2005-04-17 02:20:36 +04:00
comment "Processor Type"
config CPU_32
bool
default y
# Select CPU types depending on the architecture selected. This selects
# which CPUs we support in the kernel image, and the compiler instruction
# optimiser behaviour.
# ARM610
config CPU_ARM610
2008-10-26 13:55:14 +03:00
bool "Support ARM610 processor" if ARCH_RPC
2005-04-17 02:20:36 +04:00
select CPU_32v3
select CPU_CACHE_V3
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V3 if MMU
select CPU_TLB_V3 if MMU
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
help
The ARM610 is the successor to the ARM3 processor
and was produced by VLSI Technology Inc.
Say Y if you want support for the ARM610 processor.
Otherwise, say N.
2006-09-26 12:37:36 +04:00
# ARM7TDMI
config CPU_ARM7TDMI
bool "Support ARM7TDMI processor"
2006-09-27 20:44:39 +04:00
depends on !MMU
2006-09-26 12:37:36 +04:00
select CPU_32v4T
select CPU_ABRT_LV4T
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-09-26 12:37:36 +04:00
select CPU_CACHE_V4
help
A 32-bit RISC microprocessor based on the ARM7 processor core
which has no memory control unit and cache.
Say Y if you want support for the ARM7TDMI processor.
Otherwise, say N.
2005-04-17 02:20:36 +04:00
# ARM710
config CPU_ARM710
2008-10-26 13:55:14 +03:00
bool "Support ARM710 processor" if ARCH_RPC
2005-04-17 02:20:36 +04:00
select CPU_32v3
select CPU_CACHE_V3
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V3 if MMU
select CPU_TLB_V3 if MMU
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
help
A 32-bit RISC microprocessor based on the ARM7 processor core
designed by Advanced RISC Machines Ltd. The ARM710 is the
successor to the ARM610 processor. It was released in
July 1994 by VLSI Technology Inc.
Say Y if you want support for the ARM710 processor.
Otherwise, say N.
# ARM720T
config CPU_ARM720T
2008-10-26 13:55:14 +03:00
bool "Support ARM720T processor" if ARCH_INTEGRATOR
2006-08-28 15:51:20 +04:00
select CPU_32v4T
2005-04-17 02:20:36 +04:00
select CPU_ABRT_LV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WT if MMU
select CPU_TLB_V4WT if MMU
2005-04-17 02:20:36 +04:00
help
A 32-bit RISC processor with 8kByte Cache, Write Buffer and
MMU built around an ARM7TDMI core.
Say Y if you want support for the ARM720T processor.
Otherwise, say N.
2006-09-26 12:37:50 +04:00
# ARM740T
config CPU_ARM740T
bool "Support ARM740T processor" if ARCH_INTEGRATOR
2006-09-27 20:44:39 +04:00
depends on !MMU
2006-09-26 12:37:50 +04:00
select CPU_32v4T
select CPU_ABRT_LV4T
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-09-26 12:37:50 +04:00
select CPU_CACHE_V3 # although the core is v4t
select CPU_CP15_MPU
help
A 32-bit RISC processor with 8KB cache or 4KB variants,
write buffer and MPU(Protection Unit) built around
an ARM7TDMI core.
Say Y if you want support for the ARM740T processor.
Otherwise, say N.
2006-09-26 12:38:05 +04:00
# ARM9TDMI
config CPU_ARM9TDMI
bool "Support ARM9TDMI processor"
2006-09-27 20:44:39 +04:00
depends on !MMU
2006-09-26 12:38:05 +04:00
select CPU_32v4T
2006-09-28 16:46:16 +04:00
select CPU_ABRT_NOMMU
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-09-26 12:38:05 +04:00
select CPU_CACHE_V4
help
A 32-bit RISC microprocessor based on the ARM9 processor core
which has no memory control unit and cache.
Say Y if you want support for the ARM9TDMI processor.
Otherwise, say N.
2005-04-17 02:20:36 +04:00
# ARM920T
config CPU_ARM920T
2008-10-26 13:55:14 +03:00
bool "Support ARM920T processor" if ARCH_INTEGRATOR
2006-08-28 15:51:20 +04:00
select CPU_32v4T
2005-04-17 02:20:36 +04:00
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM920T is licensed to be produced by numerous vendors,
and is used in the Maverick EP9312 and the Samsung S3C2410.
More information on the Maverick EP9312 at
<http://linuxdevices.com/products/PD2382866068.html>.
Say Y if you want support for the ARM920T processor.
Otherwise, say N.
# ARM922T
config CPU_ARM922T
bool "Support ARM922T processor" if ARCH_INTEGRATOR
2006-08-28 15:51:20 +04:00
select CPU_32v4T
2005-04-17 02:20:36 +04:00
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM922T is a version of the ARM920T, but with smaller
instruction and data caches. It is used in Altera's
2007-05-12 00:01:28 +04:00
Excalibur XA device family and Micrel's KS8695 Centaur.
2005-04-17 02:20:36 +04:00
Say Y if you want support for the ARM922T processor.
Otherwise, say N.
# ARM925T
config CPU_ARM925T
2005-07-10 22:58:08 +04:00
bool "Support ARM925T processor" if ARCH_OMAP1
2006-08-28 15:51:20 +04:00
select CPU_32v4T
2005-04-17 02:20:36 +04:00
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM925T is a mix between the ARM920T and ARM926T, but with
different instruction and data caches. It is used in TI's OMAP
device family.
Say Y if you want support for the ARM925T processor.
Otherwise, say N.
# ARM926T
config CPU_ARM926T
2008-10-26 13:55:14 +03:00
bool "Support ARM926T processor" if ARCH_INTEGRATOR || MACH_REALVIEW_EB
2005-04-17 02:20:36 +04:00
select CPU_32v5
select CPU_ABRT_EV5TJ
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
This is a variant of the ARM920. It has slightly different
instruction sequences for cache and TLB operations. Curiously,
there is no documentation on it at the ARM corporate website.
Say Y if you want support for the ARM926T processor.
Otherwise, say N.
2009-03-25 14:10:01 +03:00
# FA526
config CPU_FA526
bool
select CPU_32v4
select CPU_ABRT_EV4
select CPU_PABRT_NOIFAR
select CPU_CACHE_VIVT
select CPU_CP15_MMU
select CPU_CACHE_FA
select CPU_COPY_FA if MMU
select CPU_TLB_FA if MMU
help
The FA526 is a version of the ARMv4 compatible processor with
Branch Target Buffer, Unified TLB and cache line size 16.
Say Y if you want support for the FA526 processor.
Otherwise, say N.
2006-09-26 12:38:18 +04:00
# ARM940T
config CPU_ARM940T
bool "Support ARM940T processor" if ARCH_INTEGRATOR
2006-09-27 20:44:39 +04:00
depends on !MMU
2006-09-26 12:38:18 +04:00
select CPU_32v4T
2006-09-28 16:46:16 +04:00
select CPU_ABRT_NOMMU
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-09-26 12:38:18 +04:00
select CPU_CACHE_VIVT
select CPU_CP15_MPU
help
ARM940T is a member of the ARM9TDMI family of general-
2006-11-30 07:22:59 +03:00
purpose microprocessors with MPU and separate 4KB
2006-09-26 12:38:18 +04:00
instruction and 4KB data cases, each with a 4-word line
length.
Say Y if you want support for the ARM940T processor.
Otherwise, say N.
2006-09-26 12:38:32 +04:00
# ARM946E-S
config CPU_ARM946E
bool "Support ARM946E-S processor" if ARCH_INTEGRATOR
2006-09-27 20:44:39 +04:00
depends on !MMU
2006-09-26 12:38:32 +04:00
select CPU_32v5
2006-09-28 16:46:16 +04:00
select CPU_ABRT_NOMMU
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-09-26 12:38:32 +04:00
select CPU_CACHE_VIVT
select CPU_CP15_MPU
help
ARM946E-S is a member of the ARM9E-S family of high-
performance, 32-bit system-on-chip processor solutions.
The TCM and ARMv5TE 32-bit instruction set is supported.
Say Y if you want support for the ARM946E-S processor.
Otherwise, say N.
2005-04-17 02:20:36 +04:00
# ARM1020 - needs validating
config CPU_ARM1020
2008-10-26 13:55:14 +03:00
bool "Support ARM1020T (rev 0) processor" if ARCH_INTEGRATOR
2005-04-17 02:20:36 +04:00
select CPU_32v5
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM1020 is the 32K cached version of the ARM10 processor,
with an addition of a floating-point unit.
Say Y if you want support for the ARM1020 processor.
Otherwise, say N.
# ARM1020E - needs validating
config CPU_ARM1020E
2008-10-26 13:55:14 +03:00
bool "Support ARM1020E processor" if ARCH_INTEGRATOR
2005-04-17 02:20:36 +04:00
select CPU_32v5
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
depends on n
# ARM1022E
config CPU_ARM1022
2008-10-26 13:55:14 +03:00
bool "Support ARM1022E processor" if ARCH_INTEGRATOR
2005-04-17 02:20:36 +04:00
select CPU_32v5
select CPU_ABRT_EV4T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU # can probably do better
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM1022E is an implementation of the ARMv5TE architecture
based upon the ARM10 integer core with a 16KiB L1 Harvard cache,
embedded trace macrocell, and a floating-point unit.
Say Y if you want support for the ARM1022E processor.
Otherwise, say N.
# ARM1026EJ-S
config CPU_ARM1026
2008-10-26 13:55:14 +03:00
bool "Support ARM1026EJ-S processor" if ARCH_INTEGRATOR
2005-04-17 02:20:36 +04:00
select CPU_32v5
select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU # can probably do better
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
help
The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture
based upon the ARM10 integer core.
Say Y if you want support for the ARM1026EJ-S processor.
Otherwise, say N.
# SA110
config CPU_SA110
2008-10-26 13:55:14 +03:00
bool "Support StrongARM(R) SA-110 processor" if ARCH_RPC
2005-04-17 02:20:36 +04:00
select CPU_32v3 if ARCH_RPC
select CPU_32v4 if !ARCH_RPC
select CPU_ABRT_EV4
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WB
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V4WB if MMU
select CPU_TLB_V4WB if MMU
2005-04-17 02:20:36 +04:00
help
The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and
is available at five speeds ranging from 100 MHz to 233 MHz.
More information is available at
<http://developer.intel.com/design/strong/sa110.htm>.
Say Y if you want support for the SA-110 processor.
Otherwise, say N.
# SA1100
config CPU_SA1100
bool
select CPU_32v4
select CPU_ABRT_EV4
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V4WB
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_TLB_V4WB if MMU
2005-04-17 02:20:36 +04:00
# XScale
config CPU_XSCALE
bool
select CPU_32v5
select CPU_ABRT_EV5T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_TLB_V4WBI if MMU
2005-04-17 02:20:36 +04:00
2006-03-29 00:00:40 +04:00
# XScale Core Version 3
config CPU_XSC3
bool
select CPU_32v5
select CPU_ABRT_EV5T
2008-04-21 21:42:04 +04:00
select CPU_PABRT_NOIFAR
2006-03-29 00:00:40 +04:00
select CPU_CACHE_VIVT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2006-06-22 01:26:29 +04:00
select CPU_TLB_V4WBI if MMU
2006-03-29 00:00:40 +04:00
select IO_36
2009-01-20 09:15:18 +03:00
# Marvell PJ1 (Mohawk)
config CPU_MOHAWK
bool
select CPU_32v5
select CPU_ABRT_EV5T
select CPU_PABRT_NOIFAR
select CPU_CACHE_VIVT
select CPU_CP15_MMU
select CPU_TLB_V4WBI if MMU
select CPU_COPY_V4WB if MMU
2007-10-23 23:14:41 +04:00
# Feroceon
config CPU_FEROCEON
bool
select CPU_32v5
select CPU_ABRT_EV5T
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2007-10-23 23:14:41 +04:00
select CPU_CACHE_VIVT
select CPU_CP15_MMU
2008-04-24 09:31:45 +04:00
select CPU_COPY_FEROCEON if MMU
2008-06-23 00:45:04 +04:00
select CPU_TLB_FEROCEON if MMU
2007-10-23 23:14:41 +04:00
2007-11-06 11:35:40 +03:00
config CPU_FEROCEON_OLD_ID
bool "Accept early Feroceon cores with an ARM926 ID"
depends on CPU_FEROCEON && !CPU_ARM926T
default y
help
This enables the usage of some old Feroceon cores
for which the CPU ID is equal to the ARM926 ID.
Relevant for Feroceon-1850 and early Feroceon-2850.
2005-04-17 02:20:36 +04:00
# ARMv6
config CPU_V6
2009-05-30 16:56:12 +04:00
bool "Support ARM V6 processor" if ARCH_INTEGRATOR || MACH_REALVIEW_EB || MACH_REALVIEW_PBX
2005-04-17 02:20:36 +04:00
select CPU_32v6
select CPU_ABRT_EV6
2008-04-19 01:43:07 +04:00
select CPU_PABRT_NOIFAR
2005-04-17 02:20:36 +04:00
select CPU_CACHE_V6
select CPU_CACHE_VIPT
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
select CPU_CP15_MMU
2007-07-20 14:42:57 +04:00
select CPU_HAS_ASID if MMU
2006-06-22 01:26:29 +04:00
select CPU_COPY_V6 if MMU
select CPU_TLB_V6 if MMU
2005-04-17 02:20:36 +04:00
2005-11-03 18:48:21 +03:00
# ARMv6k
config CPU_32v6K
bool "Support ARM V6K processor extensions" if !SMP
depends on CPU_V6
2007-07-10 01:06:53 +04:00
default y if SMP && !ARCH_MX3
2005-11-03 18:48:21 +03:00
help
Say Y here if your ARMv6 processor supports the 'K' extension.
This enables the kernel to use some instructions not present
on previous processors, and as such a kernel build with this
enabled will not boot on processors with do not support these
instructions.
2007-05-09 01:45:26 +04:00
# ARMv7
config CPU_V7
2009-05-30 16:56:12 +04:00
bool "Support ARM V7 processor" if ARCH_INTEGRATOR || MACH_REALVIEW_EB || MACH_REALVIEW_PBX
2007-05-09 01:45:26 +04:00
select CPU_32v6K
select CPU_32v7
select CPU_ABRT_EV7
2008-04-19 01:43:07 +04:00
select CPU_PABRT_IFAR
2007-05-09 01:45:26 +04:00
select CPU_CACHE_V7
select CPU_CACHE_VIPT
select CPU_CP15_MMU
2007-07-20 14:43:02 +04:00
select CPU_HAS_ASID if MMU
2007-05-09 01:45:26 +04:00
select CPU_COPY_V6 if MMU
2007-05-18 14:25:31 +04:00
select CPU_TLB_V7 if MMU
2007-05-09 01:45:26 +04:00
2005-04-17 02:20:36 +04:00
# Figure out what processor architecture version we should be using.
# This defines the compiler instruction set which depends on the machine type.
config CPU_32v3
bool
2006-06-19 20:36:43 +04:00
select TLS_REG_EMUL if SMP || !MMU
2006-03-16 17:52:33 +03:00
select NEEDS_SYSCALL_FOR_CMPXCHG if SMP
2005-04-17 02:20:36 +04:00
config CPU_32v4
bool
2006-06-19 20:36:43 +04:00
select TLS_REG_EMUL if SMP || !MMU
2006-03-16 17:52:33 +03:00
select NEEDS_SYSCALL_FOR_CMPXCHG if SMP
2005-04-17 02:20:36 +04:00
2006-08-28 15:51:20 +04:00
config CPU_32v4T
bool
select TLS_REG_EMUL if SMP || !MMU
select NEEDS_SYSCALL_FOR_CMPXCHG if SMP
2005-04-17 02:20:36 +04:00
config CPU_32v5
bool
2006-06-19 20:36:43 +04:00
select TLS_REG_EMUL if SMP || !MMU
2006-03-16 17:52:33 +03:00
select NEEDS_SYSCALL_FOR_CMPXCHG if SMP
2005-04-17 02:20:36 +04:00
config CPU_32v6
bool
2007-07-20 14:42:51 +04:00
select TLS_REG_EMUL if !CPU_32v6K && !MMU
2005-04-17 02:20:36 +04:00
2007-05-09 01:45:26 +04:00
config CPU_32v7
bool
2005-04-17 02:20:36 +04:00
# The abort model
2006-09-28 16:46:16 +04:00
config CPU_ABRT_NOMMU
bool
2005-04-17 02:20:36 +04:00
config CPU_ABRT_EV4
bool
config CPU_ABRT_EV4T
bool
config CPU_ABRT_LV4T
bool
config CPU_ABRT_EV5T
bool
config CPU_ABRT_EV5TJ
bool
config CPU_ABRT_EV6
bool
2007-05-09 01:45:26 +04:00
config CPU_ABRT_EV7
bool
2008-04-19 01:43:07 +04:00
config CPU_PABRT_IFAR
bool
config CPU_PABRT_NOIFAR
bool
2005-04-17 02:20:36 +04:00
# The cache model
config CPU_CACHE_V3
bool
config CPU_CACHE_V4
bool
config CPU_CACHE_V4WT
bool
config CPU_CACHE_V4WB
bool
config CPU_CACHE_V6
bool
2007-05-09 01:45:26 +04:00
config CPU_CACHE_V7
bool
2005-04-17 02:20:36 +04:00
config CPU_CACHE_VIVT
bool
config CPU_CACHE_VIPT
bool
2009-03-25 14:10:01 +03:00
config CPU_CACHE_FA
bool
2006-06-22 01:26:29 +04:00
if MMU
2005-04-17 02:20:36 +04:00
# The copy-page model
config CPU_COPY_V3
bool
config CPU_COPY_V4WT
bool
config CPU_COPY_V4WB
bool
2008-04-24 09:31:45 +04:00
config CPU_COPY_FEROCEON
bool
2009-03-25 14:10:01 +03:00
config CPU_COPY_FA
bool
2005-04-17 02:20:36 +04:00
config CPU_COPY_V6
bool
# This selects the TLB model
config CPU_TLB_V3
bool
help
ARM Architecture Version 3 TLB.
config CPU_TLB_V4WT
bool
help
ARM Architecture Version 4 TLB with writethrough cache.
config CPU_TLB_V4WB
bool
help
ARM Architecture Version 4 TLB with writeback cache.
config CPU_TLB_V4WBI
bool
help
ARM Architecture Version 4 TLB with writeback cache and invalidate
instruction cache entry.
2008-06-23 00:45:04 +04:00
config CPU_TLB_FEROCEON
bool
help
Feroceon TLB (v4wbi with non-outer-cachable page table walks).
2009-03-25 14:10:01 +03:00
config CPU_TLB_FA
bool
help
Faraday ARM FA526 architecture, unified TLB with writeback cache
and invalidate instruction cache entry. Branch target buffer is
also supported.
2005-04-17 02:20:36 +04:00
config CPU_TLB_V6
bool
2007-05-18 14:25:31 +04:00
config CPU_TLB_V7
bool
2006-06-22 01:26:29 +04:00
endif
2007-05-17 13:19:23 +04:00
config CPU_HAS_ASID
bool
help
This indicates whether the CPU has the ASID register; used to
tag TLB and possibly cache entries.
[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
By merging of uClinux/ARM, we need to treat various CPU cores which have
MMU, MPU or even none for memory management. The memory management
coprocessors are controlled by CP15 register set and the ARM core family
can be categorized by 5 groups by the register ;
G-a. CP15 is MMU : 610, 710, 720, 920, 922, 925, 926, 1020, 1020e, 1022,
v6 and the derivations sa1100, sa110, xscale, xsc3.
G-b. CP15 is MPU : 740, 940, 946, 996, 1156.
G-c. CP15 is MPU or MMU : 1026 (selectable by schematic design)
G-d. CP15 is exist, but nothing for memory managemnt : 966, 968.
G-e. no-CP15 : 7tdmi, 9tdmi, 9e, 9ej
This patch defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU. Thus the
family can be defined as :
- CPU_CP15 only : G-d
- CPU_CP15_MMU(implies CPU_CP15) : G-a, G-c(selectable)
- CPU_CP15_MPU(implies CPU_CP15) : G-b, G-c(selectable)
- !CPU_CP15 : G-e
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-09-26 12:36:37 +04:00
config CPU_CP15
bool
help
Processor has the CP15 register.
config CPU_CP15_MMU
bool
select CPU_CP15
help
Processor has the CP15 register, which has MMU related registers.
config CPU_CP15_MPU
bool
select CPU_CP15
help
Processor has the CP15 register, which has MPU related registers.
2006-03-29 00:00:40 +04:00
#
# CPU supports 36-bit I/O
#
config IO_36
bool
2005-04-17 02:20:36 +04:00
comment "Processor Features"
config ARM_THUMB
bool "Support Thumb user binaries"
2009-01-20 09:15:18 +03:00
depends on CPU_ARM720T || CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_ARM1020E || CPU_ARM1022 || CPU_ARM1026 || CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_V6 || CPU_V7 || CPU_FEROCEON
2005-04-17 02:20:36 +04:00
default y
help
Say Y if you want to include kernel support for running user space
Thumb binaries.
The Thumb instruction set is a compressed form of the standard ARM
instruction set resulting in smaller binaries at the expense of
slightly less efficient code.
If you don't know what this all is, saying Y is a safe choice.
2008-04-19 01:43:06 +04:00
config ARM_THUMBEE
bool "Enable ThumbEE CPU extension"
depends on CPU_V7
help
Say Y here if you have a CPU with the ThumbEE extension and code to
make use of it. Say N for code that can run on CPUs without ThumbEE.
2005-04-17 02:20:36 +04:00
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
depends on ARCH_SUPPORTS_BIG_ENDIAN
help
Say Y if you plan on running a kernel in big-endian mode.
Note that your board must be properly built and your board
port must properly enable any big-endian related features
of your chipset/board/processor.
2006-09-28 16:46:34 +04:00
config CPU_HIGH_VECTOR
2007-02-17 21:05:24 +03:00
depends on !MMU && CPU_CP15 && !CPU_ARM740T
2006-09-28 16:46:34 +04:00
bool "Select the High exception vector"
default n
help
Say Y here to select high exception vector(0xFFFF0000~).
The exception vector can be vary depending on the platform
design in nommu mode. If your platform needs to select
high exception vector, say Y.
Otherwise or if you are unsure, say N, and the low exception
vector (0x00000000~) will be used.
2005-04-17 02:20:36 +04:00
config CPU_ICACHE_DISABLE
2006-09-26 12:36:37 +04:00
bool "Disable I-Cache (I-bit)"
depends on CPU_CP15 && !(CPU_ARM610 || CPU_ARM710 || CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)
2005-04-17 02:20:36 +04:00
help
Say Y here to disable the processor instruction cache. Unless
you have a reason not to or are unsure, say N.
config CPU_DCACHE_DISABLE
2006-09-26 12:36:37 +04:00
bool "Disable D-Cache (C-bit)"
depends on CPU_CP15
2005-04-17 02:20:36 +04:00
help
Say Y here to disable the processor data cache. Unless
you have a reason not to or are unsure, say N.
2006-09-26 12:38:32 +04:00
config CPU_DCACHE_SIZE
hex
depends on CPU_ARM740T || CPU_ARM946E
default 0x00001000 if CPU_ARM740T
default 0x00002000 # default size for ARM946E-S
help
Some cores are synthesizable to have various sized cache. For
ARM946E-S case, it can vary from 0KB to 1MB.
To support such cache operations, it is efficient to know the size
before compile time.
If your SoC is configured to have a different size, define the value
here with proper conditions.
2005-04-17 02:20:36 +04:00
config CPU_DCACHE_WRITETHROUGH
bool "Force write through D-cache"
2009-03-25 14:10:01 +03:00
depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE
2005-04-17 02:20:36 +04:00
default y if CPU_ARM925T
help
Say Y here to use the data cache in writethrough mode. Unless you
specifically require this or are unsure, say N.
config CPU_CACHE_ROUND_ROBIN
bool "Round robin I and D cache replacement algorithm"
2006-09-26 12:38:32 +04:00
depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE)
2005-04-17 02:20:36 +04:00
help
Say Y here to use the predictable round-robin cache replacement
policy. Unless you specifically require this or are unsure, say N.
config CPU_BPREDICT_DISABLE
bool "Disable branch prediction"
2009-03-27 02:10:11 +03:00
depends on CPU_ARM1020 || CPU_V6 || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526
2005-04-17 02:20:36 +04:00
help
Say Y here to disable branch prediction. If unsure, say N.
2005-04-30 01:08:33 +04:00
2005-05-06 02:24:45 +04:00
config TLS_REG_EMUL
bool
help
2005-05-12 22:27:12 +04:00
An SMP system using a pre-ARMv6 processor (there are apparently
a few prototypes like that in existence) and therefore access to
that required register must be emulated.
2005-05-06 02:24:45 +04:00
2005-04-30 01:08:33 +04:00
config HAS_TLS_REG
bool
2005-05-12 22:27:12 +04:00
depends on !TLS_REG_EMUL
default y if SMP || CPU_32v7
2005-04-30 01:08:33 +04:00
help
This selects support for the CP15 thread register.
2005-05-12 22:27:12 +04:00
It is defined to be available on some ARMv6 processors (including
all SMP capable ARMv6's) or later processors. User space may
assume directly accessing that register and always obtain the
expected value only on ARMv7 and above.
2005-04-30 01:08:33 +04:00
2005-06-08 22:00:47 +04:00
config NEEDS_SYSCALL_FOR_CMPXCHG
bool
help
SMP on a pre-ARMv6 processor? Well OK then.
Forget about fast user space cmpxchg support.
It is just not possible.
2007-02-05 16:48:08 +03:00
config OUTER_CACHE
bool
default n
2007-02-05 16:48:19 +03:00
2008-06-23 00:45:04 +04:00
config CACHE_FEROCEON_L2
bool "Enable the Feroceon L2 cache controller"
[ARM] add Marvell 78xx0 ARM SoC support
The Marvell Discovery Duo (MV78xx0) is a family of ARM SoCs featuring
(depending on the model) one or two Feroceon CPU cores with 512K of L2
cache and VFP coprocessors running at (depending on the model) between
800 MHz and 1.2 GHz, and features a DDR2 controller, two PCIe
interfaces that can each run either in x4 or quad x1 mode, three USB
2.0 interfaces, two 3Gb/s SATA II interfaces, a SPI interface, two
TWSI interfaces, a crypto accelerator, IDMA/XOR engines, a SPI
interface, four UARTs, and depending on the model, two or four gigabit
ethernet interfaces.
This patch adds basic support for the platform, and allows booting
on the MV78x00 development board, with functional UARTs, SATA, PCIe,
GigE and USB ports.
Signed-off-by: Stanislav Samsonov <samsonov@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-23 00:45:10 +04:00
depends on ARCH_KIRKWOOD || ARCH_MV78XX0
2008-06-23 00:45:04 +04:00
default y
select OUTER_CACHE
help
This option enables the Feroceon L2 cache controller.
2008-09-23 16:28:10 +04:00
config CACHE_FEROCEON_L2_WRITETHROUGH
bool "Force Feroceon L2 cache write through"
depends on CACHE_FEROCEON_L2
default n
help
Say Y here to use the Feroceon L2 cache in writethrough mode.
Unless you specifically require this, say N for writeback mode.
2007-02-05 16:48:19 +03:00
config CACHE_L2X0
2008-04-19 01:43:17 +04:00
bool "Enable the L2x0 outer cache controller"
2009-02-08 04:00:50 +03:00
depends on REALVIEW_EB_ARM11MP || MACH_REALVIEW_PB11MP || MACH_REALVIEW_PB1176 || \
2009-05-30 16:56:12 +04:00
REALVIEW_EB_A9MP || ARCH_MX35 || ARCH_MX31 || MACH_REALVIEW_PBX
2008-04-19 01:43:17 +04:00
default y
2007-02-05 16:48:19 +03:00
select OUTER_CACHE
2008-04-19 01:43:17 +04:00
help
This option enables the L2x0 PrimeCell.
2008-06-06 12:34:03 +04:00
config CACHE_XSC3L2
bool "Enable the L2 cache on XScale3"
depends on CPU_XSC3
default y
select OUTER_CACHE
help
This option enables the L2 cache on XScale3.