1185578 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Chuck Lever
|
26fb5480a2 |
net/handshake: Enable the SNI extension to work properly
Enable the upper layer protocol to specify the SNI peername. This avoids the need for tlshd to use a DNS lookup, which can return a hostname that doesn't match the incoming certificate's SubjectName. Fixes: 2fd5532044a8 ("net/handshake: Add a kernel API for requesting a TLSv1.3 handshake") Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
1ce77c998f |
net/handshake: Unpin sock->file if a handshake is cancelled
If user space never calls DONE, sock->file's reference count remains elevated. Enable sock->file to be freed eventually in this case. Reported-by: Jakub Kacinski <kuba@kernel.org> Fixes: 3b3009ea8abb ("net/handshake: Create a NETLINK service for handling handshake requests") Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
fc490880e3 |
net/handshake: handshake_genl_notify() shouldn't ignore @flags
Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: 3b3009ea8abb ("net/handshake: Create a NETLINK service for handling handshake requests") Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
7afc6d0a10 |
net/handshake: Fix uninitialized local variable
trace_handshake_cmd_done_err() simply records the pointer in @req, so initializing it to NULL is sufficient and safe. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: 3b3009ea8abb ("net/handshake: Create a NETLINK service for handling handshake requests") Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
7ea9c1ec66 |
net/handshake: Fix handshake_dup() ref counting
If get_unused_fd_flags() fails, we ended up calling fput(sock->file) twice. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Suggested-by: Paolo Abeni <pabeni@redhat.com> Fixes: 3b3009ea8abb ("net/handshake: Create a NETLINK service for handling handshake requests") Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
a095326e2c |
net/handshake: Remove unneeded check from handshake_dup()
handshake_req_submit() now verifies that the socket has a file. Fixes: 3b3009ea8abb ("net/handshake: Create a NETLINK service for handling handshake requests") Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Jakub Kicinski
|
0c615f1cc3 |
bpf-for-netdev
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZG4AiAAKCRDbK58LschI g+xlAQCmefGbDuwPckZLnomvt6gl4bkIjs7kc1ySbG9QBnaInwD/WyrJaQIPijuD qziHPAyx+MEgPseFU1b7Le35SZ66IwM= =s4R1 -----END PGP SIGNATURE----- Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf Daniel Borkmann says: ==================== pull-request: bpf 2023-05-24 We've added 19 non-merge commits during the last 10 day(s) which contain a total of 20 files changed, 738 insertions(+), 448 deletions(-). The main changes are: 1) Batch of BPF sockmap fixes found when running against NGINX TCP tests, from John Fastabend. 2) Fix a memleak in the LRU{,_PERCPU} hash map when bucket locking fails, from Anton Protopopov. 3) Init the BPF offload table earlier than just late_initcall, from Jakub Kicinski. 4) Fix ctx access mask generation for 32-bit narrow loads of 64-bit fields, from Will Deacon. 5) Remove a now unsupported __fallthrough in BPF samples, from Andrii Nakryiko. 6) Fix a typo in pkg-config call for building sign-file, from Jeremy Sowden. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf: bpf, sockmap: Test progs verifier error with latest clang bpf, sockmap: Test FIONREAD returns correct bytes in rx buffer with drops bpf, sockmap: Test FIONREAD returns correct bytes in rx buffer bpf, sockmap: Test shutdown() correctly exits epoll and recv()=0 bpf, sockmap: Build helper to create connected socket pair bpf, sockmap: Pull socket helpers out of listen test for general use bpf, sockmap: Incorrectly handling copied_seq bpf, sockmap: Wake up polling after data copy bpf, sockmap: TCP data stall on recv before accept bpf, sockmap: Handle fin correctly bpf, sockmap: Improved check for empty queue bpf, sockmap: Reschedule is now done through backlog bpf, sockmap: Convert schedule_work into delayed_work bpf, sockmap: Pass skb ownership through read_skb bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps bpf: Fix mask generation for 32-bit narrow loads of 64-bit fields samples/bpf: Drop unnecessary fallthrough bpf: netdev: init the offload table earlier selftests/bpf: Fix pkg-config call building sign-file ==================== Link: https://lore.kernel.org/r/20230524170839.13905-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Gavrilov Ilia
|
878ecb0897 |
ipv6: Fix out-of-bounds access in ipv6_find_tlv()
optlen is fetched without checking whether there is more than one byte to parse. It can lead to out-of-bounds access. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE. Fixes: c61a40432509 ("[IPV6]: Find option offset by type.") Signed-off-by: Gavrilov Ilia <Ilia.Gavrilov@infotecs.ru> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David S. Miller
|
ba46c96db9 |
mlx5-fixes-2023-05-22
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEGhZs6bAKwk/OTgTpSD+KveBX+j4FAmRsUT8ACgkQSD+KveBX +j61Zwf9GyvzrD29Lmu0/BTsLAnf7GAyJi/SMzXJ09Tp1dAYSWmF2DE3fzKvNoQ/ VT2udSKbZ96b2N9SGF396KZaV8gHxg23IAzILia1JDPd4Pn7YaNymAIWGU7vn+Tq ErG7atPVnJV5R1H6SwO2KpOClG7jOjUPMF87uDCl2g+IpYNgjKa9hcnt5bguztC2 KBW/sV7BCYVWOUrmlSe1hH2Fn4djhga3i4JBIzjp55Dz1voIu5SHsT13Ou2/UuiC 1RDqBTJ9WvnviAxICbI96TLMJTFnDo9HFGHPIQRhZ6k25PIuWX6GLMKaceVlfCd+ BZvRG+PNOsDR9a9tFCjMBfx7KE0bMw== =dwjN -----END PGP SIGNATURE----- Merge tag 'mlx5-fixes-2023-05-22' of git://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux Saeed Mahameed says: ==================== mlx5-fixes-2023-05-22 This series provides bug fixes for the mlx5 driver. Please pull and let me know if there is any problem. ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Arınç ÜNAL
|
04910d8cbf |
net: ethernet: mtk_eth_soc: fix QoS on DSA MAC on non MTK_NETSYS_V2 SoCs
The commit c6d96df9fa2c ("net: ethernet: mtk_eth_soc: drop generic vlan rx offload, only use DSA untagging") makes VLAN RX offloading to be only used on the SoCs without the MTK_NETSYS_V2 ability (which are not just MT7621 and MT7622). The commit disables the proper handling of special tagged (DSA) frames, added with commit 87e3df4961f4 ("net-next: ethernet: mediatek: add CDM able to recognize the tag for DSA"), for non MTK_NETSYS_V2 SoCs when it finds a MAC that does not use DSA. So if the other MAC uses DSA, the CDMQ component transmits DSA tagged frames to the CPU improperly. This issue can be observed on frames with TCP, for example, a TCP speed test using iperf3 won't work. The commit disables the proper handling of special tagged (DSA) frames because it assumes that these SoCs don't use more than one MAC, which is wrong. Although I made Frank address this false assumption on the patch log when they sent the patch on behalf of Felix, the code still made changes with this assumption. Therefore, the proper handling of special tagged (DSA) frames must be kept enabled in all circumstances as it doesn't affect non DSA tagged frames. Hardware DSA untagging, introduced with the commit 2d7605a72906 ("net: ethernet: mtk_eth_soc: enable hardware DSA untagging"), and VLAN RX offloading are operations on the two CDM components of the frame engine, CDMP and CDMQ, which connect to Packet DMA (PDMA) and QoS DMA (QDMA) and are between the MACs and the CPU. These operations apply to all MACs of the SoC so if one MAC uses DSA and the other doesn't, the hardware DSA untagging operation will cause the CDMP component to transmit non DSA tagged frames to the CPU improperly. Since the VLAN RX offloading feature configuration was dropped, VLAN RX offloading can only be used along with hardware DSA untagging. So, for the case above, we need to disable both features and leave it to the CPU, therefore software, to untag the DSA and VLAN tags. So the correct way to handle this is: For all SoCs: Enable the proper handling of special tagged (DSA) frames (MTK_CDMQ_IG_CTRL). For non MTK_NETSYS_V2 SoCs: Enable hardware DSA untagging (MTK_CDMP_IG_CTRL). Enable VLAN RX offloading (MTK_CDMP_EG_CTRL). When a non MTK_NETSYS_V2 SoC MAC does not use DSA: Disable hardware DSA untagging (MTK_CDMP_IG_CTRL). Disable VLAN RX offloading (MTK_CDMP_EG_CTRL). Fixes: c6d96df9fa2c ("net: ethernet: mtk_eth_soc: drop generic vlan rx offload, only use DSA untagging") Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Jakub Kicinski
|
7e7b3b097a |
docs: netdev: document the existence of the mail bot
We had a good run, but after 4 weeks of use we heard someone asking about pw-bot commands. Let's explain its existence in the docs. It's not a complete documentation but hopefully it's enough for the casual contributor. The project and scope are in flux so the details would likely become out of date, if we were to document more in depth. Link: https://lore.kernel.org/all/20230522140057.GB18381@nucnuc.mle/ Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Simon Horman <simon.horman@corigine.com> Link: https://lore.kernel.org/r/20230522230903.1853151-1-kuba@kernel.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Pratyush Yadav
|
8a02fb71d7 |
net: fix skb leak in __skb_tstamp_tx()
Commit 50749f2dd685 ("tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.") added a call to skb_orphan_frags_rx() to fix leaks with zerocopy skbs. But it ended up adding a leak of its own. When skb_orphan_frags_rx() fails, the function just returns, leaking the skb it just cloned. Free it before returning. This bug was discovered and resolved using Coverity Static Analysis Security Testing (SAST) by Synopsys, Inc. Fixes: 50749f2dd685 ("tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.") Signed-off-by: Pratyush Yadav <ptyadav@amazon.de> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Willem de Bruijn <willemb@google.com> Link: https://lore.kernel.org/r/20230522153020.32422-1-ptyadav@amazon.de Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Sebastian Andrzej Siewior
|
d6c36cbc5e |
r8169: Use a raw_spinlock_t for the register locks.
The driver's interrupt service routine is requested with the IRQF_NO_THREAD if MSI is available. This means that the routine is invoked in hardirq context even on PREEMPT_RT. The routine itself is relatively short and schedules a worker, performs register access and schedules NAPI. On PREEMPT_RT, scheduling NAPI from hardirq results in waking ksoftirqd for further processing so using NAPI threads with this driver is highly recommended since it NULL routes the threaded-IRQ efforts. Adding rtl_hw_aspm_clkreq_enable() to the ISR is problematic on PREEMPT_RT because the function uses spinlock_t locks which become sleeping locks on PREEMPT_RT. The locks are only used to protect register access and don't nest into other functions or locks. They are also not used for unbounded period of time. Therefore it looks okay to convert them to raw_spinlock_t. Convert the three locks which are used from the interrupt service routine to raw_spinlock_t. Fixes: e1ed3e4d9111 ("r8169: disable ASPM during NAPI poll") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Heiner Kallweit <hkallweit1@gmail.com> Link: https://lore.kernel.org/r/20230522134121.uxjax0F5@linutronix.de Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Yunsheng Lin
|
368d3cb406 |
page_pool: fix inconsistency for page_pool_ring_[un]lock()
page_pool_ring_[un]lock() use in_softirq() to decide which spin lock variant to use, and when they are called in the context with in_softirq() being false, spin_lock_bh() is called in page_pool_ring_lock() while spin_unlock() is called in page_pool_ring_unlock(), because spin_lock_bh() has disabled the softirq in page_pool_ring_lock(), which causes inconsistency for spin lock pair calling. This patch fixes it by returning in_softirq state from page_pool_producer_lock(), and use it to decide which spin lock variant to use in page_pool_producer_unlock(). As pool->ring has both producer and consumer lock, so rename it to page_pool_producer_[un]lock() to reflect the actual usage. Also move them to page_pool.c as they are only used there, and remove the 'inline' as the compiler may have better idea to do inlining or not. Fixes: 7886244736a4 ("net: page_pool: Add bulk support for ptr_ring") Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Link: https://lore.kernel.org/r/20230522031714.5089-1-linyunsheng@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
John Fastabend
|
f726e03564 |
bpf, sockmap: Test progs verifier error with latest clang
With a relatively recent clang (7090c10273119) and with this commit to fix warnings in selftests (c8ed668593972) that uses __sink(err) to resolve unused variables. We get the following verifier error. root@6e731a24b33a:/host/tools/testing/selftests/bpf# ./test_sockmap libbpf: prog 'bpf_sockmap': BPF program load failed: Permission denied libbpf: prog 'bpf_sockmap': -- BEGIN PROG LOAD LOG -- 0: R1=ctx(off=0,imm=0) R10=fp0 ; op = (int) skops->op; 0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; switch (op) { 1: (16) if w2 == 0x4 goto pc+5 ; R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) 2: (56) if w2 != 0x5 goto pc+15 ; R2_w=5 ; lport = skops->local_port; 3: (61) r2 = *(u32 *)(r1 +68) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; if (lport == 10000) { 4: (56) if w2 != 0x2710 goto pc+13 18: R1=ctx(off=0,imm=0) R2=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0 ; __sink(err); 18: (bc) w1 = w0 R0 !read_ok processed 18 insns (limit 1000000) max_states_per_insn 0 total_states 2 peak_states 2 mark_read 1 -- END PROG LOAD LOG -- libbpf: prog 'bpf_sockmap': failed to load: -13 libbpf: failed to load object 'test_sockmap_kern.bpf.o' load_bpf_file: (-1) No such file or directory ERROR: (-1) load bpf failed libbpf: prog 'bpf_sockmap': BPF program load failed: Permission denied libbpf: prog 'bpf_sockmap': -- BEGIN PROG LOAD LOG -- 0: R1=ctx(off=0,imm=0) R10=fp0 ; op = (int) skops->op; 0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; switch (op) { 1: (16) if w2 == 0x4 goto pc+5 ; R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) 2: (56) if w2 != 0x5 goto pc+15 ; R2_w=5 ; lport = skops->local_port; 3: (61) r2 = *(u32 *)(r1 +68) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; if (lport == 10000) { 4: (56) if w2 != 0x2710 goto pc+13 18: R1=ctx(off=0,imm=0) R2=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0 ; __sink(err); 18: (bc) w1 = w0 R0 !read_ok processed 18 insns (limit 1000000) max_states_per_insn 0 total_states 2 peak_states 2 mark_read 1 -- END PROG LOAD LOG -- libbpf: prog 'bpf_sockmap': failed to load: -13 libbpf: failed to load object 'test_sockhash_kern.bpf.o' load_bpf_file: (-1) No such file or directory ERROR: (-1) load bpf failed libbpf: prog 'bpf_sockmap': BPF program load failed: Permission denied libbpf: prog 'bpf_sockmap': -- BEGIN PROG LOAD LOG -- 0: R1=ctx(off=0,imm=0) R10=fp0 ; op = (int) skops->op; 0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; switch (op) { 1: (16) if w2 == 0x4 goto pc+5 ; R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) 2: (56) if w2 != 0x5 goto pc+15 ; R2_w=5 ; lport = skops->local_port; 3: (61) r2 = *(u32 *)(r1 +68) ; R1=ctx(off=0,imm=0) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) ; if (lport == 10000) { 4: (56) if w2 != 0x2710 goto pc+13 18: R1=ctx(off=0,imm=0) R2=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0 ; __sink(err); 18: (bc) w1 = w0 R0 !read_ok processed 18 insns (limit 1000000) max_states_per_insn 0 total_states 2 peak_states 2 mark_read 1 -- END PROG LOAD LOG -- To fix simply remove the err value because its not actually used anywhere in the testing. We can investigate the root cause later. Future patch should probably actually test the err value as well. Although if the map updates fail they will get caught eventually by userspace. Fixes: c8ed668593972 ("selftests/bpf: fix lots of silly mistakes pointed out by compiler") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-15-john.fastabend@gmail.com |
||
John Fastabend
|
80e24d2226 |
bpf, sockmap: Test FIONREAD returns correct bytes in rx buffer with drops
When BPF program drops pkts the sockmap logic 'eats' the packet and updates copied_seq. In the PASS case where the sk_buff is accepted we update copied_seq from recvmsg path so we need a new test to handle the drop case. Original patch series broke this resulting in test_sockmap_skb_verdict_fionread:PASS:ioctl(FIONREAD) error 0 nsec test_sockmap_skb_verdict_fionread:FAIL:ioctl(FIONREAD) unexpected ioctl(FIONREAD): actual 1503041772 != expected 256 After updated patch with fix. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-14-john.fastabend@gmail.com |
||
John Fastabend
|
bb516f98c7 |
bpf, sockmap: Test FIONREAD returns correct bytes in rx buffer
A bug was reported where ioctl(FIONREAD) returned zero even though the socket with a SK_SKB verdict program attached had bytes in the msg queue. The result is programs may hang or more likely try to recover, but use suboptimal buffer sizes. Add a test to check that ioctl(FIONREAD) returns the correct number of bytes. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-13-john.fastabend@gmail.com |
||
John Fastabend
|
1fa1fe8ff1 |
bpf, sockmap: Test shutdown() correctly exits epoll and recv()=0
When session gracefully shutdowns epoll needs to wake up and any recv() readers should return 0 not the -EAGAIN they previously returned. Note we use epoll instead of select to test the epoll wake on shutdown event as well. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-12-john.fastabend@gmail.com |
||
John Fastabend
|
298970c8af |
bpf, sockmap: Build helper to create connected socket pair
A common operation for testing is to spin up a pair of sockets that are connected. Then we can use these to run specific tests that need to send data, check BPF programs and so on. The sockmap_listen programs already have this logic lets move it into the new sockmap_helpers header file for general use. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-11-john.fastabend@gmail.com |
||
John Fastabend
|
4e02588d9a |
bpf, sockmap: Pull socket helpers out of listen test for general use
No functional change here we merely pull the helpers in sockmap_listen.c into a header file so we can use these in other programs. The tests we are about to add aren't really _listen tests so doesn't make sense to add them here. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-10-john.fastabend@gmail.com |
||
John Fastabend
|
e5c6de5fa0 |
bpf, sockmap: Incorrectly handling copied_seq
The read_skb() logic is incrementing the tcp->copied_seq which is used for among other things calculating how many outstanding bytes can be read by the application. This results in application errors, if the application does an ioctl(FIONREAD) we return zero because this is calculated from the copied_seq value. To fix this we move tcp->copied_seq accounting into the recv handler so that we update these when the recvmsg() hook is called and data is in fact copied into user buffers. This gives an accurate FIONREAD value as expected and improves ACK handling. Before we were calling the tcp_rcv_space_adjust() which would update 'number of bytes copied to user in last RTT' which is wrong for programs returning SK_PASS. The bytes are only copied to the user when recvmsg is handled. Doing the fix for recvmsg is straightforward, but fixing redirect and SK_DROP pkts is a bit tricker. Build a tcp_psock_eat() helper and then call this from skmsg handlers. This fixes another issue where a broken socket with a BPF program doing a resubmit could hang the receiver. This happened because although read_skb() consumed the skb through sock_drop() it did not update the copied_seq. Now if a single reccv socket is redirecting to many sockets (for example for lb) the receiver sk will be hung even though we might expect it to continue. The hang comes from not updating the copied_seq numbers and memory pressure resulting from that. We have a slight layer problem of calling tcp_eat_skb even if its not a TCP socket. To fix we could refactor and create per type receiver handlers. I decided this is more work than we want in the fix and we already have some small tweaks depending on caller that use the helper skb_bpf_strparser(). So we extend that a bit and always set the strparser bit when it is in use and then we can gate the seq_copied updates on this. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-9-john.fastabend@gmail.com |
||
John Fastabend
|
6df7f764cd |
bpf, sockmap: Wake up polling after data copy
When TCP stack has data ready to read sk_data_ready() is called. Sockmap overwrites this with its own handler to call into BPF verdict program. But, the original TCP socket had sock_def_readable that would additionally wake up any user space waiters with sk_wake_async(). Sockmap saved the callback when the socket was created so call the saved data ready callback and then we can wake up any epoll() logic waiting on the read. Note we call on 'copied >= 0' to account for returning 0 when a FIN is received because we need to wake up user for this as well so they can do the recvmsg() -> 0 and detect the shutdown. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-8-john.fastabend@gmail.com |
||
John Fastabend
|
ea444185a6 |
bpf, sockmap: TCP data stall on recv before accept
A common mechanism to put a TCP socket into the sockmap is to hook the BPF_SOCK_OPS_{ACTIVE_PASSIVE}_ESTABLISHED_CB event with a BPF program that can map the socket info to the correct BPF verdict parser. When the user adds the socket to the map the psock is created and the new ops are assigned to ensure the verdict program will 'see' the sk_buffs as they arrive. Part of this process hooks the sk_data_ready op with a BPF specific handler to wake up the BPF verdict program when data is ready to read. The logic is simple enough (posted here for easy reading) static void sk_psock_verdict_data_ready(struct sock *sk) { struct socket *sock = sk->sk_socket; if (unlikely(!sock || !sock->ops || !sock->ops->read_skb)) return; sock->ops->read_skb(sk, sk_psock_verdict_recv); } The oversight here is sk->sk_socket is not assigned until the application accepts() the new socket. However, its entirely ok for the peer application to do a connect() followed immediately by sends. The socket on the receiver is sitting on the backlog queue of the listening socket until its accepted and the data is queued up. If the peer never accepts the socket or is slow it will eventually hit data limits and rate limit the session. But, important for BPF sockmap hooks when this data is received TCP stack does the sk_data_ready() call but the read_skb() for this data is never called because sk_socket is missing. The data sits on the sk_receive_queue. Then once the socket is accepted if we never receive more data from the peer there will be no further sk_data_ready calls and all the data is still on the sk_receive_queue(). Then user calls recvmsg after accept() and for TCP sockets in sockmap we use the tcp_bpf_recvmsg_parser() handler. The handler checks for data in the sk_msg ingress queue expecting that the BPF program has already run from the sk_data_ready hook and enqueued the data as needed. So we are stuck. To fix do an unlikely check in recvmsg handler for data on the sk_receive_queue and if it exists wake up data_ready. We have the sock locked in both read_skb and recvmsg so should avoid having multiple runners. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-7-john.fastabend@gmail.com |
||
John Fastabend
|
901546fd8f |
bpf, sockmap: Handle fin correctly
The sockmap code is returning EAGAIN after a FIN packet is received and no more data is on the receive queue. Correct behavior is to return 0 to the user and the user can then close the socket. The EAGAIN causes many apps to retry which masks the problem. Eventually the socket is evicted from the sockmap because its released from sockmap sock free handling. The issue creates a delay and can cause some errors on application side. To fix this check on sk_msg_recvmsg side if length is zero and FIN flag is set then set return to zero. A selftest will be added to check this condition. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: William Findlay <will@isovalent.com> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-6-john.fastabend@gmail.com |
||
John Fastabend
|
405df89dd5 |
bpf, sockmap: Improved check for empty queue
We noticed some rare sk_buffs were stepping past the queue when system was under memory pressure. The general theory is to skip enqueueing sk_buffs when its not necessary which is the normal case with a system that is properly provisioned for the task, no memory pressure and enough cpu assigned. But, if we can't allocate memory due to an ENOMEM error when enqueueing the sk_buff into the sockmap receive queue we push it onto a delayed workqueue to retry later. When a new sk_buff is received we then check if that queue is empty. However, there is a problem with simply checking the queue length. When a sk_buff is being processed from the ingress queue but not yet on the sockmap msg receive queue its possible to also recv a sk_buff through normal path. It will check the ingress queue which is zero and then skip ahead of the pkt being processed. Previously we used sock lock from both contexts which made the problem harder to hit, but not impossible. To fix instead of popping the skb from the queue entirely we peek the skb from the queue and do the copy there. This ensures checks to the queue length are non-zero while skb is being processed. Then finally when the entire skb has been copied to user space queue or another socket we pop it off the queue. This way the queue length check allows bypassing the queue only after the list has been completely processed. To reproduce issue we run NGINX compliance test with sockmap running and observe some flakes in our testing that we attributed to this issue. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Suggested-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: William Findlay <will@isovalent.com> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-5-john.fastabend@gmail.com |
||
John Fastabend
|
bce22552f9 |
bpf, sockmap: Reschedule is now done through backlog
Now that the backlog manages the reschedule() logic correctly we can drop the partial fix to reschedule from recvmsg hook. Rescheduling on recvmsg hook was added to address a corner case where we still had data in the backlog state but had nothing to kick it and reschedule the backlog worker to run and finish copying data out of the state. This had a couple limitations, first it required user space to kick it introducing an unnecessary EBUSY and retry. Second it only handled the ingress case and egress redirects would still be hung. With the correct fix, pushing the reschedule logic down to where the enomem error occurs we can drop this fix. Fixes: bec217197b412 ("skmsg: Schedule psock work if the cached skb exists on the psock") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-4-john.fastabend@gmail.com |
||
John Fastabend
|
29173d07f7 |
bpf, sockmap: Convert schedule_work into delayed_work
Sk_buffs are fed into sockmap verdict programs either from a strparser (when the user might want to decide how framing of skb is done by attaching another parser program) or directly through tcp_read_sock. The tcp_read_sock is the preferred method for performance when the BPF logic is a stream parser. The flow for Cilium's common use case with a stream parser is, tcp_read_sock() sk_psock_verdict_recv ret = bpf_prog_run_pin_on_cpu() sk_psock_verdict_apply(sock, skb, ret) // if system is under memory pressure or app is slow we may // need to queue skb. Do this queuing through ingress_skb and // then kick timer to wake up handler skb_queue_tail(ingress_skb, skb) schedule_work(work); The work queue is wired up to sk_psock_backlog(). This will then walk the ingress_skb skb list that holds our sk_buffs that could not be handled, but should be OK to run at some later point. However, its possible that the workqueue doing this work still hits an error when sending the skb. When this happens the skbuff is requeued on a temporary 'state' struct kept with the workqueue. This is necessary because its possible to partially send an skbuff before hitting an error and we need to know how and where to restart when the workqueue runs next. Now for the trouble, we don't rekick the workqueue. This can cause a stall where the skbuff we just cached on the state variable might never be sent. This happens when its the last packet in a flow and no further packets come along that would cause the system to kick the workqueue from that side. To fix we could do simple schedule_work(), but while under memory pressure it makes sense to back off some instead of continue to retry repeatedly. So instead to fix convert schedule_work to schedule_delayed_work and add backoff logic to reschedule from backlog queue on errors. Its not obvious though what a good backoff is so use '1'. To test we observed some flakes whil running NGINX compliance test with sockmap we attributed these failed test to this bug and subsequent issue. >From on list discussion. This commit bec217197b41("skmsg: Schedule psock work if the cached skb exists on the psock") was intended to address similar race, but had a couple cases it missed. Most obvious it only accounted for receiving traffic on the local socket so if redirecting into another socket we could still get an sk_buff stuck here. Next it missed the case where copied=0 in the recv() handler and then we wouldn't kick the scheduler. Also its sub-optimal to require userspace to kick the internal mechanisms of sockmap to wake it up and copy data to user. It results in an extra syscall and requires the app to actual handle the EAGAIN correctly. Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: William Findlay <will@isovalent.com> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-3-john.fastabend@gmail.com |
||
John Fastabend
|
78fa0d61d9 |
bpf, sockmap: Pass skb ownership through read_skb
The read_skb hook calls consume_skb() now, but this means that if the recv_actor program wants to use the skb it needs to inc the ref cnt so that the consume_skb() doesn't kfree the sk_buff. This is problematic because in some error cases under memory pressure we may need to linearize the sk_buff from sk_psock_skb_ingress_enqueue(). Then we get this, skb_linearize() __pskb_pull_tail() pskb_expand_head() BUG_ON(skb_shared(skb)) Because we incremented users refcnt from sk_psock_verdict_recv() we hit the bug on with refcnt > 1 and trip it. To fix lets simply pass ownership of the sk_buff through the skb_read call. Then we can drop the consume from read_skb handlers and assume the verdict recv does any required kfree. Bug found while testing in our CI which runs in VMs that hit memory constraints rather regularly. William tested TCP read_skb handlers. [ 106.536188] ------------[ cut here ]------------ [ 106.536197] kernel BUG at net/core/skbuff.c:1693! [ 106.536479] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 106.536726] CPU: 3 PID: 1495 Comm: curl Not tainted 5.19.0-rc5 #1 [ 106.537023] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.16.0-1 04/01/2014 [ 106.537467] RIP: 0010:pskb_expand_head+0x269/0x330 [ 106.538585] RSP: 0018:ffffc90000138b68 EFLAGS: 00010202 [ 106.538839] RAX: 000000000000003f RBX: ffff8881048940e8 RCX: 0000000000000a20 [ 106.539186] RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff8881048940e8 [ 106.539529] RBP: ffffc90000138be8 R08: 00000000e161fd1a R09: 0000000000000000 [ 106.539877] R10: 0000000000000018 R11: 0000000000000000 R12: ffff8881048940e8 [ 106.540222] R13: 0000000000000003 R14: 0000000000000000 R15: ffff8881048940e8 [ 106.540568] FS: 00007f277dde9f00(0000) GS:ffff88813bd80000(0000) knlGS:0000000000000000 [ 106.540954] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 106.541227] CR2: 00007f277eeede64 CR3: 000000000ad3e000 CR4: 00000000000006e0 [ 106.541569] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 106.541915] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 106.542255] Call Trace: [ 106.542383] <IRQ> [ 106.542487] __pskb_pull_tail+0x4b/0x3e0 [ 106.542681] skb_ensure_writable+0x85/0xa0 [ 106.542882] sk_skb_pull_data+0x18/0x20 [ 106.543084] bpf_prog_b517a65a242018b0_bpf_skskb_http_verdict+0x3a9/0x4aa9 [ 106.543536] ? migrate_disable+0x66/0x80 [ 106.543871] sk_psock_verdict_recv+0xe2/0x310 [ 106.544258] ? sk_psock_write_space+0x1f0/0x1f0 [ 106.544561] tcp_read_skb+0x7b/0x120 [ 106.544740] tcp_data_queue+0x904/0xee0 [ 106.544931] tcp_rcv_established+0x212/0x7c0 [ 106.545142] tcp_v4_do_rcv+0x174/0x2a0 [ 106.545326] tcp_v4_rcv+0xe70/0xf60 [ 106.545500] ip_protocol_deliver_rcu+0x48/0x290 [ 106.545744] ip_local_deliver_finish+0xa7/0x150 Fixes: 04919bed948dc ("tcp: Introduce tcp_read_skb()") Reported-by: William Findlay <will@isovalent.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: William Findlay <will@isovalent.com> Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20230523025618.113937-2-john.fastabend@gmail.com |
||
Nicolas Dichtel
|
3632679d9e |
ipv{4,6}/raw: fix output xfrm lookup wrt protocol
With a raw socket bound to IPPROTO_RAW (ie with hdrincl enabled), the protocol field of the flow structure, build by raw_sendmsg() / rawv6_sendmsg()), is set to IPPROTO_RAW. This breaks the ipsec policy lookup when some policies are defined with a protocol in the selector. For ipv6, the sin6_port field from 'struct sockaddr_in6' could be used to specify the protocol. Just accept all values for IPPROTO_RAW socket. For ipv4, the sin_port field of 'struct sockaddr_in' could not be used without breaking backward compatibility (the value of this field was never checked). Let's add a new kind of control message, so that the userland could specify which protocol is used. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") CC: stable@vger.kernel.org Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Link: https://lore.kernel.org/r/20230522120820.1319391-1-nicolas.dichtel@6wind.com Signed-off-by: Paolo Abeni <pabeni@redhat.com> |
||
Horatiu Vultur
|
6007612459 |
lan966x: Fix unloading/loading of the driver
It was noticing that after a while when unloading/loading the driver and sending traffic through the switch, it would stop working. It would stop forwarding any traffic and the only way to get out of this was to do a power cycle of the board. The root cause seems to be that the switch core is initialized twice. Apparently initializing twice the switch core disturbs the pointers in the queue systems in the HW, so after a while it would stop sending the traffic. Unfortunetly, it is not possible to use a reset of the switch here, because the reset line is connected to multiple devices like MDIO, SGPIO, FAN, etc. So then all the devices will get reseted when the network driver will be loaded. So the fix is to check if the core is initialized already and if that is the case don't initialize it again. Fixes: db8bcaad5393 ("net: lan966x: add the basic lan966x driver") Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Link: https://lore.kernel.org/r/20230522120038.3749026-1-horatiu.vultur@microchip.com Signed-off-by: Paolo Abeni <pabeni@redhat.com> |
||
Shay Drory
|
1da438c0ae |
net/mlx5: Fix indexing of mlx5_irq
After the cited patch, mlx5_irq xarray index can be different then mlx5_irq MSIX table index. Fix it by storing both mlx5_irq xarray index and MSIX table index. Fixes: 3354822cde5a ("net/mlx5: Use dynamic msix vectors allocation") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Eli Cohen <elic@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
ef8c063cf8 |
net/mlx5: Fix irq affinity management
The cited patch deny the user of changing the affinity of mlx5 irqs, which break backward compatibility. Hence, allow the user to change the affinity of mlx5 irqs. Fixes: bbac70c74183 ("net/mlx5: Use newer affinity descriptor") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Eli Cohen <elic@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
9c2d080109 |
net/mlx5: Free irqs only on shutdown callback
Whenever a shutdown is invoked, free irqs only and keep mlx5_irq synthetic wrapper intact in order to avoid use-after-free on system shutdown. for example: ================================================================== BUG: KASAN: use-after-free in _find_first_bit+0x66/0x80 Read of size 8 at addr ffff88823fc0d318 by task kworker/u192:0/13608 CPU: 25 PID: 13608 Comm: kworker/u192:0 Tainted: G B W O 6.1.21-cloudflare-kasan-2023.3.21 #1 Hardware name: GIGABYTE R162-R2-GEN0/MZ12-HD2-CD, BIOS R14 05/03/2021 Workqueue: mlx5e mlx5e_tx_timeout_work [mlx5_core] Call Trace: <TASK> dump_stack_lvl+0x34/0x48 print_report+0x170/0x473 ? _find_first_bit+0x66/0x80 kasan_report+0xad/0x130 ? _find_first_bit+0x66/0x80 _find_first_bit+0x66/0x80 mlx5e_open_channels+0x3c5/0x3a10 [mlx5_core] ? console_unlock+0x2fa/0x430 ? _raw_spin_lock_irqsave+0x8d/0xf0 ? _raw_spin_unlock_irqrestore+0x42/0x80 ? preempt_count_add+0x7d/0x150 ? __wake_up_klogd.part.0+0x7d/0xc0 ? vprintk_emit+0xfe/0x2c0 ? mlx5e_trigger_napi_sched+0x40/0x40 [mlx5_core] ? dev_attr_show.cold+0x35/0x35 ? devlink_health_do_dump.part.0+0x174/0x340 ? devlink_health_report+0x504/0x810 ? mlx5e_reporter_tx_timeout+0x29d/0x3a0 [mlx5_core] ? mlx5e_tx_timeout_work+0x17c/0x230 [mlx5_core] ? process_one_work+0x680/0x1050 mlx5e_safe_switch_params+0x156/0x220 [mlx5_core] ? mlx5e_switch_priv_channels+0x310/0x310 [mlx5_core] ? mlx5_eq_poll_irq_disabled+0xb6/0x100 [mlx5_core] mlx5e_tx_reporter_timeout_recover+0x123/0x240 [mlx5_core] ? __mutex_unlock_slowpath.constprop.0+0x2b0/0x2b0 devlink_health_reporter_recover+0xa6/0x1f0 devlink_health_report+0x2f7/0x810 ? vsnprintf+0x854/0x15e0 mlx5e_reporter_tx_timeout+0x29d/0x3a0 [mlx5_core] ? mlx5e_reporter_tx_err_cqe+0x1a0/0x1a0 [mlx5_core] ? mlx5e_tx_reporter_timeout_dump+0x50/0x50 [mlx5_core] ? mlx5e_tx_reporter_dump_sq+0x260/0x260 [mlx5_core] ? newidle_balance+0x9b7/0xe30 ? psi_group_change+0x6a7/0xb80 ? mutex_lock+0x96/0xf0 ? __mutex_lock_slowpath+0x10/0x10 mlx5e_tx_timeout_work+0x17c/0x230 [mlx5_core] process_one_work+0x680/0x1050 worker_thread+0x5a0/0xeb0 ? process_one_work+0x1050/0x1050 kthread+0x2a2/0x340 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK> Freed by task 1: kasan_save_stack+0x23/0x50 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x169/0x1d0 slab_free_freelist_hook+0xd2/0x190 __kmem_cache_free+0x1a1/0x2f0 irq_pool_free+0x138/0x200 [mlx5_core] mlx5_irq_table_destroy+0xf6/0x170 [mlx5_core] mlx5_core_eq_free_irqs+0x74/0xf0 [mlx5_core] shutdown+0x194/0x1aa [mlx5_core] pci_device_shutdown+0x75/0x120 device_shutdown+0x35c/0x620 kernel_restart+0x60/0xa0 __do_sys_reboot+0x1cb/0x2c0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x4b/0xb5 The buggy address belongs to the object at ffff88823fc0d300 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 24 bytes inside of 192-byte region [ffff88823fc0d300, ffff88823fc0d3c0) The buggy address belongs to the physical page: page:0000000010139587 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x23fc0c head:0000000010139587 order:1 compound_mapcount:0 compound_pincount:0 flags: 0x2ffff800010200(slab|head|node=0|zone=2|lastcpupid=0x1ffff) raw: 002ffff800010200 0000000000000000 dead000000000122 ffff88810004ca00 raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88823fc0d200: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88823fc0d280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff88823fc0d300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88823fc0d380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff88823fc0d400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== general protection fault, probably for non-canonical address 0xdffffc005c40d7ac: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: probably user-memory-access in range [0x00000002e206bd60-0x00000002e206bd67] CPU: 25 PID: 13608 Comm: kworker/u192:0 Tainted: G B W O 6.1.21-cloudflare-kasan-2023.3.21 #1 Hardware name: GIGABYTE R162-R2-GEN0/MZ12-HD2-CD, BIOS R14 05/03/2021 Workqueue: mlx5e mlx5e_tx_timeout_work [mlx5_core] RIP: 0010:__alloc_pages+0x141/0x5c0 Call Trace: <TASK> ? sysvec_apic_timer_interrupt+0xa0/0xc0 ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? __alloc_pages_slowpath.constprop.0+0x1ec0/0x1ec0 ? _raw_spin_unlock_irqrestore+0x3d/0x80 __kmalloc_large_node+0x80/0x120 ? kvmalloc_node+0x4e/0x170 __kmalloc_node+0xd4/0x150 kvmalloc_node+0x4e/0x170 mlx5e_open_channels+0x631/0x3a10 [mlx5_core] ? console_unlock+0x2fa/0x430 ? _raw_spin_lock_irqsave+0x8d/0xf0 ? _raw_spin_unlock_irqrestore+0x42/0x80 ? preempt_count_add+0x7d/0x150 ? __wake_up_klogd.part.0+0x7d/0xc0 ? vprintk_emit+0xfe/0x2c0 ? mlx5e_trigger_napi_sched+0x40/0x40 [mlx5_core] ? dev_attr_show.cold+0x35/0x35 ? devlink_health_do_dump.part.0+0x174/0x340 ? devlink_health_report+0x504/0x810 ? mlx5e_reporter_tx_timeout+0x29d/0x3a0 [mlx5_core] ? mlx5e_tx_timeout_work+0x17c/0x230 [mlx5_core] ? process_one_work+0x680/0x1050 mlx5e_safe_switch_params+0x156/0x220 [mlx5_core] ? mlx5e_switch_priv_channels+0x310/0x310 [mlx5_core] ? mlx5_eq_poll_irq_disabled+0xb6/0x100 [mlx5_core] mlx5e_tx_reporter_timeout_recover+0x123/0x240 [mlx5_core] ? __mutex_unlock_slowpath.constprop.0+0x2b0/0x2b0 devlink_health_reporter_recover+0xa6/0x1f0 devlink_health_report+0x2f7/0x810 ? vsnprintf+0x854/0x15e0 mlx5e_reporter_tx_timeout+0x29d/0x3a0 [mlx5_core] ? mlx5e_reporter_tx_err_cqe+0x1a0/0x1a0 [mlx5_core] ? mlx5e_tx_reporter_timeout_dump+0x50/0x50 [mlx5_core] ? mlx5e_tx_reporter_dump_sq+0x260/0x260 [mlx5_core] ? newidle_balance+0x9b7/0xe30 ? psi_group_change+0x6a7/0xb80 ? mutex_lock+0x96/0xf0 ? __mutex_lock_slowpath+0x10/0x10 mlx5e_tx_timeout_work+0x17c/0x230 [mlx5_core] process_one_work+0x680/0x1050 worker_thread+0x5a0/0xeb0 ? process_one_work+0x1050/0x1050 kthread+0x2a2/0x340 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK> ---[ end trace 0000000000000000 ]--- RIP: 0010:__alloc_pages+0x141/0x5c0 Code: e0 39 a3 96 89 e9 b8 22 01 32 01 83 e1 0f 48 89 fa 01 c9 48 c1 ea 03 d3 f8 83 e0 03 89 44 24 6c 48 b8 00 00 00 00 00 fc ff df <80> 3c 02 00 0f 85 fc 03 00 00 89 e8 4a 8b 14 f5 e0 39 a3 96 4c 89 RSP: 0018:ffff888251f0f438 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 1ffff1104a3e1e8b RCX: 0000000000000000 RDX: 000000005c40d7ac RSI: 0000000000000003 RDI: 00000002e206bd60 RBP: 0000000000052dc0 R08: ffff8882b0044218 R09: ffff8882b0045e8a R10: fffffbfff300fefc R11: ffff888167af4000 R12: 0000000000000003 R13: 0000000000000000 R14: 00000000696c7070 R15: ffff8882373f4380 FS: 0000000000000000(0000) GS:ffff88bf2be80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005641d031eee8 CR3: 0000002e7ca14000 CR4: 0000000000350ee0 Kernel panic - not syncing: Fatal exception Kernel Offset: 0x11000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception ]---] Reported-by: Frederick Lawler <fred@cloudflare.com> Link: https://lore.kernel.org/netdev/be5b9271-7507-19c5-ded1-fa78f1980e69@cloudflare.com Signed-off-by: Shay Drory <shayd@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
1f893f57a3 |
net/mlx5: Devcom, serialize devcom registration
From one hand, mlx5 driver is allowing to probe PFs in parallel. From the other hand, devcom, which is a share resource between PFs, is registered without any lock. This might resulted in memory problems. Hence, use the global mlx5_dev_list_lock in order to serialize devcom registration. Fixes: fadd59fc50d0 ("net/mlx5: Introduce inter-device communication mechanism") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
af87194352 |
net/mlx5: Devcom, fix error flow in mlx5_devcom_register_device
In case devcom allocation is failed, mlx5 is always freeing the priv. However, this priv might have been allocated by a different thread, and freeing it might lead to use-after-free bugs. Fix it by freeing the priv only in case it was allocated by the running thread. Fixes: fadd59fc50d0 ("net/mlx5: Introduce inter-device communication mechanism") Signed-off-by: Shay Drory <shayd@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
8c253dfc89 |
net/mlx5: E-switch, Devcom, sync devcom events and devcom comp register
devcom events are sent to all registered component. Following the cited patch, it is possible for two components, e.g.: two eswitches, to send devcom events, while both components are registered. This means eswitch layer will do double un/pairing, which is double allocation and free of resources, even though only one un/pairing is needed. flow example: cpu0 cpu1 ---- ---- mlx5_devlink_eswitch_mode_set(dev0) esw_offloads_devcom_init() mlx5_devcom_register_component(esw0) mlx5_devlink_eswitch_mode_set(dev1) esw_offloads_devcom_init() mlx5_devcom_register_component(esw1) mlx5_devcom_send_event() mlx5_devcom_send_event() Hence, check whether the eswitches are already un/paired before free/allocation of resources. Fixes: 09b278462f16 ("net: devlink: enable parallel ops on netlink interface") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Paul Blakey
|
dfa1e46d60 |
net/mlx5e: TC, Fix using eswitch mapping in nic mode
Cited patch is using the eswitch object mapping pool while in nic mode where it isn't initialized. This results in the trace below [0]. Fix that by using either nic or eswitch object mapping pool depending if eswitch is enabled or not. [0]: [ 826.446057] ================================================================== [ 826.446729] BUG: KASAN: slab-use-after-free in mlx5_add_flow_rules+0x30/0x490 [mlx5_core] [ 826.447515] Read of size 8 at addr ffff888194485830 by task tc/6233 [ 826.448243] CPU: 16 PID: 6233 Comm: tc Tainted: G W 6.3.0-rc6+ #1 [ 826.448890] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 826.449785] Call Trace: [ 826.450052] <TASK> [ 826.450302] dump_stack_lvl+0x33/0x50 [ 826.450650] print_report+0xc2/0x610 [ 826.450998] ? __virt_addr_valid+0xb1/0x130 [ 826.451385] ? mlx5_add_flow_rules+0x30/0x490 [mlx5_core] [ 826.451935] kasan_report+0xae/0xe0 [ 826.452276] ? mlx5_add_flow_rules+0x30/0x490 [mlx5_core] [ 826.452829] mlx5_add_flow_rules+0x30/0x490 [mlx5_core] [ 826.453368] ? __kmalloc_node+0x5a/0x120 [ 826.453733] esw_add_restore_rule+0x20f/0x270 [mlx5_core] [ 826.454288] ? mlx5_eswitch_add_send_to_vport_meta_rule+0x260/0x260 [mlx5_core] [ 826.455011] ? mutex_unlock+0x80/0xd0 [ 826.455361] ? __mutex_unlock_slowpath.constprop.0+0x210/0x210 [ 826.455862] ? mapping_add+0x2cb/0x440 [mlx5_core] [ 826.456425] mlx5e_tc_action_miss_mapping_get+0x139/0x180 [mlx5_core] [ 826.457058] ? mlx5e_tc_update_skb_nic+0xb0/0xb0 [mlx5_core] [ 826.457636] ? __kasan_kmalloc+0x77/0x90 [ 826.458000] ? __kmalloc+0x57/0x120 [ 826.458336] mlx5_tc_ct_flow_offload+0x325/0xe40 [mlx5_core] [ 826.458916] ? ct_kernel_enter.constprop.0+0x48/0xa0 [ 826.459360] ? mlx5_tc_ct_parse_action+0xf0/0xf0 [mlx5_core] [ 826.459933] ? mlx5e_mod_hdr_attach+0x491/0x520 [mlx5_core] [ 826.460507] ? mlx5e_mod_hdr_get+0x12/0x20 [mlx5_core] [ 826.461046] ? mlx5e_tc_attach_mod_hdr+0x154/0x170 [mlx5_core] [ 826.461635] mlx5e_configure_flower+0x969/0x2110 [mlx5_core] [ 826.462217] ? _raw_spin_lock_bh+0x85/0xe0 [ 826.462597] ? __mlx5e_add_fdb_flow+0x750/0x750 [mlx5_core] [ 826.463163] ? kasan_save_stack+0x2e/0x40 [ 826.463534] ? down_read+0x115/0x1b0 [ 826.463878] ? down_write_killable+0x110/0x110 [ 826.464288] ? tc_setup_action.part.0+0x9f/0x3b0 [ 826.464701] ? mlx5e_is_uplink_rep+0x4c/0x90 [mlx5_core] [ 826.465253] ? mlx5e_tc_reoffload_flows_work+0x130/0x130 [mlx5_core] [ 826.465878] tc_setup_cb_add+0x112/0x250 [ 826.466247] fl_hw_replace_filter+0x230/0x310 [cls_flower] [ 826.466724] ? fl_hw_destroy_filter+0x1a0/0x1a0 [cls_flower] [ 826.467212] fl_change+0x14e1/0x2030 [cls_flower] [ 826.467636] ? sock_def_readable+0x89/0x120 [ 826.468019] ? fl_tmplt_create+0x2d0/0x2d0 [cls_flower] [ 826.468509] ? kasan_unpoison+0x23/0x50 [ 826.468873] ? get_random_u16+0x180/0x180 [ 826.469244] ? __radix_tree_lookup+0x2b/0x130 [ 826.469640] ? fl_get+0x7b/0x140 [cls_flower] [ 826.470042] ? fl_mask_put+0x200/0x200 [cls_flower] [ 826.470478] ? __mutex_unlock_slowpath.constprop.0+0x210/0x210 [ 826.470973] ? fl_tmplt_create+0x2d0/0x2d0 [cls_flower] [ 826.471427] tc_new_tfilter+0x644/0x1050 [ 826.471795] ? tc_get_tfilter+0x860/0x860 [ 826.472170] ? __thaw_task+0x130/0x130 [ 826.472525] ? arch_stack_walk+0x98/0xf0 [ 826.472892] ? cap_capable+0x9f/0xd0 [ 826.473235] ? security_capable+0x47/0x60 [ 826.473608] rtnetlink_rcv_msg+0x1d5/0x550 [ 826.473985] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 826.474383] ? __stack_depot_save+0x35/0x4c0 [ 826.474779] ? kasan_save_stack+0x2e/0x40 [ 826.475149] ? kasan_save_stack+0x1e/0x40 [ 826.475518] ? __kasan_record_aux_stack+0x9f/0xb0 [ 826.475939] ? task_work_add+0x77/0x1c0 [ 826.476305] netlink_rcv_skb+0xe0/0x210 [ 826.476661] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 826.477057] ? netlink_ack+0x7c0/0x7c0 [ 826.477412] ? rhashtable_jhash2+0xef/0x150 [ 826.477796] ? _copy_from_iter+0x105/0x770 [ 826.484386] netlink_unicast+0x346/0x490 [ 826.484755] ? netlink_attachskb+0x400/0x400 [ 826.485145] ? kernel_text_address+0xc2/0xd0 [ 826.485535] netlink_sendmsg+0x3b0/0x6c0 [ 826.485902] ? kernel_text_address+0xc2/0xd0 [ 826.486296] ? netlink_unicast+0x490/0x490 [ 826.486671] ? iovec_from_user.part.0+0x7a/0x1a0 [ 826.487083] ? netlink_unicast+0x490/0x490 [ 826.487461] sock_sendmsg+0x73/0xc0 [ 826.487803] ____sys_sendmsg+0x364/0x380 [ 826.488186] ? import_iovec+0x7/0x10 [ 826.488531] ? kernel_sendmsg+0x30/0x30 [ 826.488893] ? __copy_msghdr+0x180/0x180 [ 826.489258] ? kasan_save_stack+0x2e/0x40 [ 826.489629] ? kasan_save_stack+0x1e/0x40 [ 826.490002] ? __kasan_record_aux_stack+0x9f/0xb0 [ 826.490424] ? __call_rcu_common.constprop.0+0x46/0x580 [ 826.490876] ___sys_sendmsg+0xdf/0x140 [ 826.491231] ? copy_msghdr_from_user+0x110/0x110 [ 826.491649] ? fget_raw+0x120/0x120 [ 826.491988] ? ___sys_recvmsg+0xd9/0x130 [ 826.492355] ? folio_batch_add_and_move+0x80/0xa0 [ 826.492776] ? _raw_spin_lock+0x7a/0xd0 [ 826.493137] ? _raw_spin_lock+0x7a/0xd0 [ 826.493500] ? _raw_read_lock_irq+0x30/0x30 [ 826.493880] ? kasan_set_track+0x21/0x30 [ 826.494249] ? kasan_save_free_info+0x2a/0x40 [ 826.494650] ? do_sys_openat2+0xff/0x270 [ 826.495016] ? __fget_light+0x1b5/0x200 [ 826.495377] ? __virt_addr_valid+0xb1/0x130 [ 826.495763] __sys_sendmsg+0xb2/0x130 [ 826.496118] ? __sys_sendmsg_sock+0x20/0x20 [ 826.496501] ? __x64_sys_rseq+0x2e0/0x2e0 [ 826.496874] ? do_user_addr_fault+0x276/0x820 [ 826.497273] ? fpregs_assert_state_consistent+0x52/0x60 [ 826.497727] ? exit_to_user_mode_prepare+0x30/0x120 [ 826.498158] do_syscall_64+0x3d/0x90 [ 826.498502] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 826.498949] RIP: 0033:0x7f9b67f4f887 [ 826.499294] Code: 0a 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b9 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10 [ 826.500742] RSP: 002b:00007fff5d1a5498 EFLAGS: 00000246 ORIG_RAX: 000000000000002e [ 826.501395] RAX: ffffffffffffffda RBX: 0000000064413ce6 RCX: 00007f9b67f4f887 [ 826.501975] RDX: 0000000000000000 RSI: 00007fff5d1a5500 RDI: 0000000000000003 [ 826.502556] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000001 [ 826.503135] R10: 00007f9b67e08708 R11: 0000000000000246 R12: 0000000000000001 [ 826.503714] R13: 0000000000000001 R14: 00007fff5d1a9800 R15: 0000000000485400 [ 826.504304] </TASK> [ 826.504753] Allocated by task 3764: [ 826.505090] kasan_save_stack+0x1e/0x40 [ 826.505453] kasan_set_track+0x21/0x30 [ 826.505810] __kasan_kmalloc+0x77/0x90 [ 826.506164] __mlx5_create_flow_table+0x16d/0xbb0 [mlx5_core] [ 826.506742] esw_offloads_enable+0x60d/0xfb0 [mlx5_core] [ 826.507292] mlx5_eswitch_enable_locked+0x4d3/0x680 [mlx5_core] [ 826.507885] mlx5_devlink_eswitch_mode_set+0x2a3/0x580 [mlx5_core] [ 826.508513] devlink_nl_cmd_eswitch_set_doit+0xdf/0x1f0 [ 826.508969] genl_family_rcv_msg_doit.isra.0+0x146/0x1c0 [ 826.509427] genl_rcv_msg+0x28d/0x3e0 [ 826.509772] netlink_rcv_skb+0xe0/0x210 [ 826.510133] genl_rcv+0x24/0x40 [ 826.510448] netlink_unicast+0x346/0x490 [ 826.510810] netlink_sendmsg+0x3b0/0x6c0 [ 826.511179] sock_sendmsg+0x73/0xc0 [ 826.511519] __sys_sendto+0x18d/0x220 [ 826.511867] __x64_sys_sendto+0x72/0x80 [ 826.512232] do_syscall_64+0x3d/0x90 [ 826.512576] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 826.513220] Freed by task 5674: [ 826.513535] kasan_save_stack+0x1e/0x40 [ 826.513893] kasan_set_track+0x21/0x30 [ 826.514245] kasan_save_free_info+0x2a/0x40 [ 826.514629] ____kasan_slab_free+0x11a/0x1b0 [ 826.515021] __kmem_cache_free+0x14d/0x280 [ 826.515399] tree_put_node+0x109/0x1c0 [mlx5_core] [ 826.515907] mlx5_destroy_flow_table+0x119/0x630 [mlx5_core] [ 826.516481] esw_offloads_steering_cleanup+0xe7/0x150 [mlx5_core] [ 826.517084] esw_offloads_disable+0xe0/0x160 [mlx5_core] [ 826.517632] mlx5_eswitch_disable_locked+0x26c/0x290 [mlx5_core] [ 826.518225] mlx5_devlink_eswitch_mode_set+0x128/0x580 [mlx5_core] [ 826.518834] devlink_nl_cmd_eswitch_set_doit+0xdf/0x1f0 [ 826.519286] genl_family_rcv_msg_doit.isra.0+0x146/0x1c0 [ 826.519748] genl_rcv_msg+0x28d/0x3e0 [ 826.520101] netlink_rcv_skb+0xe0/0x210 [ 826.520458] genl_rcv+0x24/0x40 [ 826.520771] netlink_unicast+0x346/0x490 [ 826.521137] netlink_sendmsg+0x3b0/0x6c0 [ 826.521505] sock_sendmsg+0x73/0xc0 [ 826.521842] __sys_sendto+0x18d/0x220 [ 826.522191] __x64_sys_sendto+0x72/0x80 [ 826.522554] do_syscall_64+0x3d/0x90 [ 826.522894] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 826.523540] Last potentially related work creation: [ 826.523969] kasan_save_stack+0x1e/0x40 [ 826.524331] __kasan_record_aux_stack+0x9f/0xb0 [ 826.524739] insert_work+0x30/0x130 [ 826.525078] __queue_work+0x34b/0x690 [ 826.525426] queue_work_on+0x48/0x50 [ 826.525766] __rhashtable_remove_fast_one+0x4af/0x4d0 [mlx5_core] [ 826.526365] del_sw_flow_group+0x1b5/0x270 [mlx5_core] [ 826.526898] tree_put_node+0x109/0x1c0 [mlx5_core] [ 826.527407] esw_offloads_steering_cleanup+0xd3/0x150 [mlx5_core] [ 826.528009] esw_offloads_disable+0xe0/0x160 [mlx5_core] [ 826.528616] mlx5_eswitch_disable_locked+0x26c/0x290 [mlx5_core] [ 826.529218] mlx5_devlink_eswitch_mode_set+0x128/0x580 [mlx5_core] [ 826.529823] devlink_nl_cmd_eswitch_set_doit+0xdf/0x1f0 [ 826.530276] genl_family_rcv_msg_doit.isra.0+0x146/0x1c0 [ 826.530733] genl_rcv_msg+0x28d/0x3e0 [ 826.531079] netlink_rcv_skb+0xe0/0x210 [ 826.531439] genl_rcv+0x24/0x40 [ 826.531755] netlink_unicast+0x346/0x490 [ 826.532123] netlink_sendmsg+0x3b0/0x6c0 [ 826.532487] sock_sendmsg+0x73/0xc0 [ 826.532825] __sys_sendto+0x18d/0x220 [ 826.533175] __x64_sys_sendto+0x72/0x80 [ 826.533533] do_syscall_64+0x3d/0x90 [ 826.533877] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 826.534521] The buggy address belongs to the object at ffff888194485800 which belongs to the cache kmalloc-512 of size 512 [ 826.535506] The buggy address is located 48 bytes inside of freed 512-byte region [ffff888194485800, ffff888194485a00) [ 826.536666] The buggy address belongs to the physical page: [ 826.537138] page:00000000d75841dd refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x194480 [ 826.537915] head:00000000d75841dd order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [ 826.538595] flags: 0x200000000010200(slab|head|node=0|zone=2) [ 826.539089] raw: 0200000000010200 ffff888100042c80 ffffea0004523800 dead000000000002 [ 826.539755] raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000 [ 826.540417] page dumped because: kasan: bad access detected [ 826.541095] Memory state around the buggy address: [ 826.541519] ffff888194485700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 826.542149] ffff888194485780: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 826.542773] >ffff888194485800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 826.543400] ^ [ 826.543822] ffff888194485880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 826.544452] ffff888194485900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 826.545079] ================================================================== Fixes: 6702782845a5 ("net/mlx5e: TC, Set CT miss to the specific ct action instance") Signed-off-by: Paul Blakey <paulb@nvidia.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Rahul Rameshbabu
|
7aa5038019 |
net/mlx5e: Fix SQ wake logic in ptp napi_poll context
Check in the mlx5e_ptp_poll_ts_cq context if the ptp tx sq should be woken up. Before change, the ptp tx sq may never wake up if the ptp tx ts skb fifo is full when mlx5e_poll_tx_cq checks if the queue should be woken up. Fixes: 1880bc4e4a96 ("net/mlx5e: Add TX port timestamp support") Signed-off-by: Rahul Rameshbabu <rrameshbabu@nvidia.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Vlad Buslov
|
691c041bf2 |
net/mlx5e: Fix deadlock in tc route query code
Cited commit causes ABBA deadlock[0] when peer flows are created while holding the devcom rw semaphore. Due to peer flows offload implementation the lock is taken much higher up the call chain and there is no obvious way to easily fix the deadlock. Instead, since tc route query code needs the peer eswitch structure only to perform a lookup in xarray and doesn't perform any sleeping operations with it, refactor the code for lockless execution in following ways: - RCUify the devcom 'data' pointer. When resetting the pointer synchronously wait for RCU grace period before returning. This is fine since devcom is currently only used for synchronization of pairing/unpairing of eswitches which is rare and already expensive as-is. - Wrap all usages of 'paired' boolean in {READ|WRITE}_ONCE(). The flag has already been used in some unlocked contexts without proper annotations (e.g. users of mlx5_devcom_is_paired() function), but it wasn't an issue since all relevant code paths checked it again after obtaining the devcom semaphore. Now it is also used by mlx5_devcom_get_peer_data_rcu() as "best effort" check to return NULL when devcom is being unpaired. Note that while RCU read lock doesn't prevent the unpaired flag from being changed concurrently it still guarantees that reader can continue to use 'data'. - Refactor mlx5e_tc_query_route_vport() function to use new mlx5_devcom_get_peer_data_rcu() API which fixes the deadlock. [0]: [ 164.599612] ====================================================== [ 164.600142] WARNING: possible circular locking dependency detected [ 164.600667] 6.3.0-rc3+ #1 Not tainted [ 164.601021] ------------------------------------------------------ [ 164.601557] handler1/3456 is trying to acquire lock: [ 164.601998] ffff88811f1714b0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}, at: mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.603078] but task is already holding lock: [ 164.603617] ffff88810137fc98 (&comp->sem){++++}-{3:3}, at: mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core] [ 164.604459] which lock already depends on the new lock. [ 164.605190] the existing dependency chain (in reverse order) is: [ 164.605848] -> #1 (&comp->sem){++++}-{3:3}: [ 164.606380] down_read+0x39/0x50 [ 164.606772] mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core] [ 164.607336] mlx5e_tc_query_route_vport+0x86/0xc0 [mlx5_core] [ 164.607914] mlx5e_tc_tun_route_lookup+0x1a4/0x1d0 [mlx5_core] [ 164.608495] mlx5e_attach_decap_route+0xc6/0x1e0 [mlx5_core] [ 164.609063] mlx5e_tc_add_fdb_flow+0x1ea/0x360 [mlx5_core] [ 164.609627] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core] [ 164.610175] mlx5e_configure_flower+0x952/0x1a20 [mlx5_core] [ 164.610741] tc_setup_cb_add+0xd4/0x200 [ 164.611146] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 164.611661] fl_change+0xc95/0x18a0 [cls_flower] [ 164.612116] tc_new_tfilter+0x3fc/0xd20 [ 164.612516] rtnetlink_rcv_msg+0x418/0x5b0 [ 164.612936] netlink_rcv_skb+0x54/0x100 [ 164.613339] netlink_unicast+0x190/0x250 [ 164.613746] netlink_sendmsg+0x245/0x4a0 [ 164.614150] sock_sendmsg+0x38/0x60 [ 164.614522] ____sys_sendmsg+0x1d0/0x1e0 [ 164.614934] ___sys_sendmsg+0x80/0xc0 [ 164.615320] __sys_sendmsg+0x51/0x90 [ 164.615701] do_syscall_64+0x3d/0x90 [ 164.616083] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 164.616568] -> #0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}: [ 164.617210] __lock_acquire+0x159e/0x26e0 [ 164.617638] lock_acquire+0xc2/0x2a0 [ 164.618018] __mutex_lock+0x92/0xcd0 [ 164.618401] mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.618943] post_process_attr+0x153/0x2d0 [mlx5_core] [ 164.619471] mlx5e_tc_add_fdb_flow+0x164/0x360 [mlx5_core] [ 164.620021] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core] [ 164.620564] mlx5e_configure_flower+0xe33/0x1a20 [mlx5_core] [ 164.621125] tc_setup_cb_add+0xd4/0x200 [ 164.621531] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 164.622047] fl_change+0xc95/0x18a0 [cls_flower] [ 164.622500] tc_new_tfilter+0x3fc/0xd20 [ 164.622906] rtnetlink_rcv_msg+0x418/0x5b0 [ 164.623324] netlink_rcv_skb+0x54/0x100 [ 164.623727] netlink_unicast+0x190/0x250 [ 164.624138] netlink_sendmsg+0x245/0x4a0 [ 164.624544] sock_sendmsg+0x38/0x60 [ 164.624919] ____sys_sendmsg+0x1d0/0x1e0 [ 164.625340] ___sys_sendmsg+0x80/0xc0 [ 164.625731] __sys_sendmsg+0x51/0x90 [ 164.626117] do_syscall_64+0x3d/0x90 [ 164.626502] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 164.626995] other info that might help us debug this: [ 164.627725] Possible unsafe locking scenario: [ 164.628268] CPU0 CPU1 [ 164.628683] ---- ---- [ 164.629098] lock(&comp->sem); [ 164.629421] lock(&esw->offloads.encap_tbl_lock); [ 164.630066] lock(&comp->sem); [ 164.630555] lock(&esw->offloads.encap_tbl_lock); [ 164.630993] *** DEADLOCK *** [ 164.631575] 3 locks held by handler1/3456: [ 164.631962] #0: ffff888124b75130 (&block->cb_lock){++++}-{3:3}, at: tc_setup_cb_add+0x5b/0x200 [ 164.632703] #1: ffff888116e512b8 (&esw->mode_lock){++++}-{3:3}, at: mlx5_esw_hold+0x39/0x50 [mlx5_core] [ 164.633552] #2: ffff88810137fc98 (&comp->sem){++++}-{3:3}, at: mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core] [ 164.634435] stack backtrace: [ 164.634883] CPU: 17 PID: 3456 Comm: handler1 Not tainted 6.3.0-rc3+ #1 [ 164.635431] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 164.636340] Call Trace: [ 164.636616] <TASK> [ 164.636863] dump_stack_lvl+0x47/0x70 [ 164.637217] check_noncircular+0xfe/0x110 [ 164.637601] __lock_acquire+0x159e/0x26e0 [ 164.637977] ? mlx5_cmd_set_fte+0x5b0/0x830 [mlx5_core] [ 164.638472] lock_acquire+0xc2/0x2a0 [ 164.638828] ? mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.639339] ? lock_is_held_type+0x98/0x110 [ 164.639728] __mutex_lock+0x92/0xcd0 [ 164.640074] ? mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.640576] ? __lock_acquire+0x382/0x26e0 [ 164.640958] ? mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.641468] ? mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.641965] mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.642454] ? lock_release+0xbf/0x240 [ 164.642819] post_process_attr+0x153/0x2d0 [mlx5_core] [ 164.643318] mlx5e_tc_add_fdb_flow+0x164/0x360 [mlx5_core] [ 164.643835] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core] [ 164.644340] mlx5e_configure_flower+0xe33/0x1a20 [mlx5_core] [ 164.644862] ? lock_acquire+0xc2/0x2a0 [ 164.645219] tc_setup_cb_add+0xd4/0x200 [ 164.645588] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 164.646067] fl_change+0xc95/0x18a0 [cls_flower] [ 164.646488] tc_new_tfilter+0x3fc/0xd20 [ 164.646861] ? tc_del_tfilter+0x810/0x810 [ 164.647236] rtnetlink_rcv_msg+0x418/0x5b0 [ 164.647621] ? rtnl_setlink+0x160/0x160 [ 164.647982] netlink_rcv_skb+0x54/0x100 [ 164.648348] netlink_unicast+0x190/0x250 [ 164.648722] netlink_sendmsg+0x245/0x4a0 [ 164.649090] sock_sendmsg+0x38/0x60 [ 164.649434] ____sys_sendmsg+0x1d0/0x1e0 [ 164.649804] ? copy_msghdr_from_user+0x6d/0xa0 [ 164.650213] ___sys_sendmsg+0x80/0xc0 [ 164.650563] ? lock_acquire+0xc2/0x2a0 [ 164.650926] ? lock_acquire+0xc2/0x2a0 [ 164.651286] ? __fget_files+0x5/0x190 [ 164.651644] ? find_held_lock+0x2b/0x80 [ 164.652006] ? __fget_files+0xb9/0x190 [ 164.652365] ? lock_release+0xbf/0x240 [ 164.652723] ? __fget_files+0xd3/0x190 [ 164.653079] __sys_sendmsg+0x51/0x90 [ 164.653435] do_syscall_64+0x3d/0x90 [ 164.653784] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 164.654229] RIP: 0033:0x7f378054f8bd [ 164.654577] Code: 28 89 54 24 1c 48 89 74 24 10 89 7c 24 08 e8 6a c3 f4 ff 8b 54 24 1c 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 44 24 08 e8 be c3 f4 ff 48 [ 164.656041] RSP: 002b:00007f377fa114b0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e [ 164.656701] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f378054f8bd [ 164.657297] RDX: 0000000000000000 RSI: 00007f377fa11540 RDI: 0000000000000014 [ 164.657885] RBP: 00007f377fa12278 R08: 0000000000000000 R09: 000000000000015c [ 164.658472] R10: 00007f377fa123d0 R11: 0000000000000293 R12: 0000560962d99bd0 [ 164.665317] R13: 0000000000000000 R14: 0000560962d99bd0 R15: 00007f377fa11540 Fixes: f9d196bd632b ("net/mlx5e: Use correct eswitch for stack devices with lag") Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Roi Dayan <roid@nvidia.com> Reviewed-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Roi Dayan
|
a65735148e |
net/mlx5: Fix error message when failing to allocate device memory
Fix spacing for the error and also the correct error code pointer. Fixes: c9b9dcb430b3 ("net/mlx5: Move device memory management to mlx5_core") Signed-off-by: Roi Dayan <roid@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Vlad Buslov
|
be071cdb16 |
net/mlx5e: Use correct encap attribute during invalidation
With introduction of post action infrastructure most of the users of encap attribute had been modified in order to obtain the correct attribute by calling mlx5e_tc_get_encap_attr() helper instead of assuming encap action is always on default attribute. However, the cited commit didn't modify mlx5e_invalidate_encap() which prevents it from destroying correct modify header action which leads to a warning [0]. Fix the issue by using correct attribute. [0]: Feb 21 09:47:35 c-237-177-40-045 kernel: WARNING: CPU: 17 PID: 654 at drivers/net/ethernet/mellanox/mlx5/core/en_tc.c:684 mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: RIP: 0010:mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: Call Trace: Feb 21 09:47:35 c-237-177-40-045 kernel: <TASK> Feb 21 09:47:35 c-237-177-40-045 kernel: mlx5e_tc_fib_event_work+0x8e3/0x1f60 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? mlx5e_take_all_encap_flows+0xe0/0xe0 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? lock_downgrade+0x6d0/0x6d0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: process_one_work+0x7c2/0x1310 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x3f0/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? pwq_dec_nr_in_flight+0x230/0x230 Feb 21 09:47:35 c-237-177-40-045 kernel: ? rwlock_bug.part.0+0x90/0x90 Feb 21 09:47:35 c-237-177-40-045 kernel: worker_thread+0x59d/0xec0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? __kthread_parkme+0xd9/0x1d0 Fixes: 8300f225268b ("net/mlx5e: Create new flow attr for multi table actions") Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Roi Dayan <roid@nvidia.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Yevgeny Kliteynik
|
c7dd225bc2 |
net/mlx5: DR, Check force-loopback RC QP capability independently from RoCE
SW Steering uses RC QP for writing STEs to ICM. This writingis done in LB (loopback), and FL (force-loopback) QP is preferred for performance. FL is available when RoCE is enabled or disabled based on RoCE caps. This patch adds reading of FL capability from HCA caps in addition to the existing reading from RoCE caps, thus fixing the case where we didn't have loopback enabled when RoCE was disabled. Fixes: 7304d603a57a ("net/mlx5: DR, Add support for force-loopback QP") Signed-off-by: Itamar Gozlan <igozlan@nvidia.com> Signed-off-by: Yevgeny Kliteynik <kliteyn@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Erez Shitrit
|
1e5daf5565 |
net/mlx5: DR, Fix crc32 calculation to work on big-endian (BE) CPUs
When calculating crc for hash index we use the function crc32 that calculates for little-endian (LE) arch. Then we convert it to network endianness using htonl(), but it's wrong to do the conversion in BE archs since the crc32 value is already LE. The solution is to switch the bytes from the crc result for all types of arc. Fixes: 40416d8ede65 ("net/mlx5: DR, Replace CRC32 implementation to use kernel lib") Signed-off-by: Erez Shitrit <erezsh@nvidia.com> Reviewed-by: Alex Vesker <valex@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
2be5bd42a5 |
net/mlx5: Handle pairing of E-switch via uplink un/load APIs
In case user switch a device from switchdev mode to legacy mode, mlx5 first unpair the E-switch and afterwards unload the uplink vport. From the other hand, in case user remove or reload a device, mlx5 first unload the uplink vport and afterwards unpair the E-switch. The latter is causing a bug[1], hence, handle pairing of E-switch as part of uplink un/load APIs. [1] In case VF_LAG is used, every tc fdb flow is duplicated to the peer esw. However, the original esw keeps a pointer to this duplicated flow, not the peer esw. e.g.: if user create tc fdb flow over esw0, the flow is duplicated over esw1, in FW/HW, but in SW, esw0 keeps a pointer to the duplicated flow. During module unload while a peer tc fdb flow is still offloaded, in case the first device to be removed is the peer device (esw1 in the example above), the peer net-dev is destroyed, and so the mlx5e_priv is memset to 0. Afterwards, the peer device is trying to unpair himself from the original device (esw0 in the example above). Unpair API invoke the original device to clear peer flow from its eswitch (esw0), but the peer flow, which is stored over the original eswitch (esw0), is trying to use the peer mlx5e_priv, which is memset to 0 and result in bellow kernel-oops. [ 157.964081 ] BUG: unable to handle page fault for address: 000000000002ce60 [ 157.964662 ] #PF: supervisor read access in kernel mode [ 157.965123 ] #PF: error_code(0x0000) - not-present page [ 157.965582 ] PGD 0 P4D 0 [ 157.965866 ] Oops: 0000 [#1] SMP [ 157.967670 ] RIP: 0010:mlx5e_tc_del_fdb_flow+0x48/0x460 [mlx5_core] [ 157.976164 ] Call Trace: [ 157.976437 ] <TASK> [ 157.976690 ] __mlx5e_tc_del_fdb_peer_flow+0xe6/0x100 [mlx5_core] [ 157.977230 ] mlx5e_tc_clean_fdb_peer_flows+0x67/0x90 [mlx5_core] [ 157.977767 ] mlx5_esw_offloads_unpair+0x2d/0x1e0 [mlx5_core] [ 157.984653 ] mlx5_esw_offloads_devcom_event+0xbf/0x130 [mlx5_core] [ 157.985212 ] mlx5_devcom_send_event+0xa3/0xb0 [mlx5_core] [ 157.985714 ] esw_offloads_disable+0x5a/0x110 [mlx5_core] [ 157.986209 ] mlx5_eswitch_disable_locked+0x152/0x170 [mlx5_core] [ 157.986757 ] mlx5_eswitch_disable+0x51/0x80 [mlx5_core] [ 157.987248 ] mlx5_unload+0x2a/0xb0 [mlx5_core] [ 157.987678 ] mlx5_uninit_one+0x5f/0xd0 [mlx5_core] [ 157.988127 ] remove_one+0x64/0xe0 [mlx5_core] [ 157.988549 ] pci_device_remove+0x31/0xa0 [ 157.988933 ] device_release_driver_internal+0x18f/0x1f0 [ 157.989402 ] driver_detach+0x3f/0x80 [ 157.989754 ] bus_remove_driver+0x70/0xf0 [ 157.990129 ] pci_unregister_driver+0x34/0x90 [ 157.990537 ] mlx5_cleanup+0xc/0x1c [mlx5_core] [ 157.990972 ] __x64_sys_delete_module+0x15a/0x250 [ 157.991398 ] ? exit_to_user_mode_prepare+0xea/0x110 [ 157.991840 ] do_syscall_64+0x3d/0x90 [ 157.992198 ] entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: 04de7dda7394 ("net/mlx5e: Infrastructure for duplicated offloading of TC flows") Fixes: 1418ddd96afd ("net/mlx5e: Duplicate offloaded TC eswitch rules under uplink LAG") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Roi Dayan <roid@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Shay Drory
|
2a0a935fb6 |
net/mlx5: Collect command failures data only for known commands
DEVX can issue a general command, which is not used by mlx5 driver. In case such command is failed, mlx5 is trying to collect the failure data, However, mlx5 doesn't create a storage for this command, since mlx5 doesn't use it. This lead to array-index-out-of-bounds error. Fix it by checking whether the command is known before collecting the failure data. Fixes: 34f46ae0d4b3 ("net/mlx5: Add command failures data to debugfs") Signed-off-by: Shay Drory <shayd@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> |
||
Chuck Lever
|
18c40a1cc1 |
net/handshake: Fix sock->file allocation
sock->file = sock_alloc_file(sock, O_NONBLOCK, NULL); ^^^^ ^^^^ sock_alloc_file() calls release_sock() on error but the left hand side of the assignment dereferences "sock". This isn't the bug and I didn't report this earlier because there is an assert that it doesn't fail. net/handshake/handshake-test.c:221 handshake_req_submit_test4() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:233 handshake_req_submit_test4() warn: 'req' was already freed. net/handshake/handshake-test.c:254 handshake_req_submit_test5() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:290 handshake_req_submit_test6() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:321 handshake_req_cancel_test1() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:355 handshake_req_cancel_test2() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:367 handshake_req_cancel_test2() warn: 'req' was already freed. net/handshake/handshake-test.c:395 handshake_req_cancel_test3() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:407 handshake_req_cancel_test3() warn: 'req' was already freed. net/handshake/handshake-test.c:451 handshake_req_destroy_test1() error: dereferencing freed memory 'sock' net/handshake/handshake-test.c:463 handshake_req_destroy_test1() warn: 'req' was already freed. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: 88232ec1ec5e ("net/handshake: Add Kunit tests for the handshake consumer API") Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Link: https://lore.kernel.org/r/168451609436.45209.15407022385441542980.stgit@oracle-102.nfsv4bat.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Chuck Lever
|
b21c7ba6d9 |
net/handshake: Squelch allocation warning during Kunit test
The "handshake_req_alloc excessive privsize" kunit test is intended to check what happens when the maximum privsize is exceeded. The WARN_ON_ONCE_GFP at mm/page_alloc.c:4744 can be disabled safely for this test. Reported-by: Linux Kernel Functional Testing <lkft@linaro.org> Fixes: 88232ec1ec5e ("net/handshake: Add Kunit tests for the handshake consumer API") Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Link: https://lore.kernel.org/r/168451636052.47152.9600443326570457947.stgit@oracle-102.nfsv4bat.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Christophe JAILLET
|
640bf95b2c |
3c589_cs: Fix an error handling path in tc589_probe()
Should tc589_config() fail, some resources need to be released as already done in the remove function. Fixes: 15b99ac17295 ("[PATCH] pcmcia: add return value to _config() functions") Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: Simon Horman <simon.horman@corigine.com> Link: https://lore.kernel.org/r/d8593ae867b24c79063646e36f9b18b0790107cb.1684575975.git.christophe.jaillet@wanadoo.fr Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Christophe JAILLET
|
5b17a4971d |
forcedeth: Fix an error handling path in nv_probe()
If an error occures after calling nv_mgmt_acquire_sema(), it should be undone with a corresponding nv_mgmt_release_sema() call. Add it in the error handling path of the probe as already done in the remove function. Fixes: cac1c52c3621 ("forcedeth: mgmt unit interface") Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Acked-by: Zhu Yanjun <zyjzyj2000@gmail.com> Link: https://lore.kernel.org/r/355e9a7d351b32ad897251b6f81b5886fcdc6766.1684571393.git.christophe.jaillet@wanadoo.fr Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Anton Protopopov
|
b34ffb0c6d |
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails. Fixes: 20b6cc34ea74 ("bpf: Avoid hashtab deadlock with map_locked") Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230522154558.2166815-1-aspsk@isovalent.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> |