an ISA, such as x86, which use a smaller page size, since the emulator can no longer use the MMU and the normal system calls for controlling page protections. Of course, the emulator can emulate the MMU by checking and possibly remapping the address for each memory access in software, but that is pretty slow. This provides a facility for such programs to control the access permissions on individual 4k sub-pages of 64k pages. The idea is that the emulator supplies an array of protection masks to apply to a specified range of virtual addresses. These masks are applied at the level where hardware PTEs are inserted into the hardware page table based on the Linux PTEs, so the Linux PTEs are not affected. Note that this new mechanism does not allow any access that would otherwise be prohibited; it can only prohibit accesses that would otherwise be allowed. This new facility is only available on 64-bit PowerPC and only when the kernel is configured for 64k pages. The masks are supplied using a new subpage_prot system call, which takes a starting virtual address and length, and a pointer to an array of protection masks in memory. The array has a 32-bit word per 64k page to be protected; each 32-bit word consists of 16 2-bit fields, for which 0 allows any access (that is otherwise allowed), 1 prevents write accesses, and 2 or 3 prevent any access. Implicit in this is that the regions of the address space that are protected are switched to use 4k hardware pages rather than 64k hardware pages (on machines with hardware 64k page support). In fact the whole process is switched to use 4k hardware pages when the subpage_prot system call is used, but this could be improved in future to switch only the affected segments. The subpage protection bits are stored in a 3 level tree akin to the page table tree. The top level of this tree is stored in a structure that is appended to the top level of the page table tree, i.e., the pgd array. Since it will often only be 32-bit addresses (below 4GB) that are protected, the pointers to the first four bottom level pages are also stored in this structure (each bottom level page contains the protection bits for 1GB of address space), so the protection bits for addresses below 4GB can be accessed with one fewer loads than those for higher addresses. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-24 08:35:13 +11:00
to set access permissions (read/write, readonly, or no access)
on the 4k subpages of each 64k page.
If unsure, say N here.
config PPC_PROT_SAO_LPAR
bool "Support PROT_SAO mappings in LPARs"
depends on PPC_BOOK3S_64
help
This option adds support for PROT_SAO mappings from userspace
inside LPARs on supported CPUs.
This may cause issues when performing guest migration from
a CPU that supports SAO to one that does not.
If unsure, say N here.
config PPC_COPRO_BASE
bool
config SCHED_SMT
bool "SMT (Hyperthreading) scheduler support"
depends on PPC64 && SMP
help
SMT scheduler support improves the CPU scheduler's decision making
when dealing with POWER5 cpus at a cost of slightly increased
overhead in some places. If unsure say N here.
config PPC_DENORMALISATION
bool "PowerPC denormalisation exception handling"
depends on PPC_BOOK3S_64
default "y" if PPC_POWERNV
help
Add support for handling denormalisation of single precision
values. Useful for bare metal only. If unsure say Y here.
config CMDLINE
string "Initial kernel command string"
default ""
help
On some platforms, there is currently no way for the boot loader to
pass arguments to the kernel. For these platforms, you can supply
some command-line options at build time by entering them here. In
most cases you will need to specify the root device here.
choice
prompt "Kernel command line type" if CMDLINE != ""
default CMDLINE_FROM_BOOTLOADER
config CMDLINE_FROM_BOOTLOADER
bool "Use bootloader kernel arguments if available"
help
Uses the command-line options passed by the boot loader. If
the boot loader doesn't provide any, the default kernel command
string provided in CMDLINE will be used.
config CMDLINE_EXTEND
bool "Extend bootloader kernel arguments"
help
The command-line arguments provided by the boot loader will be
appended to the default kernel command string.
config CMDLINE_FORCE
bool "Always use the default kernel command string"
help
Always use the default kernel command string, even if the boot
loader passes other arguments to the kernel.
This is useful if you cannot or don't want to change the
command-line options your boot loader passes to the kernel.
endchoice
config EXTRA_TARGETS
string "Additional default image types"
help
List additional targets to be built by the bootwrapper here (separated
by spaces). This is useful for targets that depend of device tree
files in the .dts directory.
Targets in this list will be build as part of the default build
target, or when the user does a 'make zImage' or a
'make zImage.initrd'.
If unsure, leave blank
config ARCH_WANTS_FREEZER_CONTROL
def_bool y
depends on ADB_PMU
source "kernel/power/Kconfig"
config PPC_MEM_KEYS
prompt "PowerPC Memory Protection Keys"
def_bool y
depends on PPC_BOOK3S_64
depends on PPC_64S_HASH_MMU
select ARCH_USES_HIGH_VMA_FLAGS
select ARCH_HAS_PKEYS
help
Memory Protection Keys provides a mechanism for enforcing
page-based protections, but without requiring modification of the
page tables when an application changes protection domains.
For details, see Documentation/core-api/protection-keys.rst
If unsure, say y.
config PPC_SECURE_BOOT
prompt "Enable secure boot support"
bool
depends on PPC_POWERNV || PPC_PSERIES
depends on IMA_ARCH_POLICY
imply IMA_SECURE_AND_OR_TRUSTED_BOOT
help
Systems with firmware secure boot enabled need to define security
policies to extend secure boot to the OS. This config allows a user
to enable OS secure boot on systems that have firmware support for
it. If in doubt say N.
config PPC_SECVAR_SYSFS
bool "Enable sysfs interface for POWER secure variables"
default y
depends on PPC_SECURE_BOOT
depends on SYSFS
help
POWER secure variables are managed and controlled by firmware.
These variables are exposed to userspace via sysfs to enable
read/write operations on these variables. Say Y if you have
secure boot enabled and want to expose variables to userspace.
endmenu
config ISA_DMA_API
bool
default PCI
menu "Bus options"
config ISA
bool "Support for ISA-bus hardware"
depends on PPC_CHRP
select PPC_I8259
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. If you have an Apple machine, say N here; if you
have an IBM RS/6000 or pSeries machine, say Y. If you have an
embedded board, consult your board documentation.
config GENERIC_ISA_DMA
bool
depends on ISA_DMA_API
default y
config PPC_INDIRECT_PCI
bool
depends on PCI
default y if 40x || 44x
config SBUS
bool
config FSL_SOC
bool
config FSL_PCI
bool
select ARCH_HAS_DMA_SET_MASK
select PPC_INDIRECT_PCI
select PCI_QUIRKS
config FSL_PMC
bool
default y
depends on SUSPEND && (PPC_85xx || PPC_86xx)
help
Freescale MPC85xx/MPC86xx power management controller support
(suspend/resume). For MPC83xx see platforms/83xx/suspend.c
config PPC4xx_CPM
bool
default y
depends on SUSPEND && (44x || 40x)
help
PPC4xx Clock Power Management (CPM) support (suspend/resume).
It also enables support for two different idle states (idle-wait
and idle-doze).
config 4xx_SOC
bool
config FSL_LBC
bool "Freescale Local Bus support"
help
Enables reporting of errors from the Freescale local bus
controller. Also contains some common code used by
drivers for specific local bus peripherals.
config FSL_GTM
bool
depends on PPC_83xx || QUICC_ENGINE || CPM2
help
Freescale General-purpose Timers support
config PCI_8260
bool
depends on PCI && 8260
select PPC_INDIRECT_PCI
default y
config FSL_RIO
bool "Freescale Embedded SRIO Controller support"
depends on RAPIDIO = y && HAVE_RAPIDIO
default "n"
help
Include support for RapidIO controller on Freescale embedded
processors (MPC8548, MPC8641, etc).
endmenu
config NONSTATIC_KERNEL
bool
menu "Advanced setup"
depends on PPC32
config ADVANCED_OPTIONS
bool "Prompt for advanced kernel configuration options"
help
This option will enable prompting for a variety of advanced kernel
configuration options. These options can cause the kernel to not
work if they are set incorrectly, but can be used to optimize certain
aspects of kernel memory management.
Unless you know what you are doing, say N here.
comment "Default settings for advanced configuration options are used"
depends on !ADVANCED_OPTIONS
config LOWMEM_SIZE_BOOL
bool "Set maximum low memory"
depends on ADVANCED_OPTIONS
help
This option allows you to set the maximum amount of memory which
will be used as "low memory", that is, memory which the kernel can
access directly, without having to set up a kernel virtual mapping.
This can be useful in optimizing the layout of kernel virtual
memory.
Say N here unless you know what you are doing.
config LOWMEM_SIZE
hex "Maximum low memory size (in bytes)" if LOWMEM_SIZE_BOOL
default "0x30000000"
config LOWMEM_CAM_NUM_BOOL
bool "Set number of CAMs to use to map low memory"
depends on ADVANCED_OPTIONS && PPC_85xx
help
This option allows you to set the maximum number of CAM slots that
will be used to map low memory. There are a limited number of slots
available and even more limited number that will fit in the L1 MMU.
However, using more entries will allow mapping more low memory. This
can be useful in optimizing the layout of kernel virtual memory.
Say N here unless you know what you are doing.
config LOWMEM_CAM_NUM
depends on PPC_85xx
int "Number of CAMs to use to map low memory" if LOWMEM_CAM_NUM_BOOL
default 3 if !STRICT_KERNEL_RWX
default 9 if DATA_SHIFT >= 24
default 12 if DATA_SHIFT >= 22
default 15
config DYNAMIC_MEMSTART
bool "Enable page aligned dynamic load address for kernel"
depends on ADVANCED_OPTIONS && FLATMEM && (PPC_85xx || 44x)
select NONSTATIC_KERNEL
help
This option enables the kernel to be loaded at any page aligned
physical address. The kernel creates a mapping from KERNELBASE to
the address where the kernel is loaded. The page size here implies
the TLB page size of the mapping for kernel on the particular platform.
Please refer to the init code for finding the TLB page size.
DYNAMIC_MEMSTART is an easy way of implementing pseudo-RELOCATABLE
kernel image, where the only restriction is the page aligned kernel
load address. When this option is enabled, the compile time physical
address CONFIG_PHYSICAL_START is ignored.
This option is overridden by CONFIG_RELOCATABLE
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
config PAGE_OFFSET_BOOL
bool "Set custom page offset address"
depends on ADVANCED_OPTIONS
help
This option allows you to set the kernel virtual address at which
the kernel will map low memory. This can be useful in optimizing
the virtual memory layout of the system.
Say N here unless you know what you are doing.
config PAGE_OFFSET
hex "Virtual address of memory base" if PAGE_OFFSET_BOOL
default "0xc0000000"
config KERNEL_START_BOOL
bool "Set custom kernel base address"
depends on ADVANCED_OPTIONS
help
This option allows you to set the kernel virtual address at which
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
the kernel will be loaded. Normally this should match PAGE_OFFSET
however there are times (like kdump) that one might not want them
to be the same.
Say N here unless you know what you are doing.
config KERNEL_START
hex "Virtual address of kernel base" if KERNEL_START_BOOL
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
default PAGE_OFFSET if PAGE_OFFSET_BOOL
default "0xc2000000" if CRASH_DUMP && !NONSTATIC_KERNEL
default "0xc0000000"
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
config PHYSICAL_START_BOOL
bool "Set physical address where the kernel is loaded"
depends on ADVANCED_OPTIONS && FLATMEM && PPC_85xx
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
help
This gives the physical address where the kernel is loaded.
Say N here unless you know what you are doing.
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if PHYSICAL_START_BOOL
default "0x02000000" if PPC_BOOK3S && CRASH_DUMP && !NONSTATIC_KERNEL
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
default "0x00000000"
config PHYSICAL_ALIGN
hex
default "0x04000000" if PPC_85xx
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
help
This value puts the alignment restrictions on physical address
where kernel is loaded and run from. Kernel is compiled for an
address which meets above alignment restriction.
config TASK_SIZE_BOOL
bool "Set custom user task size"
depends on ADVANCED_OPTIONS
help
This option allows you to set the amount of virtual address space
allocated to user tasks. This can be useful in optimizing the
virtual memory layout of the system.
Say N here unless you know what you are doing.
config TASK_SIZE
hex "Size of user task space" if TASK_SIZE_BOOL
default "0x80000000" if PPC_8xx
default "0xb0000000" if PPC_BOOK3S_32
default "0xc0000000"
endmenu
if PPC64
# This value must have zeroes in the bottom 60 bits otherwise lots will break
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
config PAGE_OFFSET
hex
default "0xc000000000000000"
config KERNEL_START
hex
default "0xc000000000000000"
[POWERPC] 85xx: Add support for relocatable kernel (and booting at non-zero) Added support to allow an 85xx kernel to be run from a non-zero physical address (useful for cooperative asymmetric multiprocessing situations and kdump). The support can be configured at compile time by setting CONFIG_PAGE_OFFSET, CONFIG_KERNEL_START, and CONFIG_PHYSICAL_START as desired. Alternatively, the kernel build can set CONFIG_RELOCATABLE. Setting this config option causes the kernel to determine at runtime the physical addresses of CONFIG_PAGE_OFFSET and CONFIG_KERNEL_START. If CONFIG_RELOCATABLE is set, then CONFIG_PHYSICAL_START has no meaning. However, CONFIG_PHYSICAL_START will always be used to set the LOAD program header physical address field in the resulting ELF image. Currently we are limited to running at a physical address that is a multiple of 256M. This is due to how we map TLBs to cover lowmem. This should be fixed to allow 64M or maybe even 16M alignment in the future. It is considered an error to try and run a kernel at a non-aligned physical address. All the magic for this support is accomplished by proper initialization of the kernel memory subsystem and use of ARCH_PFN_OFFSET. The use of ARCH_PFN_OFFSET only affects normal memory and not IO mappings. ioremap uses map_page and isn't affected by ARCH_PFN_OFFSET. /dev/mem continues to allow access to any physical address in the system regardless of how CONFIG_PHYSICAL_START is set. Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-04-22 04:22:34 +10:00
config PHYSICAL_START
hex
default "0x00000000"
endif
config PPC_LIB_RHEAP
bool
source "arch/powerpc/kvm/Kconfig"
powerpc/livepatch: Add live patching support on ppc64le Add the kconfig logic & assembly support for handling live patched functions. This depends on DYNAMIC_FTRACE_WITH_REGS, which in turn depends on the new -mprofile-kernel ftrace ABI, which is only supported currently on ppc64le. Live patching is handled by a special ftrace handler. This means it runs from ftrace_caller(). The live patch handler modifies the NIP so as to redirect the return from ftrace_caller() to the new patched function. However there is one particularly tricky case we need to handle. If a function A calls another function B, and it is known at link time that they share the same TOC, then A will not save or restore its TOC, and will call the local entry point of B. When we live patch B, we replace it with a new function C, which may not have the same TOC as A. At live patch time it's too late to modify A to do the TOC save/restore, so the live patching code must interpose itself between A and C, and do the TOC save/restore that A omitted. An additionaly complication is that the livepatch code can not create a stack frame in order to save the TOC. That is because if C takes > 8 arguments, or is varargs, A will have written the arguments for C in A's stack frame. To solve this, we introduce a "livepatch stack" which grows upward from the base of the regular stack, and is used to store the TOC & LR when calling a live patched function. When the patched function returns, we retrieve the real LR & TOC from the livepatch stack, restore them, and pop the livepatch "stack frame". Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Torsten Duwe <duwe@suse.de> Reviewed-by: Balbir Singh <bsingharora@gmail.com>
2016-03-24 22:04:05 +11:00
source "kernel/livepatch/Kconfig"